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Abstract: Depending on its operating conditions, traditional soot blowing is activated for a fixed time.
However, low-frequency soot blowing can cause heat transfer efficiency to decrease. High-frequency
soot blowing not only wastes high-pressure steam, but also abrades surface pipes, reducing the
working life of a heat exchange device. Therefore, it is necessary to design an online ash fouling
monitoring system to perform soot blowing that is dependent on the status of ash accumulation.
This study presents an online monitoring model of ash-layer thermal resistance that reflects the
degree of ash fouling. A wavelet threshold denoising algorithm was applied to smooth the thermal
resistance of the ash layer calculated by the heat balance mechanism model. Thus, the variation in
thermal resistance becomes more visible, which is more conducive to optimizing the operation of soot
blowing. The designed Support Vector Regression (SVR) model could achieve the online prediction
of thermal resistance denoising for low-temperature superheaters. Experimental analysis indicates
that the prediction accuracy was 98.5% during the testing phase. By using the method proposed
in this study, online monitoring of heating surfaces during the ash fouling process can be realized
without adding complicated and expensive equipment.

Keywords: utility boiler; thermal resistance; wavelet threshold denoising algorithm; support vector
regression (SVR)

1. Introduction

In the Chinese economy, the coal-fired boiler continues to play a significant role in converting heat
energy into steam or hot water [1]. The energy conservation and environmental protection policies of
coal-fired boilers in China have been continuously strengthened in recent years [2]. Many cities are
carrying out energy-saving and emission-reduction renovations of boilers. In 2015, China pledged to
reduce its CO2 emissions per unit of GDP by 60–65% by 2030 compared with the levels in 2005 [3,4].
Therefore, China’s coal-fired boilers have rapidly developed in the direction of high parameters
and large capacities in recent years [5]. Supercritical and ultra-supercritical units with rated power
generations greater than 600 MW have gradually become the dominant direction of coal-fired units.

Since the end of July 2017, China has put into operation 101 units of 1000 MW ultra-supercritical
units. However, with the increase of boiler capacity and parameters, especially the improvement of
steam parameters, the problem of ash and slag in boiler furnaces and on convection heating surfaces
has become more serious. In the furnace combustion process, ash fouling and slagging on heating
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surfaces has always been one of the critical factors affecting heat transfer efficiency. After the pulverized
coal particles are burned, part of the fly ash passes through the platen superheater, high-temperature
superheater, low-temperature superheater, reheater, economizer, air preheater and so on. Ash and slag
are deposited on the heating surfaces of all levels. The slope and superheater areas are sometimes
covered by massive ash deposits, which in severe cases can cause undesirable unit shutdowns [6].
Due to the small thermal conductivity of the ash, ash accumulation increases the thermal resistance of
the heating surface and deteriorates the heat exchange, which in turn causes the exhaust temperature to
increase and the boiler efficiency to decrease. When the ash accumulation is serious, ash blockage will
occur in the flue, resulting in increased ventilation resistance and reduced boiler output. Sometimes,
a power plant is even forced to shut down its furnaces. In addition, high-temperature corrosion and
wear of the heating-surface metal tube (caused by ash and slagging) are main factors that can result
in boiler tube explosion. Dong et al. [7] introduced a comprehensive experiment in which fly ash
particles were impacted under controlled conditions against a flat steel surface to understand the ash
deposition process in a pulverized coal boiler system. A systematic study was conducted at a coal-fired
power plant, including detailed fuel analysis, boiler and soot-blower characteristics and optimization
of slagging in the furnace [8].

The most common solution is to clean the heating surface using various types of soot blowers,
as soot blowing can ensure the safety and economy of boiler operation. Shi et al. [9] firstly proposed
a cleanliness factor model to monitor the ash deposition status of air preheaters. The analysis of
fouling kinetics and optimization of the soot-blowing strategy are then performed to optimize steam
consumption and heat transfer efficiency. Shi et al. [10] also established an optimization model of soot
blowing on a boiler’s economizers. The measurement data and basic thermodynamic calculation data
of the distributed control system (DCS) of a thermal power plant are used to calculate the fouling
rate of the heated surface in real time. The traditional soot blowing method is purged for a fixed
time, depending on operating conditions [11]. The low-frequency soot blowing process can cause
heat transfer efficiency to decrease, diminishing a boiler’s performance. High-frequency soot blowing,
on the other hand, can not only result in the waste of high-pressure steam, but also abrade surface
pipes, causing enormous thermal stress and reducing the working life of the heat exchange device
while increasing the maintenance cost of the soot blower. Therefore, regular soot blowing will not
meet the economic and efficiency requirements of soot blowing.

Different methods for automatic soot blowing that are dependent on the severity of ash in the
heated area have become a hot research topic. However, the fouling degree of the heating surface
includes many factors, including the characteristics of nonlinearity and strong coupling. This is difficult
to simulate with a precise physical model [12], so it is particularly important to establish an online
monitoring model that uses thermal resistance to characterize the fouling degree of the heating surface.
Through accurate online monitoring of the fouling level on a boiler’s heating surface, soot blowing
optimization can be implemented to improve the economy and efficiency of boiler operation.

