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Abstract: The energy industry is faced with important investment and optimization choices especially
for wind power as a fuel of the future, especially for China which boasts the largest installed wind
power capacity. This study therefore assessed the potential status of future wind power over China
using Coupled Model Intercomparison Project phase 5 (CMIP5) models. Changes in wind power
density relative to the current time period 1981–2005 were then analyzed using near-surface wind
speeds extrapolated to hub-height of 90 m above ground level. The results showed relatively modest
differences between the models and reanalysis. The majority of the models showed any two of
location, shape, and size agreement for peak areas albeit models BCC-CSM-1-1-M, BNU-ESM, and
CanESM2 tended to overestimate wind speed by up to 2.5 m/s. The multi-model ensemble mean
performed better than most individual models in representing the wind characteristics over the study
area. Future changes in wind power density showed an increase (decrease) over the coastal areas of
the South China Sea and Bay of Bengal (areas along the 30◦–40◦ N belt). In all, the changes were not
significant enough to neither warrant a move away from wind energy nor threaten considerably the
marketability and profitability under the present warming scenario rate.

Keywords: wind energy meteorology; climate modeling; renewable energy sustainability; wind
power profitability; wind power density

1. Introduction

The role of wind power in energy portfolios for a green and sustainable future cannot be overlooked.
Massive investments and general adoption of wind power globally has seen it emerge as one of the
most important alternative energy sources. Recent statistics also confirm this, with China, USA, and
Germany ranking top in cumulative installed capacity for wind power at about 237 GW, 105 GW, and
61 GW (36%, 16%, and 9% of world total) respectively as of December 2019 [1]. More importantly,
assessing and characterizing wind power resources and potential under future climate is critical to
decision-making related to power infrastructure, energy portfolio, and investment/switching costs
etc. [2,3]. Important information such as historical evolution of wind properties [4], wind time scale
variability [5], wind power potential under warming scenarios [6], and the resilience of wind power
systems to extremes [7] can be gleaned only by detailed assessment of the spatial and temporal patterns
of near-surface and hub-height wind speeds. More urgently however, the now accepted possibility of
increasing energy demand [8] due in part to extreme weather and anthropogenic effects create a bigger
burden on wind power as a fuel of the future.

Wind resources assessment has conventionally been carried out through station/observational
data [9], reanalysis data [5], and a combination of both systems [10]. One study [11] used Climate
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Forecast System Reanalysis (CFSR) data to study 80 m hub-height wind speed over China and
observed significant seasonal variability which was attributed to the East Asian monsoon. Another [5]
took a regional approach to examine the impacts of monsoon variability on wind power in Asia
using 6-hourly ERA-Interim data while a related study [12] used wind data from the Goddard Earth
Observing System Data Assimilation System Version 5 (GEOS-5 DAS) to quantify wind energy potential.
Outside of China, a study [13] used Modern Era Retrospective-Analysis for Research and Applications
(MERRA) reanalysis data set to examine and quantify extreme wind power generation in Great Britain.
The present global installed wind power capacity is evidence of the success of initial wind resources
assessments and wind power potential. China’s largest wind farms are located in the northern region
in nine ‘wind bases’ [2,14] spread around Inner Mongolia (29 GW), Xinjiang (19 GW), Hebei (14 GW),
Gansu (13 GW), Ningxia (10 GW) and Shanxi (10 GW). The locations and profitability of these wind
farms among many others could somewhat be controversial especially since estimates of wind power
using reanalysis data show a Wind Power Density (WPD) of less than 150 W/m2 [11,15] which ideally
suggests unprofitable for commercial wind power production. Limited observational data of surface
wind speed collected conventionally for non-wind energy purposes on the other hand are slightly
higher than reanalysis especially on a station by station basis although with a decreasing trend as
reported in the literature [16–18]. Since actual installed capacity is however increasing, it becomes
essential to investigate future scenarios of wind power potential when considering future energy mixes
and planning the roadmap for continued wind power development.

