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Abstract: Kinematic rotary control is here proposed conceptually to enhance energy harvesting
from Transverse Galloping. The effect of actively orientating the galloping body with respect to the
incident flow, by imposing externally a rotation of the body proportional to the motion-induced
angle of attack, is studied. To this end, a theoretical model is developed and analyzed, and numerical
computations employing the Lattice Boltzmann Method are carried out. Good agreement is found
between theoretical model predictions and numerical simulations results. It is found that it is possible
to increase significantly the efficiency of energy harvesting with respect to the case without active
rotation, which opens the path to consider this idea in practical realizations.
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1. Introduction

During the last decade, the applied interest in the field of Flow-Induced vibrations has been
enlarged by considering phenomena like Transverse Galloping or Vortex-induced Vibrations as
the means to harvest useful energy from fluid flows. In those cases, the aim is to promote the
Flow-Induced vibration phenomenon, in order to extract as much as possible part of the kinetic
energy from the incoming flow and to transfer it to the body, in the form of mechanical oscillatory
energy, and subsequently convert this mechanical energy into electrical energy by electromagnetic,
piezoelectric, or electrostatic means. Bernitsas and his group of collaborators [1,2] proposed a system
for electric power generation from marine/river currents taking advantage of the phenomenon of
oscillations induced by vortex detachment in cylinders (Vortex-Induced Vibrations). Later on, in [3],
the idea of taking advantage of the Transverse Galloping phenomenon was considered and, through
analytical modeling, the role of the main parameters governing the problem, namely the geometry of
the cross-section, mechanical parameters (mass, damping, stiffness) and flow velocity, was established
and high energy transfer potential was proven. Since then, different concepts of energy extraction
based on Transverse Galloping have appeared, with a focus on the large scale where a significant
production of electric energy is desired [4], or to generate small amounts of electrical energy (of the
order of milli-Watts) that can be used, for example, to supply electrical power to autonomous sensors
and actuators and to avoid their dependence on batteries; see, for example, [5–9].

Very briefly, we can say that Transverse Galloping is a fluid-elastic instability that appears in
some elastic bluff bodies when the velocity of the incident flow exceeds a critical value. Then, a small
transverse displacement of the body induces an angle of attack relative to the incoming flow and a
fluid force appears in the direction of the displacement in such a way that a net flux of energy from the
fluid flow to the body appears and the later starts to oscillate transverse to the flow with increasing
amplitude until a Limit Cycle of Oscillations is reached. Transverse Galloping is a self-induced
phenomenon mainly driven by the motion-induced angle of attack (and not by vortex shedding
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like in Vortex-Induced Vibrations), which can only appear for specific cross-sections in which a
variation of the motion-induced angle of attack produces a transverse fluid force in the direction of the
velocity of oscillation. One notable difference of Transverse Galloping response compared to that of
Vortex-Induced Vibrations is that, in the former, the amplitude of oscillations grows continuously with
the incoming flow speed limit. For a detailed review of Transverse Galloping characteristics, the reader
is referred to [10–12].

In a simplified manner, an energy-focused Transverse Galloping system is comprised of three main
elements: (i) the galloping body, immersed in the fluid flow where the transverse fluid forces appear
responsible for the transverse galloping phenomenon, (ii) the elastic system provides the restoring
force and allows oscillations to happen, and (iii) a transducer, where the oscillatory mechanical
power of the body is converted into electrical energy. The problem is fully coupled (double coupling
fluid-solid-electrical), thus an integral perspective has to be taken into account in order to fully establish
design rules to be able to harness energy efficiently. Some optimization studies in these three different
elements have been carried out in the past: for example [3,13], looking for optimal cross-section
geometry of the galloping body (let us say, looking for optimization on the “fluid side”); Reference [14]
focused on the optimization of the “elastic side” by considering a dual mass system, or [15,16] working
in the “electrical side", looking for the optimal electrical impedance.

Here, we present a forward step in the search for optimal solutions from the “fluid side” (that is,
fluid–solid interaction) part of the energy-focused galloping system, and we study the effect of actively
orientating the galloping body with respect to the incident flow by imposing externally a rotation of the
body. In combination with the vertical motion, the rotation contributes to change the angle of attack of
the body with respect to the incoming flow and hence the flow around it and the transverse fluid force
and, therefore, the energy transfer from the flow to the oscillating body. Questions naturally arising
are, for example, How does it affect rotation?, Can more power be harnessed?, Which is the optimal rotation
law? In order to shed light on these questions, a theoretical model, where quasi-steady hypothesis
is taken into account, to include the effect of the rotation has been developed and presented here.
Since transverse galloping is driven by the motion-induced angle of attack, which is linked to the
velocity of body oscillations, here we consider that rotation is proportional to the motion-induced
angle of attack. As will be shown, following this strategy, the energy transfer from the flow to the
galloping body can be significantly increased.