There are three primary methods for predicting the fouling level of a heating surface, including
ash fouling monitoring based on instrumental measurements (direct method), ash fouling monitoring
based on a mechanism model (indirect method) and ash fouling monitoring based on a data-driven
model (indirect method).

In boiler furnaces, instrumentation-based ash fouling monitoring systems include an acoustic
pyrometry system. Multi-path measurement of the temperature field in the boiler furnace is carried out
by an acoustic generator and an acoustic receiver. The geometric pixel segmentation and regularization
algorithm are used to reconstruct the two-dimensional temperature field [13]. Acoustic pyrometry
technology is used to monitor the temperature change of flue gas on the local heating surface in the
boiler furnace, and a new cleaning factor is defined to characterize the shift in the ash fouling degree [14].
However, acoustic pyrometry technology has its limitations: it can only measure the temperature
change of the local heating surface; most of the heating surface is unmeasurable; and additional
acoustic sensors are required.
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An ash fouling monitoring system based on a mechanism model mainly uses the heat transfer
principle to establish the heat transfer model of heating surfaces, and it selects the cleaning factor
to reflect the fouling degree of the heating surface [15]. The boiler-side heat absorption models are
established to calculate the heat absorption rate of the working fluid in the boiler, including heat
exchanger, metal wall and heat loss [16]. The superheater model is used to analyze the effect of the ash
layer on the outer tube surfaces and the scale-layer deposit on the inner tube surfaces [17]. Digital signal
processing tools are also widely used in the data processing and analysis of boiler monitoring to
optimize the ash fouling monitoring system. A dual-extended Kalman filter has been used to estimate
the influencing factors of ash deposition, and a cleaning factor indicator has been applied to reflect the
fouling degree of heating surfaces [18]. Sobota introduced a method for determining the heat-flow
parameters of a steam boiler [19] that can perform online calculations of heating flow rates absorbed
by boiler furnaces and superheaters. These parameters can determine the degree of slagging in the
furnace. Monitoring the performance of a unit and determining the degree of slagging in the furnace
is of great importance. Pronobis studied the influence of biomass co-combustion on the fouling of
boiler convection surfaces [20], determining that the co-combustion of straw can cause severe chloride
corrosion in superheater tubes. Meanwhile, adopting properly organized soot-blowing technology
can eliminate the more serious problem of ash accumulation during the biomass fuel combustion
process. Feng et al. [21] built a model of multi-pressure heat recovery steam generator (HRSG) based
on the laws of thermodynamics and incorporated energy balance equations for heat exchangers while
analyzing flue gas and water/steam parameters such as temperature, pressure, steam mass flow rate
and the heat efficiency of different heat exchangers. Tong et al. [22] developed a model to solve the
heat transfer calculation of multi-sectional regenerative air heaters (which usually have several layers),
and they designed a computational procedure through which to carry out the model. Feng et al. [23]
analyzed the steam mass flow rate and outlet temperature of HRSG based on several parameters.
This analysis was based on the laws of thermodynamics, and incorporated into the energy balance
equations for heat exchangers.

An ash fouling monitoring system based on a data-driven model uses machine learning algorithms
to identify and map the relationships between data, avoiding the establishment of complex nonlinear
coupled physical models. Enrique et al. (2005) introduced an artificial neural network (ANN) into the
prediction of a fouling degree on the boiler heating surface [24]. A probabilistic prediction model for
soot blowing based on an artificial neural network and an adaptive neuro-fuzzy inference system was
proposed that could avoid the establishment of the nonlinear complex theoretical models involved in
fouling dynamics [25]. Temperature differences between the two sides of the tube and shell and the
efficiency of the heat exchanger have been predicted based on a local linear wavelet neural network
model [26]. The particle swarm optimization (PSO) algorithm can be applied to the hyper-parameter
optimization of the support vector machine (SVM) to establish a fouling prediction model for the
heat exchanger, which provides another method for the fouling prediction of the heat exchanger [27].
However, the robustness of the pure data-driven model is weak, and easily deviates from the actual
value under small disturbances.

To enhance the stability and prediction accuracy of ash fouling monitoring systems, this study
proposes a method of combining the mechanism model and the data-driven model for the fouling
prediction of boiler heating surfaces.

2. Online Ash Fouling Monitoring Model of a Low-Temperature Superheater

Figure 1 shows the overall framework of the training process for the ash accumulation monitoring
model. Firstly, according to the principle of heat balance, a heat transfer mechanism model is
established to calculate the thermal resistance of the ash layer, after which the wavelet threshold
denoising algorithm is used to filter out the noise fluctuation in the thermal resistance. Finally,
this paper establishes an online fouling prediction model for heating surfaces based on support vector
regression (SVR) [28]. This method can filter jagged fluctuations in the thermal resistance data and
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predict the ash fouling severity of low-temperature superheaters online, providing more-favorable
conditions for the research of further soot blowing optimization strategies.Energies 2020, 13, 59 4 of 22 
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Figure 1. The training model for the ash fouling accumulation monitoring of boiler heating surfaces.