Future projections of key atmospheric parameters have paved way for skillful predictions of
future climate and weather. Particularly for wind energy purposes, there is scientific evidence of how
changing climate may impact wind speed and WPD based on global and regional climate models. It is
expedient to note differences in parameter magnitudes e.g., surface wind speed with models [4] and
individual model’s ability to reproduce and capture specific observational characteristics. Nonetheless,
the climatology and general characteristics are still been replicated broadly enough and thus they are
effective for wind resources estimation [19], energy planning and policy [20] and assessing climate
change impacts on wind power [21]. Studies on wind power projection indicated a decrease of about
1.0–4.5% in the USA over the 21st century [22], an increase in annual mean speed at 30–100 m above
ground level between 2001 and 2009 in Japan [23]. A change in multi-year power production of about
5% magnitude was estimated for most European countries [24], albeit succinctly stating that climate
change does not undermine nor favor wind energy development in Europe. Similar studies also
reported increases for Europe [25,26] while Sawadogo et al. [6] reported a future increase in monsoon
wind speed and WPD that intensified with higher warming levels over the Sahel subregion of West
Africa. Globally, Zheng et al. [27] found a narrowing (expansion) of areas with WPD greater than 800
(400) Wm−2 for offshore wind in the future period 2080–2099 relatively to reference period 1980–1999.
Their study focused on RCP4.5 and RCP8.5 emission scenarios only based on a previously defined
multi-model ensemble mean of 12 CMIP5 Global Circulation Models [28]. A study opined that the
warming in the Indian Ocean contributed to a dampening of upward motion over India thus reducing
monsoonal wind speed. The authors conclude that this reduction consequently accounted for a
0.77 PWh/decade decrease in potential energy, and that it could reduce further with more warming [20].
For China, Chen et al. [15] concluded that wind speed at the end of the 21st century appears similar to
the last historical 35 years, and that it is only slightly dependent on the Representative Concentration
Pathway (RCP) applied when investigated using seven Atmosphere-Ocean General Circulation Models
(AOGCMs). On the contrary, a decrease was projected in the future period 2071–2100 [29] in another
study while Sherman et al. [2] using MERRA data from 1979–2015 noted a secular decrease in ‘wind
power generating potential’ for Inner Mongolia and Gansu regions which are two prominent wind
bases in China. With respect to near-surface wind speeds, it was reported that wind speed in the future
(2020–2100) showed significantly decreasing trends of −0.002 (−0.007) ms−1 per decade under RCP4.5
and RCP8.5 emission scenarios respectively in Eastern China [30]. The authors in this study [30]
specifically note two temporal stages of changes in trend; a decadal increase (decrease) during 2020–2055
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(2055–2100) and 2020–2040 (2040–2100) for RCP4.5 and RCP8.5 respectively. Strategic and accurate
projections of future wind power estimates are important for proper energy planning, decision-making,
and further wind farm development. This study advances previous works by using ten CMIP5 models
and investigating future potential at specific wind bases for more informed conclusions. Additionally,
20-year future time slices were introduced to provide a more robust time-based reference similar to
those for with energy supply contracts and purchasing to aid wind power diffusion and profitability.
Specifically, the objectives of this study are to investigate the spatial and temporal patterns of wind
speed and WPD for historical (1950–1980) and current periods (1981–2005) using CMIP5 models;
assess model performance in reproducing observed features and estimate bias; and to make skillful
projections of future WPD including changes in spatio-temporal patterns under a warming scenario.

This introductory section is followed by details of the data used and methodology. Comprehensive
results are presented in Section 3 with a discussion of the impacts and implications before a summary
and conclusion section.