In the following section, Section 2, the theoretical model developed is presented and analyzed.
A validation of the model is carried out in Section 3 by comparison with results obtained via numerical
simulations following the Lattice Boltzmann Method. Finally, concluding remarks are drawn in
Section 4.

2. Theoretical Model

For modeling purposes, we consider the simplified case of a prismatic galloping body elastically
mounted in such a way that oscillations take place only on the transverse direction of the flow and
is actively forced to rotate along its longitudinal axis with a prescribed rotation law (see Figure 1).
The body is linked to a harvester system in order to extract useful energy. For simplicity, a generic linear
viscous damper is considered here to model the harvester system. This can be a good approximation,
for example, for electromagnetic conversion when the frequency of oscillations is low so that the effect
of the inductance is negligible. In this case, the mechanical effect of the harvester is equivalent to
that of a viscous damper, as shown briefly in the Appendix B or in [15,17]. Note that only energy is
harvested from the transverse motion. Appropriate balance between inertia, stiffness, backlash force
from the harvester, and fluid force gives the following ordinary differential equation for the transverse
displacement y:

mÿ + cẏ + ky =
1
2

ρU2DCY, (1)
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where m is the mass per unit length of the body, c is a damping constant per unit length due to the
harvester (note that −cẏ is the backlash force due to the harvester), k is the stiffness constant per unit
length, ρ is the fluid density, U is the undisturbed velocity of the incident flow, D the cross-section
length of the body, and CY is the instantaneous fluid force coefficient in the transverse direction to the
incident flow. Finally, the dot symbol stands for differentiation with respect to physical time t.

Figure 1. Schematics of the forces acting on the galloping body.

Equation (1) can now be rewritten in dimensionless form taking D and ω−1
N = (m/k)1/2 as

characteristic lengthscale and timescale. Then,

Y′′ + 2ζY′ + Y =
U∗2

2m∗
CY, (2)

where a comma stands differentiation with respect to the dimensionless time, τ = ωNt, Y = y/D is the
normalized displacement, ζ = c/(2mωN) is the dimensionless damping, U∗ = U/(ωN D) the reduced
velocity, and m∗ = m/(ρD2) is the mass ratio.

In order to describe CY, the quasi-steady hypothesis is usually resorted to [12] since galloping is
typically a low-frequency oscillation phenomenon where the characteristic timescale of the oscillation
(of order 2π(m/k)1/2) is large enough compared to the characteristic timescale of the flow (of order
D/U). Then, the fluid force is only dependent on the instantaneous attitude of the prism with respect
to the incident flow, and can be evaluated through the steady drag and lift fluid force coefficients
evaluated at the instantaneous angle of attack. In this case, due to the rotation of the body, the angle of
attack α is the sum of the motion-induced angle of attack αM and the rotation applied to the body θ

that is α = αM + θ, see Figure 1, and therefore

CY =

(
Ur

U

)2

(−CL (αM + θ) cos αM − CD (αM + θ) sin αM) . (3)

Since cos αM = U/Ur, it follows that
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CY = − 1
cos αM

(CL (αM + θ) + CD (αM + θ) tan αM) . (4)

From Figure 1, it follows that tan αM = ẏ/U = Y′/U∗ so that, in a generic sense, if θ is known at
any instant (rotating law) as well as lift and drag coefficients, CL and CD, dependence with angle of
attack, Equation (2) may be solved taking into account Equation (4).

Here, in order to go forward in the analytical modeling of the problem, maintaining a compromise
between simplicity, to make a useful comprehensive analysis, and accuracy, let us approximate the CL
and CD dependence with angle of attack by just two-term polynomial functions,

CL ≈ l1α + l3α3, CD ≈ d0 + d2α2, (5)

where l1, l3, d0, d2 are fitting coefficients that depend mainly on the cross-section geometry and
Reynolds number. An odd polynomial has been considered for CL and an even one for CD because the
cross-section of galloping bodies present usually symmetry with respect to the direction at zero angle
of attack [10].

Substituting Equation (5) into Equation (4) gives

CY ≈ −
1

cos αM

(
l1(αM + θ) + l3(αM + θ)3 +

(
d0 + d2(αM + θ)2

)
tan αM

)
, (6)

which, for a fixed cross-section and Reynolds number, expresses the vertical fluid force coefficient as a
function of the motion-induced angle of attack (αM) and rotation law (θ).