2.1. The Thermal Resistance Model of a Low-Temperature Superheater

As shown in Figure 2, heat balance and the heat transfer calculation of heating surfaces are based on
the basic theory of boiler thermal balance and performed one by one along opposite directions of the flue
gas flow from the outlet of the air preheater. The inlet working-fluid temperature of the low-temperature
superheater is calculated according to the heat balance principle—Equations (1) and (2) for the working
fluid side and the flue gas side based on the known inlet and outlet gas temperatures of each heating
surface, the working fluid outlet parameters and the pipe arrangement structure of each heating surface.
Heat transfer Equation (7) can then be applied to calculate the heat transfer coefficient of the boiler’s
low-temperature superheater.
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Heat absorption on working fluid side:

Qgz =
D(i′′ − i′ + ∆i jw)

B j
(1)

Heat release on flue gas side:

Qyq = ϕ(I′ − I′′ + ∆α · I0
lk) (2)

where Qgz is the convection heat absorption on the working fluid side; Qyq is the convection heat
release on the flue gas side; D is the quantity of the working fluid flow; B j denotes the calculating
fuel quantity; i′ and i′′ represent the enthalpy of the inlet working fluid and outlet working fluid,
respectively; I′ and I′′ are the enthalpy of the inlet flue gas and outlet flue gas, respectively; ∆i jw is the
reduced value of steam enthalpy in the desuperheater; ϕ is the heat retention coefficient; ∆α is the air
leakage coefficient; and I0

lk is the theoretical cold air enthalpy.
Physical parameters such as D, B j, I′, i′′ , I′′ , ∆i jw and so on are collected in the distributed control

system (DCS), and ϕ, I0
lk, ∆α and so on can be obtained through manual boiler design and thermal

calculation. According to the heat balance equation Qgz = Qyq, the enthalpy of the inlet working fluid
at the low-temperature superheater is as follows:

i′ = i′′ + ∆i jw −
ϕB j(I′ − I′′ + ∆αI0

lk)

D
(3)

According to the enthalpy temperature table of superheated steam, as shown in Figure 3,
the corresponding inlet working fluid temperature T is expressed as follows:

T = f (I, P) (4)

where I is superheated steam enthalpy, and P is superheated steam pressure.
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Next, the logarithmic mean temperature difference ∆t is obtained from the inlet and outlet working
fluid temperatures and the inlet and outlet flue gas temperatures, which can be described as follows:

∆t =
∆td − ∆tx

ln ∆td
∆tx

(5)

where ∆td is the difference between the inlet temperature of the flue gas side and the inlet temperature
of the working fluid side of the low-temperature superheater, and ∆tx is the difference between the
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outlet temperature of the flue gas side and the outlet temperature of the working fluid side of the
low-temperature superheater.

When the maximum temperature difference ∆td and the minimum temperature difference ∆tx are
satisfied using ∆td

∆tx
≤ 1.7, the logarithmic mean temperature difference ∆t can be simplified as follows:

∆t =
1
2
(∆td + ∆tx) (6)

Finally, the actual heat transfer coefficient of the heating surface should be

K =
QgzB j

∆t ·H
(7)

where H is the heat transfer area of the low-temperature superheater.
Taking the low-temperature superheater as an example, Figure 4 depicts the heat transfer in a

single superheater tube. The tubular convective heating surface is regarded as a heat transfer model of
multi-layer cylindrical wall, and the heat transfer coefficient K is calculated as follows:

K =
1

1
α1

+ 1
2πLλg

ln r2
r1
+ 1

2πLλm
ln r3

r2
+ 1

2πLλh
ln r4

r3
+ 1

α2

=
1

1
α1

+ Rg + Rm + Rh +
1
α2

(8)

where α1 is the heat release coefficient of the flue gas side; α2 is the heat absorption coefficient for the
working fluid side; λh is the ash-layer thermal conductivity; λm is the metal tube thermal conductivity;
λg is the scale-layer thermal conductivity; r1 is the inner radius of the scale layer; r2 is the inner radius
of the metal tube; r3 is the outer radius of the metal tube; r4 is the outer radius of the ash layer; L is the
length of the metal tube; Rh is the thermal resistance of the ash layer; Rm is the thermal resistance of the
metal tube; and Rg is the thermal resistance of the scale layer.
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Since the influence of Rm is small, the effect of Rm is ignored. Before the raw water is replenished
into the boiler, the power plant must treat the boiler feed water to remove the salts, impurities and
gases, so that the quality of the supply water meets certain requirements. Therefore, the thermal
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resistance of the scale layer Rg is small and can be ignored to simplify the calculation of Rm = Rg = 0.
Thus, the thermal resistance of the ash layer Rh is calculated as follows, according to the Equation (8):

Rh =
1
K
−

1
α1
−

1
α2

(9)

where the heat release coefficient of the flue gas side α1 is the convective heat transfer coefficient αd
and the radiation heat release coefficient α f , and is calculated as:

α1 = αd + α f (10)

For the low-temperature convection heating surface, the radiation heat release coefficient α f = 0.
When tube bundles on the convection heating surface are arranged in parallel, the heat release coefficient
on the flue gas side becomes

α1 = αd = 0.2CsCz
λy

d
(
ωyd
νy

)
0.65

(
µyCp,y

λy
)

0.33

(11)

When the tube bundles on the convection heating surface are arranged in staggered rows, the
convective heat transfer coefficient on the flue gas side is calculated as

αd = CsCz
λy

d
(
ωyd
νy

)
0.6

(
µyCp,y

λy
)

0.33

(12)

The heat absorption coefficient α2 on the working fluid side is given by

α2 = 0.023CtCl
λ f

ddl
(
ω f ddl

ν f
)

0.8

(
µ f Cp, f

λ f
)

0.4

(13)

where Cs,Cz,Ct,Cl are the correction factors determined by the structural dimensions of tube bundles,
and represent the correction factor related to pipe pitch, the correction factor associated with the
vertical tube row number, the correction factor related to airflow and wall temperature and the relative
length correction factor, respectively; d is the outer diameter of the low-temperature superheater tube;
ddl is the inner diameter of the low-temperature superheater tube; ω f and ωy are the flow rate of
the working fluid and flue gas at the average temperature, respectively; λ f and λy are the thermal
conductivity of the working fluid and flue gas at the average temperature, respectively; ν f and νy are
the kinematic viscosity of the working fluid and flue gas at the average temperature, respectively;
µ f and µy are the dynamic viscosity of the working fluid and flue gas at the average temperature,
respectively; and Cp, f and Cp,y are the constant-pressure specific heat of the working fluid and flue gas
at the average temperature.

The thermal resistance of the ash layer Rh is used to characterize the fouling degree of the
convection heating surface. Generally, the larger the value is, the more serious the fouling of the
heating surface is.

2.2. Wavelet Decomposition Model

In 1988, Mallat proposed a concept of multi-resolution with a fast algorithm for wavelet
decomposition and reconstruction [29,30]. The original signal f (t) ∈ L2(R) Ψa,b(t) is a continuous
wavelet. Then, the inner product of f (t) and Ψa,b(t), which is called the continuous wavelet transform,
is described as

W f (a, b) =
〈

f (t), Ψa,b(t)
〉
=

1
√

a

∫
R

f (t) ∗Ψ(
t− b

a
)dt (14)
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However, in actual engineering calculations, the signals are discrete. As a result, it is necessary to
discretize the wavelet transform. The binary discrete wavelet transform (DWT) can be expressed as

W f (2
j, b) =

〈
f (t), Ψ j,b(t)

〉
= 2− j/2

∫
R

f (t) ∗Ψ(
t− b

2 j )dt (15)

The basic principle is as follows. A signal f (t) in space V j can be represented by basic functions in
two orthogonal subspaces, V j+1 and W j+1, which can be determined using Equation (16). According
to Equation (17), the first level decomposes A0 into a low-frequency part A1 and a high-frequency part
D1, the second level decomposes A1 into a low-frequency part A2 and a high-frequency part D2 and so
on, until the multi-resolution decomposition of signals can be realized.

V j = V j+1 ⊕W j+1 (16)

f (t) =
∑

cA0(k)ϕ j,k(t)
=

∑
cA1(k)ϕ j+1,k(t) +

∑
cD1(k)ψ j+1,k(t)

=
∑

cA2(k)ϕ j+2,k(t) +
∑

cD2(k)ψ j+2,k(t) +
∑

cD1(k)ψ j+1,k(t)
= . . .

(17)

In the scale metric space V j, the coefficient A0(k) is decomposed to two wavelet coefficients A1(k)
and D1(k) in the scale metric spaces V j+1 and W j+1. Similarly, the two wavelet coefficients A1(k) and
D1(k) can be used for reconstruction to get A0(k). The reconstruction algorithm and the decomposition
algorithm are corresponding and mutually inverse.

2.3. VisuShrink Soft Threshold Denoising

Generally speaking, high-frequency signals contain noise details. The wavelet threshold denoising
algorithm is an effective filtering method. After wavelet decomposition, the threshold wavelet
method is used to weight the decomposed wavelet coefficients. For high-frequency wavelet coefficients,
the VisuShrink soft threshold denoising method [31] is adopted for signal processing. All low-frequency
wavelet coefficients representing the global trend of the original signal are retained. Then, all small
signals are reconstructed to obtain denoising signals, as shown in Figure 5.
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The VisuShrink method selects the high-frequency wavelet coefficients to estimate the standard
deviation of the noise:

σ =
median

(∣∣∣ω j(k)
∣∣∣)

0.6745
(18)

The global threshold λ is determined as

λ = σ
√

2logn (19)

Finally, the soft threshold denoising equation is written as follows

ωλ =

{
[sgn(ω)(|ω| − λ)]