2. Data and Methodology

2.1. Study Area and Dataset

The study area comprises broadly of the regions contained in the 70◦–130◦ E longitude and
10◦–60◦ N latitude box inclusive of some offshore areas to effectively capture offshore and coastal
patterns. Two focus regions of interest Rg. A and Rg. B are designated as shown in Figure 1 based on
the locations of the largest wind farms in China earlier highlighted. For the purpose of meeting the
study objectives, three time periods were defined as historical (1950–1980), current (1981–2005) and
future (2021–2100). The historical period is based on available data of historical simulations for all
the models considered. The current run of 1 January 1981 to 31 December 2005 was selected based
on the overlapping period of data for all the CMIP5 models and reanalysis dataset used in the study
i.e., consistent time period among all the datasets. The future run was further sub-divided into four
time slices of two decades each chronologically i.e., 2021–2040, 2041–2060, 2061–2080, and 2081–2100.
This was to achieve a more strategic foundation for policy purposes, energy planning, and subsequent
or additional investments in wind power.
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The datasets used consists of the CMIP5 historical experiments and future projections based on
the Representative Concentration Pathway RCP8.5 scenario. The choice of RCP8.5 is based on the
conclusions of Peters et al. [31] that present Green House Gases (GHGs) emissions are rather following
a business-as-usual scenario rather than any of the reduced RCP scenarios. In lieu of the observational
dataset, the ERA-Interim reanalysis dataset [32] is used for validation. Table 1 shows the major
characteristics of the models used alongside their spatial resolutions. Detailed model information is
available in the referenced online data repositories [33,34]. To facilitate convenient comparisons, all the
datasets used in this study were regridded to a grid sizing of 1.12 × 1.12 using the distance-weighted
interpolation method [35] reported to be able to significantly retain high resolution details of climate
models [36].

Table 1. Details and characteristics of CMIP5 models used.

Model Name Country/Affiliation Horizontal Resolution (◦lat × ◦lon)

BCC_CSM 1.1(m) Beijing Climate Center, China 2.79 × 2.81

BNU-ESM College of Global Change and Earth System
Science, Beijing Normal University China 2.79 × 2.81

CanESM2 Canadian Centre for Climate Modelling and
Analysis, Canada 2.79 × 2.81

CMCC-CMS Centro Euro-Mediterraneo per I
Cambiamenti Climatici, Italy 3.71 × 3.75

CNRM-CM5

Centre National de Recherches
Meteorologiques/Centre Europeen de
Recherche et Formation Avancees en Calcul
Scientifique, France

1.40 × 1.41

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 1.89 × 3.75

MIROC-ESM-CHEM

Atmosphere and Ocean Research Institute
(The University of Tokyo), National
Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and
Technology, Japan

2.79 × 2.81

MPI-ESM-MR Max Planck Institute for Meteorology,
Germany 1.87 × 1.88

MPI-ESM-LR Max Planck Institute for Meteorology,
Germany 1.87 × 1.88

MRI-CGCM3 Meteorological Research Institute, Japan 1.12 × 1.13

2.2. Wind Speed

Daily values of near-surface (equivalent of 10 m height) zonal wind (u) and meridional wind (v)
components were used to compute wind speed mathematically following the wind speed expression
Equation (1) shown here

um =
√

u10
2 + v10

2 (1)

This wind speed um is representative of 10 m height, thus the wind power law seen in Equation (2)
was further used to extrapolate to a hub-height of 90 m above ground level (agl) based on the
specifications of a Vestas V90 3.0 MW wind turbine.

U(z)

U(z)r

=
( Z

Zr

)α
(2)

The variables in the equation Z and Zr are the wanted and reference heights respectively, while U(Z)

and U(Z)r are the wanted and reference height wind speed, respectively. The choice of Hellman exponent
(α) used here was 0.14, in accordance with the one-seventh factor favored for its fair representation
of open land surfaces in similar studies [4]. Wind resources literature suggest that α does vary by
terrain, wind speed, atmospheric conditions, time of day, vegetation cover, etc. [37–41]. Thus, it is
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possible that the exponent used here may underestimate or overestimate hub-height wind speed under
differing conditions.

2.3. Wind Power Density

WPD provides a more objective way to assess the potential wind energy from a wind turbine
or wind farm for a particular location, especially since it does not consider turbine specifications. It
rather measures how much energy is available to be converted by a wind turbine in W/m2 of turbine
swept area as defined in Equation (3) below where ρ and uh represents air density and hub-height
wind speed respectively.