2.1. Rotation Proportional to the Motion-Induced Angle of Attack

As anticipated earlier, galloping is driven by the motion-induced angle of attack, so that it seems
natural to consider a rotation law proportional to the motion-induced angle of attack. Therefore,
we consider the case where the galloping body is rotated as

θ = K1αM, (7)

where K1 is a constant of proportionality. Substituting Equation (7) into Equation (6), one finds

CY = − 1
cos αM

(
l1(1 + K1)αM + l3(1 + K1)

3α3
M +

(
d0 + d2(1 + K1)

2α2
M

)
tan αM

)
, (8)

so that CY is now a function of αM for each value K1. The motion-induced angle of attack is small if
the velocity of oscillation is small compared to the incoming flow speed, since αM = tan−1(Y′/U∗).
In those cases, we can make αM ≈ tan αM, cos αM ≈ 1 and therefore from Equation (8),

CY = − ((l1 (1 + K1) + d0)) tan αM −
(

d2 (1 + K1)
2 + l3 (1 + K1)

3
)

tan α3
M, (9)

or written in a more compact way,

CY = ã1 tan αM + ã3 tan α3
M, (10)

with
ã1 = −l1(1 + K1)− d0, (11)

and
ã3 = −d2(1 + K1)

2 − l3(1 + K1)
3. (12)

In Equation (10), the galloping aerodynamics is given by two coefficients where the rotation effect
is included. This notation is convenient in order to make easy comparison with energy harvesting
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results obtained previously for the case without rotation [3]. Substituting Equation (10) into Equation (2)
and taking into account that tan αM = Y′/U∗, one finds

Y′′ + 2ζY′ + Y =
U∗2

2m∗

(
ã1

Y′

U∗
+ ã3

Y′3

U∗3

)
. (13)

For galloping, it is necessary that ã1 > 0 (that is −l1(1 + K1)− d0 > 0), and then ã3 < 0.
It is instructive to see how K1 affects galloping coefficients, and it can be seen that

ã1

a1
= 1 +

1
1 + c1

K1, (14)

where c1 = d0/l1. This shows that ã1/a1 is linearly proportional to K1 (note a1 is the first (linear)
galloping coefficient without actuation that is a1 = ã1 for K1 = 0). d0 is positive (drag coefficient at
angle of attack zero) and for galloping bodies l1 < 0, so the first galloping coefficient will be increased
for positive values of K1.

In addition, we can find

ã3

a3
=

1
1 + c2

(1 + K1)
2 +

c2

1 + c2
(1 + K1)

3, (15)

where a3 = −d2 − l3 is the nonlinear galloping coefficient without actuation (K1 = 0) and c2 = l3/d2.
Note that, for galloping bodies, a1 = −d0 − l1 > 0 so that −1 < c1 < 0 and a3 = −d2 − l3 > 0, which
means that c2 < −1.

2.2. Galloping Response

Equation (13) allows an analytical approach when the nonlinear terms are small compared to
the linear ones—that is, when m∗U∗ � 1. In this case, solution to the nonlinear Equation (13) is close
to that of its linear version and thus one may assume that the steady-state response is sinusoidal,
Y = A∗ sin(ω∗τ), where A∗ = A/D and ω∗ = ω/ωN being A and ω the amplitude circular frequency
of steady-state oscillations. In addition, if one takes into account that cos3(ω∗τ) ≈ 3 cos(ω∗τ)/4,
(i.e., higher order terms in cos(3ω∗τ) are neglected), equating sine and cosine terms, after some
algebra, one gets

ω∗ = 1; A∗ =
(

4U∗

3ã3
(4m∗ζ − ã1U∗)

)1/2
. (16)

Oscillations are only possible when A∗ > 0, thus the initial reduced velocity at which galloping
oscillations are expected is recovered U∗g = 4m∗ζ/ã1. As ã1 increases for larger values of K1 (see
Equation (14)), the initial reduced velocity where galloping starts is reduced as K1 is increased.
Noteworthy, for high enough negative values of K1, ã1 takes a negative value and galloping is avoided,
which are interesting results from the practical side when the interest is to protect a structural element
against Transverse Galloping.