0
|ω| ≥ λ
|ω| < λ

(20)

2.4. SVR Theory

An SVR [32–34] method is usually realized through regression and prediction. The principle of
SVR is to learn a function f (x), so that the function value is as close as possible to the real value. Given
the training samples D =

{
(x1, y1), (x2, y2), (xm, ym)

}
, with xi ∈ Rn for the input, yi ∈ R for the target

output, m as the number of training samples. The regression model equation is calculated as

f (x) = wφ(x) + b (21)

where w, x ∈ Rn; b ∈ R, φ(x) is kernel function. SVR transforms low-dimensional nonlinear problems
into high-dimensional linear problems by introducing kernel functions. Solving the dual Lagrangian
problem of SVR:

max
α,α̂

m∑
i=1

yi(α̂i − αi) − ε(α̂i + αi) −
1
2

m∑
i=1

m∑
j=1

(α̂i − αi)(α̂ j − α j)K(xi, x j) (22)

This is subject to
m∑

i=1

(α̂i − αi) = 0 (23)

0 ≤ αi, α̂i ≤ C, i = 1, 2, . . . , m (24)

The above process must satisfy Karush–Kuhn–Tucker (KKT) conditions:
αi( f (xi) − yi − ε− ξi) = 0
α̂i(yi − f (xi) − ε− ξ̂i) = 0

αiα̂i = 0, ξiξ̂i = 0
(C− αi)ξi = 0, (C− α̂i)ξ̂i = 0

(25)

Eventually, the solution to SVR is

f (x) =
m∑

i=1

(α̂i − αi)K(xi, x) + b (26)

b = yi + ε−
m∑

i=1

(α̂i − αi)K(xi, x) (27)

where K(xi, x) = φ(xi)
Tφ(x) is the kernel function.
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The kernel function can map the nonlinear problem of low-dimensional space to high-dimensional
space, which will then become a linear problem. However, constructing the kernel function K(xi, x) is a
significant problem. The most crucial step is to determine the mapping of input space to feature space,
which can only be achieved if we know the distribution of data within the input space. However,
in most cases, we do not know the specific distribution of data being processed. Therefore, it is
generally challenging to construct a kernel function that conforms precisely to the input space, and as
a result this paper uses the radial basis function (RBF) instead of rebuilding a new kernel function.

K(x, xi) = exp(−
‖x− xi‖

2

δ2 ) (28)

The Gaussian radial basis function is one of the most widely used kernel functions. It offers a
better performance regardless of whether a sample is large or small, and it has fewer parameters than
the polynomial kernel function. Therefore, the Gaussian kernel function is preferred in most cases.

Vapnike’s [35] research demonstrates that the kernel parameter δ and penalty factor C are the
key factors affecting the performance of SVM. A larger C will reduce the training error, but will also
result in over-fitting at the same time, which will increase the test error. When the kernel parameter δ
is small, the regression prediction has better accuracy. However, if the kernel parameter δ is much
lower, the accuracy of the model will drop significantly.

3. Case Study and Data Collection

This paper takes a 170 t/h tangentially fired pulverized coal boiler from the Huilian Power Plant
in Wuxi, Jiangsu Province, China, as the research object. The horizontal section size of the furnace
chamber is 7090 × 7090 mm (width × depth). Table 1 gives the design parameters of the boiler.

Table 1. Design parameters of the boiler (rated load).

Parameter Value

Low-temperature superheater convection
Type snake tube

Outer diameter ×wall thickness (mm×mm) Φ38 × 4.5
Material 20G/GB5310

Inlet steam temperature of the low-temperature superheater (◦C) 331.8
Outlet steam temperature of the low-temperature superheater (◦C) 373.3

Fuel consumption (kg/h) 21,836
The average velocity of flue gas (m/s) 8
The average velocity of steam (m/s) 13.5

This type of case study boiler has a typical heating surface structure similar to that of many
power station boilers in China. Figure 6 shows the schematic diagram of the case study boiler system.
It can be seen that after the pulverized coal is burned by the furnace to produce flue gas, the flue gas
flows along the flue gas passage all the way through the platen superheater, the high-temperature
superheater, high-temperature reheater, low-temperature superheater, low-temperature reheater,
economizer, air preheater and many other heating surfaces to the desulfurization tower and bag filter
before finally being discharged by the chimney. The heat transfer mode of the heating surfaces is
convection, except for the platen superheater which is half radiation and half convection. In the actual
operation of the boiler, the flue gas contains a large number of fly ash particles. When fly ash is
deposited on the heated surface, the heat transfer performance is degraded.