WPD =
1
2

uh
3 (3)

The WPD at each grid point was estimated first based on grid point wind speed for each day,
then the mean WPD calculated mathematically. This stepwise process allowed the cubic relationship
between wind speed and wind power be maintained, while also reducing possible under-estimation as
a result of directly averaging wind speed prior to WPD computation. The future projections for each of
the time slice was discussed relative to the current time. Individual model bias was calculated relative
to the reanalysis data i.e., ERA-Interim data.

3. Results and Discussions

3.1. Wind Speed and Wind Power Density Historical Patterns

The ability of the ten CMIP5 models to realistically replicate the climatological patterns of wind
speed distribution over the study area, as well as the agreement between models was first investigated
for the historical period of 1950–1980 and is presented in Figure 2.Energies 2020, 13, x FOR PEER REVIEW 6 of 17 
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Figure 2. Mean wind speed in m/s extrapolated to 90 m above ground level height for the historical
period of 1950–1980 for the selected models and the ensemble mean.

All the models showed higher mean wind speeds over the coastal areas as expected for offshore
wind speeds albeit with varying magnitudes. MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3 and



Energies 2020, 13, 2417 6 of 16

CMCC-CMS had mean wind speeds of about 9–10 m/s at the South China Sea (south-east) of
the study domain but lesser around the Bay of Bengal area only about 6–8 m/s with all the four models
showing an increasing gradient away from land. Models BCC-CSM1-1-M, CanESM2 and BNU-ESM
show wind speeds >6 m/s in the 30◦–50◦ N latitudinal belt, a pattern also replicated in the MRI-CGCM3
model. Overall, mean wind speed was lower in the IPSL-CM5A-LR and MIROC-ESM-CHEM models
although the same spatial distribution observed in the earlier discussed models are also present. The
ensemble mean model captured the same spatial distribution with a smaller sized area of higher
wind speed along the 30◦–50◦ N belt. The patterns for WPD are similar to that of the wind speed
(Figure A1 in Appendix A), although most onshore areas show WPD below Class II which is less than
250 W/m2 [10].

Low WPD classes conventionally suggest that wind power development may not be commercially
profitable in such a region. When this occurs alongside differences in model performance, it becomes
more important to validate model values with field observations as well as to take steps to reduce
uncertainties in future projections. To meet some of these challenges and limitations, individual model
performance validation and characterization was done and presented in the following section.

3.2. Evaluation of Wind Speed and Model Performance

Results of mean wind speed for the current period 1981–2005 are presented in Figure 3 for each
CMIP5 model alongside their ensemble mean and the observation proxy ERA-Interim. The models are
in good agreement with the reanalysis data capturing the spatial distribution of wind speed. These
results are broadly going to be described with characteristics location, shape, and size. Location
discusses the geographical area of observed pattern; shape refers to the form or outline while size
refers to the lateral and vertical extent of the pattern.Energies 2020, 13, x FOR PEER REVIEW 7 of 17 
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The location agreement for wind speed peaks is relatively higher in the coastal areas of
the study domain in the south-east and south-west although there are significant differences in
magnitude. For size, all the models also show very high agreement except for the IPSL-CM5A-LR
and MIROC-ESM-CHEM which show lesser spatial extents for the coastal areas covering the South
China Sea and Bay of Bengal. Over the 30◦–50◦ N belt, however, large differences in size are
observed with some models having no wind speed peaks for the entire longitudinal expanse such as
MPI-ESM-MR, MPI-ESM-LR, CMCC-CM5, and IPSL-CM5A-LR models. Relative to the reanalysis
dataset, BCC-CSM1-1-M, CanESM2, MRI-CGCM3, and BNU-ESM overestimate the mean value,
while the ensemble mean appears to moderately underestimate mean values. For the entire study
area, BCC-CSM1-1-M, and CanESM2 tended to show higher mean wind speed while MPI-ESM-MR,
MPI-ESM-LR lesser magnitudes. The ensemble mean outperforms individual models in capturing the
spatial characteristics. Broadly, the mean wind speed ranged from about 8 m/s at the offshore and
coastal areas of South China Sea, about 6–7 m/s at the Bay of Bengal region and about 4–5 m/s at most
inland areas of the domain.