An important parameter is the asymptotic slope of A∗ for large enough U∗, obtained by
considering 4m∗ζ to be much smaller than ã1U∗, which yields

A∗∞
U∗

=

(
−4ã1

3ã3

)1/2
. (17)

2.3. Energy Harvesting Efficiency

The net mean power harvested is the mean power harnessed PH at the viscous damper minus the
losses due to the power spent to rotate the prism. The mean power applied to rotate the prism PR is
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PR =
1
T

∫ T

0
(TI + TF)θ̇dt, (18)

where TI refers to the inertial torque, TF is the fluid torque on the body, and T is an averaging time.
TI is proportional to the angular acceleration θ̈, thus, for close-to-sinusoidal actuation, the contribution
to Equation (18) is negligible. In addition, TF in a quasi-steady manner is proportional to the angular
position θ; hence, for near sinusoidal rotations, these terms can also be neglected, resulting in an overall
null power consumption.

The mean power harnessed PH at the viscous damper can be defined as

PH =
1
T

∫ T

0
cẏ2dt. (19)

For sinusoidal oscillations of amplitude A and circular frequency ω, y(t) = A sin(ωt) and
ẏ = Aω cos(ωt). Substituting ẏ into Equation (19), it follows that

PH =
cA2ω2

2
= mω3

N D2ζ A∗2ω∗2. (20)

A conversion factor (or efficiency) can be introduced in the same way as in [3], as the mean power
dissipated at the viscous damper divided by the total power in the incoming flow per unit length,

η =
PH

1
2 ρU3D

. (21)

Substituting Equation (16) into Equations (20) and (21), one finds

η =
8m∗ζ

3ã3U∗2
(4m∗ζ − ã1U∗) . (22)

The maximum efficiency can be found by differentiating Equation (22) with respect to U∗ and
equating to zero:

ηmax =
−ã1

2

6ã3
, (23)

which happens at a reduced velocity of U∗ = 2U∗g .
It is instructive to compare the maximum efficiency with actuation to that achieved without

actuation (K1 = 0). To this end, let us substitute Equations (14) and (15) into Equation (23),

ηmax =
−ã1

2

6ã3
= −

a2
1

6a3

(
1 + K1

1+c1

)2

(1+K1)2

1+c2
+ c2(1+K1)3

1+c2

= ηmax0M, (24)

where ηmax0 = −a2
1/(6a3) is the maximum efficiency achieved without actuation and M is a function

of K1 and cross-section aerodynamic characteristics (c1 and c2 or, equivalently, d0/l1 and l3/d2) that
recovers the rotation effect in maximum efficiency. When M > 1, rotation enhances energy harvesting
efficiency. For positive values of K1, from Equation (24), it is seen that M is greater than one if

c2 <
−2c2

1 − 2c1

3c2
1 + 4c1 + 1

. (25)

Figure 2 shows graphically the zone of aerodynamic parameters d0/l1 and l3/d2 where positive
actuation (K1 > 0) means an increase in maximum efficiency (that is, M > 1).
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Figure 2. Boundary of magnification factor equal to one, M = 1, as a function of c1 = d0/l1 and
c2 = l3/d2.

It is also possible to compute the optimal value of K1 by differentiating Equation (24) with respect
to K1, equating to zero and solving, to get

Kop
1 = − (1 + C + 3c1/2) , (26)

with
C = (c1 (9c1c2 − 8) /c2)

1/2 . (27)

Then, the maximum magnification of efficiency with actuation is obtained by evaluating (see
Equation (24)) at Kop

1 giving the

Mmax = − 2(2C + c1)
2(c2 + 1)

(2C + 3c1)2(c1 + 1)2(2C + 3c1c2 − 2)
, (28)

a relationship that is shown graphically in Figure 3. As seen, magnification due to actuation grows as
both c1 and c2 grows (in absolute value).
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Figure 3. Contour plot of maximum magnification factor Mmax as a function of c1 = d0/l1 and
c2 = l3/d2.
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3. Numerical Simulations and Validation of the Mathematical Model

In order to validate the mathematical model presented earlier and check the results it provided,
we carried out numerical simulations of the fluid–structure interaction problem at hand using a
previously validated Lattice Boltzmann Method code (see [18] or Appendix A for details). The problem
sketched in Figure 1 was solved numerically where a D-section galloping body was taken into account.
A D-section has been chosen following the work presented in [19], where several cross-section shapes
were analyzed (triangles, biconvex, rhombi, and D-shape). It was shown that, for energy extraction
purposes, the most suitable shape is the D-section. The transverse dynamics of the body are governed
by Equation (2), and the body is forced to rotate around the center point (x = 0, y = 0) following the
law given in Equation (7). The instantaneous fluid force coefficient CY is now computed with the Lattice
Boltzmann Method (instead of analytically taking into account the quasi-steady hypothesis, as made in
Section 2). The mass ratio m∗ of the body was 10, mechanical damping ζ = 0.04, the Reynolds number
100, and the natural frequency of oscillations was varied to change the reduced velocity U∗ in each
simulation case. The Reynolds number was 100 in order to have a reasonable computational cost that
allows for solving a large number of cases in an affordable time. For each simulation case, the temporal
evolution of the flow field, temporal evolution of displacement of the D-section cylinder, and fluid
forces and torque on it are found. Then, the steady-state of oscillations is obtained (say A∗ and ω∗; in
all cases, oscillations were sinusoidal) as well as mean power dissipated at the harvester and mean
power spent to rotate the cylinder.