The data used in this study was collected from the DCS of power plants, as shown in Table 2.
By analyzing the formation mechanism and influence factors of ash fouling, 20 characteristic parameters
affecting the ash fouling were selected, including the eight powder feeder speeds, the main steam
flow rate, the main steam pressure, the main steam temperature, the outlet steam temperature, the
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inlet flue gas temperature, the outlet flue gas temperature, the steam flow rate, the feedwater flow
rate, the feedwater temperature, the boiler oxygen amount, the air supply rate of blower A and the air
supply rate of blower B. The function of the powder feeder is to continuously and uniformly send
pulverized coal from the pulverized coal bin to the furnace for combustion according to the coal
burning amount required by the boiler load. The speed can control the amount of pulverized coal
entering the furnace. Blower A is a primary fan of the boiler that is used to dry the fuel and send it into
the furnace. Blower B is a secondary fan of the boiler that is used to overcome resistance from the air
preheater, air duct and burner, and to maintain full combustion of fuel. The air blowers are located at
the air inlet of the air preheater (Figure 6, number 11). In summary, this paper uses 20 characteristic
parameters that formed the input set of the SVR model. The input data were collected every three
minutes from 25 May 2019 at 00:00 to 29 May 2019 at 23:57. After the normalization of these 2400 sets
of data, all samples were divided into an 80% training set and a 20% test set.
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Figure 6. Schematic diagram of the boiler system case study. 1—water wall, 2—steam-water separator,
3—steam turbine, 4—platen superheater, 5—high-temperature superheater, 6—high-temperature
reheater, 7—low-temperature superheater, 8—low-temperature reheater, 9—economizer, 10—air
preheater, 11—air blower, 12—desulfurization tower, 13—bag filter.

In this study, the thermal resistance of the ash layer was chosen to be an indicator by which to
detect the degree of fouling on the heated surface. After the original thermal resistance data were
de-noised by wavelet analysis, the focus was to set up correlations between the 20 characteristic
parameters and the thermal resistance of the ash layer using the SVR model.
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Table 2. The original data from DCS.

(A)

Time
No. 1-8 Powder Feeder Speed (rpm) Main Steam

Flow Rate
(t/h)

Main Steam
Pressure

(MPa)

Main Steam
Temperature

(◦C)

Outlet Steam
Temperature

(◦C)1 2 3 4 5 6 7 8

2019/5/25 0:00 493.35 488.52 439.04 491.30 441.15 481.84 490.39 309.96 141.24 9.45 516.43 375.85

2019/5/25 0:03 493.50 488.71 438.97 491.45 440.80 481.86 490.39 309.81 143.02 9.44 517.55 375.76

2019/5/25 0:06 493.57 488.65 439.10 491.24 441.02 481.77 490.39 309.87 145.02 9.23 516.52 373.83

2019/5/25 0:09 493.50 488.65 438.97 491.30 441.02 481.71 490.58 309.94 145.07 8.97 513.74 373.38

2019/5/25 0:12 493.43 488.65 439.04 491.37 441.02 481.71 490.52 309.94 143.73 8.78 514.53 374.09

2019/5/25 0:15 493.50 488.63 439.10 491.43 440.95 481.71 490.32 309.94 145.11 8.60 517.66 374.66

2019/5/25 0:18 511.08 506.03 456.55 508.47 464.89 499.09 507.77 326.58 145.77 8.45 518.72 374.21

... ... ... ... ... ... ... ... ... ... ... ... ...

(B)

Time
Inlet Flue Gas
Temperature

(◦C)

Outlet Flue Gas
Temperature

(◦C)

Steam Flow
Rate
(t/h)

Feed Water
Flow Rate

(t/h)

Feed Water
Temperaturee

(◦C)

Boiler Oxygen
Amount

(%)

Air Supply Rate
of Blower A

(m3/h)

Air Supply Rate
of Blower B

(m3/h)

2019/5/25 0:00 702.02 571.04 130.14 140.55 229.82 3.78 69,270.42 69,173.49

2019/5/25 0:03 703.22 570.80 131.93 142.02 229.39 4.20 69,357.96 69,244.02

2019/5/25 0:06 699.11 569.04 133.96 146.14 230.56 4.41 68,729.38 69,263.00

2019/5/25 0:09 699.46 568.78 133.84 148.65 231.19 4.15 69,282.43 69,408.98

2019/5/25 0:12 701.41 569.48 133.34 145.77 230.94 4.14 68,813.84 69,170.73

2019/5/25 0:15 702.98 570.48 134.51 146.57 230.71 4.27 69,191.98 69,431.09

2019/5/25 0:18 706.00 571.86 134.16 146.73 230.64 3.61 69,176.59 69,312.77

... ... ... ... ... ... ... ... ...
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4. Results and Discussion

4.1. Analysis of the Ash-Layer Thermal Resistance

Taking advantage of the thermal resistance mechanism model for the low-temperature superheater
established in Section 2.1, the thermal resistance of the ash layer Rh combined with the operation data
from the Huilian power plant was calculated. Figure 7 is the calculation result of the ash-layer thermal
resistance for the low-temperature superheater. The smaller the thermal resistance of ash-layer value,
the better the heat transfer performance of the low-temperature superheater was.
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Figure 7. The changing trend of the thermal resistance for the low-temperature superheater.

It can be seen that there was a sudden drop every day from 06:00–08:00 as the result of a scheduled
ash blowing operation by the power plant, and that the thermal resistance of the ash layer of the
heating surface decreased significantly after soot blowing.