The spatial bias of mean wind speed relative to ERA-Interim is presented in Figure 4. The
magnitude of bias ranged from about −3 m/s to +3 m/s. The bias shows that models BCC-CSM1-1-M,
BNU-ESM and CanESM2 have significantly higher mean wind speeds in most of the study area with
corresponding changes in size and location. CMCC-CMS, MPI-ESM-MR, and MPI-ESM-LR all showed
slightly higher mean wind speeds in the coastal areas but lower mean wind speeds along the 30◦–50◦

N belt with roughly the same shape and size distribution. IPSL-CM5A-LR and MIROC-ESM-CHEM
both exhibit similar characteristics of higher mean wind speeds in the same latitudinal belt enveloped
by lower mean wind speeds. The latter model (MIROC-ESM-CHEM) is about 1 m/s more (less) intense
for the higher (lower) values relative to the former model. The MRI-CGCM3 model showed a strip of
lower mean wind speed above the 30◦–50◦ N belt while having over-estimations at the coastal areas
also. The ensemble mean showed the least bias and thus adopted for the future projections.
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To overcome some of the concerns posed by the results of the historical period for wind power
class, values of the obtained wind speed are compared with literature data of station observational data.
Liao et al. [42] used surface station data and observed that more than 80% of the total area in China had
wind energy density between 0–150 W/m2. Jiang et al. [9] and Wang et al. [43] reported similar patterns
for observational data from 535 stations and 729 stations, respectively. More studies concluded that
similar surface data from China may suggest a recent decline in wind speed [16–18], albeit the range
of observations show only modest differences with the values obtained from the reanalysis dataset
used in this study. Thus, for the projections contained in the following section special considerations
were made.

One consideration is that the estimations were made relative to the period 1981–2005 such that
irrespective of the bias in the model, the magnitude of change observed between the current and future
climate is still accurate and reliable for guiding increased investment and energy planning, as well as
estimating future wind energy supply. Also, the cubic relationship between wind speed and wind
power when doing wind power estimations can be misleading. Using mean wind speed as the only
indicator may result in estimation errors as time-step differences in wind speed would give a different

value compared to time-step differences in wind power i.e.,
( t1+t2

2

)3
,

(
t1

3+t2
3

2

)
To overcome this limitation, the spatial characteristics are discussed using WPD as this also

accommodates the timescale variability and Weibull fit distribution of wind speed. The results of the
future projections based on the ensemble mean and are detailed below for the RCP8.5 scenario. WPD
for current period 1980–2005 and future time slices for each CMIP5 model is shown in Figures A2–A6.

3.3. Future Wind Power Scenarios

As earlier stated, future projections of WPD are evaluated relative to the simulations for the
current time period. Broadly, the potential changes in each time slice are quite modest with a range of
±40 W/m2 for the decadal time slices considered. The spatial distribution also shows a large similarity
to the current WPD especially in terms of peak locations. Nonetheless there are significant differences
in sizes (of these peak values). The result shown in Figure 5 suggests that the most notable changes in
future wind power may exhibited in a more temporal form.

Energies 2020, 13, x FOR PEER REVIEW 9 of 17 

 

As earlier stated, future projections of WPD are evaluated relative to the simulations for the 
current time period. Broadly, the potential changes in each time slice are quite modest with a range 
of ±40 W/m2 for the decadal time slices considered. The spatial distribution also shows a large 
similarity to the current WPD especially in terms of peak locations. Nonetheless there are significant 
differences in sizes (of these peak values). The result shown in Figure 5 suggests that the most notable 
changes in future wind power may exhibited in a more temporal form. 