3.1. Computational Domain and Boundary Conditions

The computational domain and boundary conditions are shown in Figure 4. The diameter of
the D-Section has 40 lattice points (observe that the number of lattice points for the diameter of the
cylinder ND is linked to the Reynolds number Re, kinematic viscosity ν, and inflow velocity U (free of
turbulence), since ND = νRe/U) and the computational domain chosen is 40D × 30D, giving a size
of 1600 × 1200 lattice points. The left boundary was set to be a velocity specified inflow boundary
condition with constant velocity profile U. To simulate the incompressible condition, the Mach number
must be low enough; to this end, the inflow velocity U was set to 0.05 (the velocity of sound is
cs = 1/

√
3 so that the Mach number at the inflow is Ma = U

√
3 and Ma2 is of order 0.01). The rest of

the outer computational boundaries were considered outflows. For the boundary conditions on the
body, a no-slip boundary condition has been applied that is fluid velocity equal to body velocity (see
Appendix A for details about how physical boundary conditions are implemented).

Figure 4. Schematics of the computational domain and boundary conditions. Detailed mesh around
the cross-section is also shown.
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3.2. Results

First of all, static numerical simulations were carried out to compute static drag and lift coefficients.
To this end, no-motion was imposed (Y = Y′ = Y′′ = 0) and a fixed angle of attack (θ fixed). Figure 5
shows the dependence of the lift and drag coefficients with the angle of attack α from the numerical
simulations carried. As said before, the Reynolds number was 100. In addition, results from [20]
are presented for validation purposes, as well as polynomial fitting curves obtained by least squares
minimization (see Equation (5); l1 = −2.28, l3 = 1.44, d0 = 2.05 and d2 = −1.20).

In Figure 6left, the theoretical variation of galloping coefficients ã1 and ã3 with K1 is shown.
Note that this variation is obtained from Equations (11) and (12) once fitting coefficients for CL and
CD are known. Figure 6right shows the transverse fluid force coefficient CY as a function of the
motion induced angle of attack αM, for different values of K1 (see Equation (9)). It can be seen that,
as K1 is increased so is the maximum value of CY, but such maximum occurs for lower values of αM.
In addition, increasing K1 makes the curve of CY with respect to αM narrower and the cut of the curve
with CY = 0 occurs for lower values of αM, except for a small range between 0 < K1 < 0.3.

Figure 7 presents steady-state amplitude of oscillations and energy harvesting efficiency as a
function of the the reduced velocity for two different positive values of K1. As can be seen, the
quasi-steady theoretical model presented (Equation (16)) for the normalized amplitude of oscillations
and Equation (22) for the efficiency) is capable of predicting fairly correctly the amplitude of
oscillation and, to a lesser extent, the efficiency of energy harvesting when compared to the full
fluid–structure–interaction numerical simulations which also showed a nearly sinusoidal response.
For K1 = 0.5, the maximum efficiency achieved is 0.14 (taken from numerical computations), whereas,
for K1 = 1, this figure has been increased to 0.16.

Figure 5. CL and CD static coefficients dependence on the angle of attack (in radians) computed
through numerical Lattice Boltzmann Method computations for a D-section at Re = 100. Polynomial
fitting is shown with a solid line for CL (l1 = −2.28, l3 = 1.44) and dashed line CD (d0 = 2.05 and
d2 = −1.20) for For comparison purposes, results (squares) from [20] are also presented.
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Figure 6. (left) Variation of ã1 and ã3 with K1. (right) Transverse fluid force coefficient CY as a function
of the motion induced angle of attack αM for different positive values of K1.

Figure 7. Normalized amplitude of oscillations A∗ and efficiency η as function of the reduced velocity
U∗ for K1 = 0.5 (a,b) and K1 = 1 (c,d). White circles stand for results from the Lattice Boltzmann
Method computations and solid lines from the quasi-steady model.