On the morning of 27 May 2019, the degree of ash fouling on the heating surface was not serious
enough, but the operator still performed the blowing operation, which exposed the shortcomings of the
scheduled soot blowing action. Scheduled soot blowing does not consider whether ash accumulation
is severe, and wastes steam that causes severe pipe wall wear, resulting in a decrease in boiler efficiency.
The improper operation of the soot blower will not only reduce the economic benefit of unit operation,
but will also lead to pipe wall wear or even an explosion of the pipe, affecting the safety of the
boiler unit.

This paper calculates the thermal resistance of the ash layer in order to observe and visualize
degrees of ash fouling on the heating surface. Based on quantification, the original soot blowing
method can be changed from scheduled soot blowing to on-demand soot blowing.

On the other hand, it can be observed that there are a large number of sawtooth fluctuations
in Figure 7. These were caused by noise data and unstable working conditions during operations.
Changes in working conditions can affect the heat transfer performance of the heating surface.
These fluctuations are very unfavorable for both the operator’s observations and the development of
an ash blowing strategy.
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4.2. Wavelet Threshold Denoising Results

The wavelet threshold denoising algorithm was performed to smooth and filter the thermal
resistance data, reducing the influence of sawtooth fluctuations on the degree of ash fouling. This method
not only preserved the changing trend of thermal resistance, but also lessened the sawtooth jitter. It
also provided cleaner raw data for the next training of the SVR model.

In this experiment, the sym5 wavelet was selected with two to five decomposition levels.
Figure 8 shows the waveform diagram for each high-frequency and low-frequency signal after wavelet
decomposition. The comparison results for the two to five wavelet decomposition levels and the
denoising are shown in Figure 9a–d.

The signal-to-noise ratio (SNR) and root mean square error (RMSE) are shown after denoising in
Table 3, which demonstrates the accurate quantization of the denoising effect. The higher the SNR of
the signal, the smaller the RMSE, and the closer the denoising signal was to the original signal. It can
be seen that the denoised curve not only retained the changing trend of the original signal, but also
eliminated the influence of partial noises.

SNR = 10log


∑
n

x2(n)∑
n
[x(n) − x′(n)]2

 (29)

RMSE =

√
1
n

∑
n
[x(n) − x′(n)]2 (30)

It can be seen in Figure 9 and Table 3 that after calculation with the four-level wavelet threshold
denoising algorithm, the results of SNR and RMSE were 31.8 and 0.000865, respectively. This indicates
that thermal resistance data after a four-level wavelet threshold denoising filtering not only maintained
the overall trend, but also reduced sawtooth fluctuations to a minimum. Thus, the wavelet threshold
denoising algorithm was rendered valid by filtering out some noise information.
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Table 3. Root mean square error (RMSE) and signal-to-noise ratio (SNR) of wavelet denoising signals
with different levels.

Performance
Index

Wavelet Decomposition Level

2 3 4 5

RMSE 0.000595 0.000705 0.000865 0.001126
SNR 35.1 33.6 31.8 29.5

However, the five-level wavelet threshold denoising lost some of the details of the original
signal, thus the four-level wavelet threshold denoising results were applied as the output data sets of
the SVR model described in Section 2.4. After wavelet decomposition and denoising, the changing
trend of thermal resistance was more visible, which is more conducive to the design of blowing ash
optimization strategy.

4.3. Fouling Prediction Based on SVR

The SVR model described in Section 2.4 was utilized for training the mapping relationship between
characteristic parameters and the thermal resistance of the ash layer. The grid search method was
adopted to optimize the two hyper-parameters of the SVR, including penalty factor C and kernel
parameter δ.

Predictive simulation experiments were performed in the Python 3.6 environment. The first 80%
of samples were divided into a training set and the remaining 20% into a testing set. The RBF kernel
function was then presented. The performance evaluation criterion selected for the SVR model was the
coefficient of determination R2 (optimum was the maximum value). The grid search method was used
for hyper-parametric optimization to improve the prediction accuracy of the SVR model. Figure 10
shows the model prediction accuracy under different hyper-parameters (C, δ). Training and testing
accuracy of the SVR model using four-level wavelet decomposition and denoising data are provided
in Table 4. The optimum hyper-parameters of the SVR model were (29, 0.13), and the accuracy of the
training set and testing set were 0.994 and 0.985, respectively.
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Table 4. Training and testing accuracy of the SVR model by using the four-level wavelet decomposition
denoising signal.

Optimal Hyper-Parameters (C,δ)
The Performance Evaluation Criteria R2

Test Train

(29, 0.13) 0.985 0.994

The output results for the thermal resistance of the ash layer were predicted by simulating the
SVR model and comparing it with the actual results of the mechanism model. The original data and
forecasted data of the thermal resistance for the training and testing phases are illustrated in Figure 11.
Figure 12 is a graph of the absolute error residual. It can be observed that the predicted value of
the SVR model was within a range of ±5% of the actual value of the mechanism model, as shown in
Figure 13.
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The SVR model can predict the fouling process of the heating surface with precision by using
20 characteristic parameters and avoiding the establishment of complex equations such as heat transfer
and radiation. The ash fouling prediction model of boiler heating surfaces based on wavelet analysis
and SVR has good generalization and can meet the actual soot blowing operation requirements.