The Tibetan region of the study domain found around the latitudinal belt 30°–40° N extending 
to about 100° E showed a constant decrease of WPD from the first two decades (2021–2040) till the 
end of the century (2081–2100). Although the shape appeared to be the same, the size extended as the 
century progressed implying an increase in areas experiencing lesser WPD with the magnitude of the 
decrease also increasing. The reverse is the case for most of the coastal areas especially the Bay of 
Bengal and parts of the South China Sea coastline where WPD increased as the century progressed. 
Differences in shape and size of the peaks can also be observed for most of the areas. Consequently, 
it can be inferred that there are no significant changes in mean WPD over China in the future. Similar 
conclusions have been reported about future near-surface wind speeds based on the 4 RCP scenarios 
[15], and from CMIP3 models of extreme wind speed [44]. Notwithstanding, due to the frequency 
distribution properties of wind speed and its timescale variability, a more in-depth analysis on a 
seasonal timescale is conducted over the two regions with China’s largest wind power capacity. 

 
Figure 5. Projected multimidel meanchanges in mean WPD at 90 m hub-height in (W/m2) for four 
future time slices relative to the period 1981–2005 under the RCP8.5 scenario. 

The analysis results as presented in Figure 6 show that mean daily wind speed is higher in 
December-January-February (DJF) and least in June-July-August (JJA) for both regions (Rg. A and 
Rg. B) based on a Day of Year timeline. The probable annual cycle shows wind speed reduced from 
its peak values in winter through to lower values in spring and summer. This is followed by a gradual 
increase in autumn as the weather transitions to cooler wintertime temperatures. On the temporal 
scale, the first time slice 2021–2040 recorded the maximum wind speed for both regions and this is 
repeated for the 4 seasons although with lesser differences in magnitude in summer and autumn 
seasons. Also noteworthy is that despite the geographical proximity between both regions, wind 
speed was higher in region B than in region A. Details of the spread of wind speed in m/s for the 

Figure 5. Projected multimidel meanchanges in mean WPD at 90 m hub-height in (W/m2) for four
future time slices relative to the period 1981–2005 under the RCP8.5 scenario.



Energies 2020, 13, 2417 9 of 16

The Tibetan region of the study domain found around the latitudinal belt 30◦–40◦ N extending to
about 100◦ E showed a constant decrease of WPD from the first two decades (2021–2040) till the end of
the century (2081–2100). Although the shape appeared to be the same, the size extended as the century
progressed implying an increase in areas experiencing lesser WPD with the magnitude of the decrease
also increasing. The reverse is the case for most of the coastal areas especially the Bay of Bengal and
parts of the South China Sea coastline where WPD increased as the century progressed. Differences in
shape and size of the peaks can also be observed for most of the areas. Consequently, it can be inferred
that there are no significant changes in mean WPD over China in the future. Similar conclusions
have been reported about future near-surface wind speeds based on the 4 RCP scenarios [15], and
from CMIP3 models of extreme wind speed [44]. Notwithstanding, due to the frequency distribution
properties of wind speed and its timescale variability, a more in-depth analysis on a seasonal timescale
is conducted over the two regions with China’s largest wind power capacity.

The analysis results as presented in Figure 6 show that mean daily wind speed is higher in
December-January-February (DJF) and least in June-July-August (JJA) for both regions (Rg. A and Rg.
B) based on a Day of Year timeline. The probable annual cycle shows wind speed reduced from its peak
values in winter through to lower values in spring and summer. This is followed by a gradual increase
in autumn as the weather transitions to cooler wintertime temperatures. On the temporal scale, the
first time slice 2021–2040 recorded the maximum wind speed for both regions and this is repeated for
the 4 seasons although with lesser differences in magnitude in summer and autumn seasons. Also
noteworthy is that despite the geographical proximity between both regions, wind speed was higher
in region B than in region A. Details of the spread of wind speed in m/s for the ensemble mean over
each region including the minimum, quartiles, and maximum are contained in Figure A7.
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To compensate for wind spatial and temporal variability as well as potential future decrease in
wind power, complementarity of energy sources in hybrid power systems has emerged. Such a system
can be wind-hydro, wind-solar etc. This concept has a huge potential for balancing demand-supply
mismatch and would be very effective for meeting demand-net-wind. Demand-net-wind is the amount
of energy that can be supplied from non-wind sources to meet energy demand. Comprehensive
details on hybrid systems as well as complementarity are available in the study by Jurasz et al. [45].
Furthermore, by evaluating using relative differences rather than absolute values (future–current),
validity and applicability of the study results are retained despite using a constant α value for the wind
speed extrapolation.