Figure 8 plots the maximum efficiency ηmax as a function of K1 predicted by the theoretical
model (Equation (24)) along with results obtained in numerical simulations. Agreement between
theoretical model and computational results is good. Regarding computational results, for K1 = 0,
galloping solution without rotation, the maximum efficiency is ηmax0 = 0.05. As K1 is increased,
the efficiency increases rapidly with K1 until a maximum efficiency of ηmax = 0.16, obtained at
K1 = 0.8. Further increasing K1 leads to a slow reduction of the maximum efficiency achievable.
Therefore, through the rotation law investigated (and for a D-section at Reynolds 100), it is possible
to increase the maximum achievable efficiency by a factor slightly higher than three times. It is
noteworthy that the low efficiency for K1 = 0 is mainly due to the Reynolds number (as it has a major
effect on the detachment of the flow) and thus it is expected that, for the D-section at higher Reynolds
number (or another cross-section shape), the maximum efficiency at K1 = 0 will be higher and thus
there will be a potential to obtain high values of ηmax thought the rotation actuation proposed.



Energies 2020, 13, 91 11 of 18

Figure 8. Maximum efficiency of energy harvesting as a function of K1. Results from Lattice Boltzmann
Method computations are in white circles and theoretical predictions are from the quasi-steady model
(Equation (24)).

It is interesting to study how much power is spent to rotate the body in order to see to what extent
the hypothesis introduced in the theoretical model (that is, zero mean power to rotate the body) is
valid. The mean power to rotate the body is:

PR =
1
T

∫ T

0

(
M +

1
8

mD2θ̈

)
θ̇dt, (29)

where T is an averaging time, M the fluid torque applied on the center of rotation, and θ̇ and θ̈,
respectively, the rotation velocity and acceleration.

Equation (29) can be made dimensionless dividing it by the kinetic power in the incoming flow:

ηR =
2PR

ρU3D
. (30)

As an example, for a reduced velocity of U∗ = 2.75 and K1 = 0.5, a value of ηR = −0.0013 was
computed, whereas the efficiency of energy harvesting is 0.125, meaning that the power spent to
rotate the body is around 1% of the power harvester. This result corroborates the idea taken from the
quasi-steady analysis: the power spent to rotate the body should be small. Figure 9 shows numerical
results obtained for U∗ = 2.75 and K1 = 0.5, in terms of dimensionless amplitude of transverse
oscillations (Figure 9a), fluid torque coefficient (Figure 9b), velocity of rotation and acceleration of
rotations (Figure 9c). The following can be observed: (i) the transverse oscillations are quasi-sinusoidal,
(ii) velocity and acceleration of rotating angle are nearly sinusoidal and there is almost a 90o phase shift
between them so that the contribution to Equation (29) is nearly zero, and (iii) the torque is close to
being in phase with rotation angle. These results explain that power spent to rotate the body is small.

For a better understanding from the physical point of view, the flow pattern (vorticity) around the
galloping body is presented here for the case without actuation (K1 = 0) and for a particular case with
actuation (K1 = 1), reduced velocity 4 and ζ = 0.04. In Figure 10, the wake structure after the body
without actuation exhibits characteristic large-scale vortices being shed independently from the body’s
oscillation at its own frequency. Thus, the wake pattern resembles that of a wave as each vortex is shed
at different points of the cycle of oscillation following the Strouhal frequency of vortex emission for
the body at rest ( fv/ fN = StU∗, where St is the characteristic Strouhal number of the cross-section
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and fv the frequency of vortex shedding); thus, there is no synchronization between vortex shedding
and oscillation.

Figure 9. (a) temporal evolution of the dimensionless transverse displacement of the body; (b) fluid
torque coefficient evolution in time; (c) rotation speed and acceleration. U∗ = 2.75, K1 = 0.5, m∗ = 10,
ζ = 0.04, where a steady-state of oscillations has been reached.

Figure 10. Vorticity contour without actuation for a reduced velocity of U∗ = 4, mass ratio m∗ is 10,
and damping parameter ζ = 0.04. The vorticity field when the body is at Y = 0 and going upwards is
shown.

On the other hand, in Figure 11, the wake after the body with actuation (K1 = 1) exhibits
a quite different flow pattern. Only independent vortices are formed at the point of maximum
displacement during the cycle of oscillations when the body changes direction (maximum acceleration).
The near-wake behind the body shows bounded vorticity which only breaks into an independent
vortex downstream. This could be related to the fact that, through orientating the galloping body,
it becomes much less bluff and the flow remains further attached.