5. Conclusions

In this study, a thermal resistance network of the ash layer is developed to characterize the
degree of boiler ash fouling for the first time, and a physical model was established based on the
heat transfer balance principle of the low-temperature superheater. To reduce the adverse effects of
sawtooth fluctuations, a method based on wavelet analysis and SVR was proposed to improve the
online prediction of thermal resistance. The case study showed that the SNR and RMSE obtained
using a four-level wavelet threshold denoising algorithm to filter the thermal resistance data were 31.8
and 0.000865, respectively. This indicates that the filtered thermal resistance data not only maintained
the overall trend, but also reduced the sawtooth fluctuation to a minimum. With the filtered thermal
resistance data, an SVR model was trained to map the relationship between characteristic parameters
and the thermal resistance of the ash layer. The maximum prediction accuracy was 99.4% during
the training phase and 98.5% during the testing phase. The accuracy of this method can meet real
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engineering needs and provide an innovative way for the analysis and prediction of ash accumulation
for a low-temperature superheater.

The wavelet analysis and SVR model make it possible to predict ash fouling online without
significant sawtooth fluctuation. Therefore, considering the degree of agreement between the predicted
results and the actual calculated results, the online prediction method of thermal resistance based
on wavelet analysis and SVR can be used as an appropriate prediction tool for estimating and
predicting the ash fouling behavior of a low-temperature superheater without adding complicated and
expensive equipment.
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Nomenclature

Acronyms α1
heat release coefficient of the flue gas side
(W/(m2

·
◦C))

ANN artificial neural network α2
heat absorption coefficient of the working fluid
side (W/(m2

·
◦C))

DCS distributed control system λh ash-layer thermal conductivity (W/(m · ◦C))
DWT discrete wavelet transform λm metal tube thermal conductivity (W/(m · ◦C))
KKT Karush Kuhn Tucker conditions λg scale-layer thermal conductivity (W/(m · ◦C))
PSO particle swarm optimization r1 inner radius of the scale layer (m)
RBF radial basis function r2 inner radius of the metal tube (m)
RMSE root mean square error r3 outer radius of the metal tube (m)
SNR signal-to-noise ratio r4 outer radius of the ash layer (m)
SVM support vector machine L length of the metal tube (m)

SVR support vector regression Rh
thermal resistance of the ash layer
(m2
·
◦C ·W−1)

Symbols Rm
thermal resistance of the metal tube
(m2
·
◦C ·W−1)

Qgz
convection heat absorption of the working
fluid side (kJ/kg)

Rg
thermal resistance of the scale layer
(m2
·
◦C ·W−1)

Qyq
convection heat release of the flue gas side
(kJ/kg)

Cs correction factor related to pipe pitch

D quantity of the working fluid flow (kg/s) Cz
correction factor related to the vertical tube row
number

B j calculating fuel quantity (kg/s) Ct
correction factor related to airflow and wall
temperature

i′ enthalpy of inlet working fluid (kJ/kg) Cl relative length correction factor

i′′ enthalpy of outlet working fluid (kJ/kg) d
outer diameter of the low-temperature
superheater tube (m)

I′ enthalpy of inlet flue gas (kJ/kg) ddl
inner diameter of the low-temperature
superheater tube (m)

I′′ enthalpy of outlet flue gas (kJ/kg) ω f
flow rate of the working fluid at the average
temperature (m/s)
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∆i jw
the reduced value of steam enthalpy
in the desuperheater (kJ/kg)

ωy
flow rate of the flue gas at the average
temperature (m/s)

ϕ heat retention coefficient λ f
thermal conductivity of the working fluid at
the average temperature (W/(m · ◦C))

∆α air leakage coefficient λy
thermal conductivity of the flue gas at the
average temperature (W/(m · ◦C))

I0
lk theoretical cold air enthalpy (kJ/kg) ν f

kinematic viscosity of the working fluid at the
average temperature (m2/s)

I superheated steam enthalpy (kJ/kg) νy
kinematic viscosity of the flue gas at the
average temperature (m2/s)

P superheated steam pressure (MPa) µ f
dynamic viscosity of the working fluid at the
average temperature (N · s/m2)

∆td

the difference between the inlet
temperature of the flue gas side and the
inlet temperature of the working fluid
side (◦C)

µy
dynamic viscosity of the flue gas at the average
temperature (N · s/m2)

∆tx

the difference between the outlet
temperature of the flue gas side and the
outlet temperature of the working fluid
side (◦C)

Cp, f
constant-pressure specific heat of the working
fluid at the average temperature (J/(kg · ◦C))

H
heat transfer area of the low-temperature
superheater (m2)

Cp,y
constant-pressure specific heat of the flue gas at
the average temperature (J/(kg · ◦C))
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