4. Summary and Conclusions

The aim of the study was to assess the ability of various CMIP5 models to skillfully replicate wind
energy resources over China and apply that as a tool for future wind power generation projection. This
was conducted by using ten models and a multi-model ensemble mean validated with ERA-Interim
reanalysis data for a reference period of 1981–2005. Finally, future projections of wind power potential
over the study domain and the two identified regions of largest installed wind power capacity were
investigated in time slices of 20 years each following the RCP8.5 scenario.

The model bias were rather modest spatially, but also reflect that models BCC-CSM-1-1-M and
CanESM2 had higher wind speeds while MPI-ESM-LR, MPI-ESM-MR, CMCC-CMS and IPSL-CM5A-LR
failed to replicate the shape and size of peak wind speeds observed along the 30◦–40◦ N belt in the
reanalysis dataset. The ensemble mean skillfully captured the location, shape and size of the peaks,
performing considerably better in the coastal areas as well as regions A and B. Future status of WPD
from 2021–2100 presented using the ensemble mean projects mild increases in WPD in parts of the
southeastern and southwestern offshore areas of the domain that intensified as the century progressed.
Also observed were pockets of WPD decreases along the 30◦–40◦ N in all the future time slices. Seasonal
assessments showed higher wind speeds in DJF compared to the other seasons, with mean wind speed
of 4.78 (3.29) m/s and 5.40 (4.78) m/s for regions A and B respectively in winter (summer).

Effectively, changes in future wind power potential are rather not sufficient to warrant a halt
or reduction of wind power investment, nor pose a significant threat to the commercialization and
marketability of the Chinese wind energy industry. Notwithstanding, the resulting patterns suggest
that there may be significant changes in seasonal variability which would impact turbine power output
management, distribution, and operational reserves. The contrasting pattern between the coastal and
inland areas could also pose significant challenges in the geographical distribution of wind power peak
areas in the future for China. There is an emerging risk of a different future scenario should warming
continue at an even faster rate or at business-as-usual scenario. Technological improvements in turbine
design and capacity may be sufficient to offset some of the aforementioned risk, thus further increasing
productivity and reducing cost of wind power generated electricity. The typical 20–30-year life cycle
of an operational wind turbine would inevitably allow for a systemic upgrade and replacement in
favor of adapting to the said risks. Also, shortfalls in supply can be met from other renewable sources
through spatio-temporal complementarity of power sources.

Ultimately, the results provided in our study offers significant insight for the planning, organization,
and management of current and future wind power in China. It provides a valuable outlook tool for
stakeholders involved in energy planning, energy policy, and power systems to optimize wind energy
without compromising stability. One limitation of the study in its present form is the uncertainty
introduced by using near-surface wind speeds extrapolated to hub-height as well as the value of
Hellman exponent used. Also, the bias in models should be seriously considered when performing
similar or advanced downscaling of CMIP5 models to increase the confidence of generated results.
Future work should consider incorporating various values of Hellman exponent and explaining the
possible mechanisms behind changes in wind speed.
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Figure A2. Spatial distribution of mean wind power density (WPD) in W/m2 based on 90 m above
ground level extrapolated wind speed for the current period of 1981–2005 for the CMIP5 models, their
ensemble mean, and ERA-Interim.
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90 m above ground level extrapolated wind speed for the 2021–2040 for the CMIP5 models under
RCP8.5 scenario.
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Figure A4. Spatial distribution of projected mean wind power density (WPD) in W/m2 based on
90 m above ground level extrapolated wind speed for the 2041–2060 for the CMIP5 models under
RCP8.5 scenario.
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Figure A5. Spatial distribution of projected mean wind power density (WPD) in W/m2 based on
90 m above ground level extrapolated wind speed for the 2061–2080 for the CMIP5 models under
RCP8.5 scenario.
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Figure A6. Spatial distribution of projected mean wind power density (WPD) in W/m2 based on 90 m above
ground level extrapolated wind speed for the 2081–2100 for the CMIP5 models under RCP8.5 scenario.
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