For completeness, other cross-section shapes (equilateral triangle, rectangle and 45o rhombi) have
been numerically simulated for U∗ = 4, K1 = 1 (also m∗ = 10 and ζ = 0.04). In terms of energy
extraction efficiency, the following figures were obtained: η = 0.09 for the D-shape, η = 0.04 for
the equilateral triangle, η = 0.01 for the rectangular body (1:2 side relationship), and η = 0.001 for
the rhombus. From Figures 11 and 12, it is seen that the most slender near-wake is given for the
D-shape one.
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Figure 11. Vorticity contour with actuation (K1 = 1) for a reduced velocity of U∗ = 4, mass ratio
m∗ is 10, and damping parameter ζ = 0.04. The vorticity field when the body is at Y = 0 and
going downwards is shown.

Figure 12. Vorticity contour with actuation (K1 = 1) for a reduced velocity of U∗ = 4, mass ratio m∗ is
10, and damping parameter ζ = 0.04 for equilateral triangle, rectangle (1:2 side), and 45o rhombi. It is
shown the vorticity field when the body is at Y = 0 and going downwards.
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4. Conclusions

The idea of imposing a rotation proportional to the motion-induced angle of attack on a galloping
body has been studied, with its potential use for energy harvesting purposes in mind. A quasi-steady
theoretical model to evaluate the dynamical behavior and the maximum efficiency of energy harvesting
from Transverse Galloping with active pitch control has been developed and analyzed. The proposed
model requires that the characteristic timescale of oscillation and rotation has to be much larger
than the characteristic timescale of flow convection, which takes place usually under Transverse
Galloping. In spite of the simplifications introduced in the model in order to arrive to analytical
mathematical relationships (quasi-steady conditions, two term polynomial fitting of drag and lift
coefficients, small motion-induced angle of attack, harmonic response), the present model is capable
of correctly predicting the dynamics of oscillation as well as the energy harvested from the flow,
with good agreement with computational results of the full fluid–solid interaction problem obtained
through the Lattice Boltzmann Method. Note that the model may be useful as a design tool for practical
implementations, for example to choose in advance the optimal rotating law (optimal K1).

As a major result, it has been found that it is possible to increase importantly the efficiency
of energy extraction (within the range of parameters tested), in particular, ηmax has been increased
up to three times with respect to the case without active rotation. Thanks to the pitch control law
chosen, proportional to the motion-induced angle of attack and hence linked to the body’s velocity,
pitch variations are smooth and nearly sinusoidal (as the response of the body). To our knowledge,
this type of active actuation linked to the body’s dynamics response and with energy harvesting
purposes is suggested here for the first time, and can be of interest from both the basic and the applied
side. In addition, it should be noted that the proposed active actuation could be of interest to diminish
Transverse Galloping response, to protect a structural element—for example, fixing a negative value of
K1; as K1 becomes more negative, ã1 coefficient is diminished and galloping response is attenuated,
in fact, for a high enough negative value of K1, galloping is not possible. Finally, it should be noted
that other rotating laws can be considered and should be evaluated.
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Appendix A. Numerical Simulation Method

The Lattice Boltzmann Method can be viewed as a discretized form of a finite velocity model of
the Boltzmann Equation. Using the Bhatnar–Gross–Krook approximation, it follows [21]:

fi(t + δt, x + eiδt) = fi(t, x) +
1
τ

(
f eq
i (t, x)− fi(t, x)

)
, (A1)

where ei is the finite velocity set, fi(t, x) represents the mass density distribution of the particles
moving in the ei direction at time t and position x, δt is the discrete time-step, τ is a relaxation time
parameter, and f eq

i is the equilibrium distribution given as

f eq
i = wiρ

(
1 +

ei · u
c2

s
+
|ei · u|2

2c4
s
− u2

2c2
s

)
, (A2)

where wi is a weighted parameter, ρ and u are, respectively, the macroscopic density and velocity of
the fluid, and cs the lattice sound speed. For our numerical simulations, it has been chosen to use
the D2Q9 model, the discrete time-step δt is set equal to unity as well as the lattice spacing δx (then,
cs = 1/

√
3). Accordingly,
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ei =


0, i = 0,
(cos((i− 1)π/4), sin((i− 1)π/4)), i = 1− 4,√
(2)(cos((i− 1)π/4), sin((i− 1)π/4)), i = 5− 8,

(A3)

and the weighted parameter wi is given as

wi =


4/9, i = 0,
1/9, i = 1− 4,
1/36, i = 5− 8.

(A4)

The macroscopic variables such as the fluid density ρ and the fluid velocity u are related to fi as

ρ = ∑i fi, ρu = ∑i ei fi. (A5)

The Lattice Boltzmann computer algorithm consists of two steps:

Collison: f̃i(t + 1, x) = fi(t, x) + 1
τ

(
f eq
i (t, x)− fi(t, x)

)
,

Streaming: fi(t + 1, x + ei) = f̃i(t + 1, x).

Applying the Chapman–Enskog expansion in the discrete Lattice Boltzmann Equation, the
Navier–Stokes equations can be recovered for small Mach numbers. Then, the relaxation parameter
can be related to the kinematic viscosity as

ν = (2τ − 1)/6. (A6)

The viscosity has to be positive, so it requires τ > 0.5; however, due to stability reasons, τ has
to be higher than a certain threshold (see [22]), and, for the present article, τ has been fixed to 0.56.
Regarding the Mach number, the computed numerical solutions are expected to converge towards an
in-compressible limit when the fluid speed is sufficiently small compared with cs , i.e., as the Mach
number tends to zero. Thus, it has been chosen that the maximum local velocities cannot surpass 0.1
for any combination of the governing parameters.

Appendix A.1. Boundary Conditions

The left boundary is velocity specified inflow boundary condition with constant velocity profile
U [23]. To simulate the in-compressible condition, the Mach number must be low enough. To this end,
the inflow velocity U is set to 0.05. The rest of the boundaries are considered outflows with
zero-extrapolation boundary [24]. For the boundary conditions of the cylinder, a no-slip boundary
condition has been applied on the cylinder surface with an interpolated bounce-back scheme as
developed by [22]:

f̃−i(t, xb) = f̃i(t, x f )− χ
(

f̃i(t, x f )− f eq
i (t, xb)

)
+ 3ωiρe−i ·

(
ub f − u f − 2uw

)
, (A7)

when ∆ < 0.5
ub f = u f f , χ = (2∆− 1)/(τ − 2), (A8)

otherwise
ub f = (2∆− 3)u f /(2∆) + 3uw/(2∆), χ = (2∆− 1)/(τ + 0.5). (A9)

Here, xb is the position of the boundary node, xw is the wall position and ∆ = ‖x f − xw‖/‖x f − xb‖
is the distance to the wall from the fluid node and uw the wall velocity.

As the cylinder moves, some lattice-points inside the cylinder become fluid nodes. In this case,
the distribution function of any of these new fluid nodes is set equal to the equilibrium distribution
with the cylinder’s velocity and the density of the average value of neighboring fluid nodes.
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Appendix A.2. Force Evaluation

Fluid force on the D-section cylinder has been calculated using the Momentum Exchange
Algorithm (MEA) method [25] from the distribution function on the boundary directly. Then,

F = ∑
xb

ei( f̃−i(t, xb) + f̃i(t, x f )), (A10)

where xb are points of the boundary (D-section cylinder’s surface, see Figure A1).

Figure A1. Schematics of the moving boundary condition treatment.

Appendix B. The Modeling of the Harvester as a Viscous Damper

An equivalent electrical circuit of an electromagnetic generator is shown in Figure A2. The induced
voltage by velocity of oscillations Vi = kEẏ, current i, and the induced electromagnetic force FFEM are
described by the following equations:

kEẏ = (RL + Rc)i + L
di
dt

, FFEM = kEi, (A11)

where RL is the resistance of the load connected to the generator, RC is the internal resistance of the
generator, L its inductance, and kE is an electromechanical coupling constant determined by the flux
density of the magnetic field and number of turns and length of the coil in the generator. When the
inductance is negligible, it follows form Equation (A11) that

FFEM =
k2

E
RL + RC

ẏ = cẏ, (A12)

with c = k2
E/(RL + RC), which shows that the electromagnetic generator may be described as a pure

viscous damper.

Figure A2. Equivalent electrical circuit of an electromagnetic generator.
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Appendix C. The Mathematical Development to Arrive to Equations (16)

The dimensionless equation of the dynamics of the galloping body was (Equation (13)):

Y′′ + 2ζY′ + Y =
U∗2

2m∗

(
ã1

Y′

U∗
+ ã3

Y′3

U∗3

)
. (A13)

Under sinusoidal oscillations of amplitude A∗ and frequency ω∗, Y = A∗ sin(ω∗τ), Y′ =

A∗ω∗ cos(ω∗τ), Y′′ = −A∗ω∗2 sin(ω∗τ). Substituting Y, Y′, and Y′′ into Equation (A13) and equating
sine and cosine terms, one finds that, for sine terms

−A∗ω∗2 + A∗ = 0, (A14)

and

2ζ A∗ω∗ =
U∗2

2m∗

(
ã1

A∗ω∗

U∗
+

3
4

ã3

(
A∗ω∗

U∗

)3
)

, (A15)

for cosine terms if cos(ω∗τ)3 is approximated by 3 cos(ω∗τ)/4.
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