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Abstract: A step up/down AC/DC converter with modified dual loop control is proposed. The step
up/down AC/DC converter features the bridgeless characteristic which can reduce bridge-diode
conduction losses. Based on the step up/down AC/DC converter, a modified dual loop control scheme
is proposed to achieve input current shaping and output voltage regulation. Fewer components
are needed compared with the traditional bridge and bridgeless step up/down AC/DC converters.
In addition, the intermediate capacitor voltage stress can be reduced. Furthermore, the top and
bottom switches still have zero-voltage turn-on function during the negative and positive half-line
cycle, respectively. Hence, the thermal stresses can also be reduced and balanced. Simulation
and experimental results are provided to verify the validity of the proposed step up/down AC/DC
converter and its control scheme.
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1. Introduction

Power factor correction is very popular and necessary for modern power sources in the ac grid.
It decreases line current harmonics, line losses, and increases system power capacity due to reducing
system reactive power flow [1–3]. Today, boost rectifiers are the most commonly-used circuit structures
implemented for power factor correction. However, some consumer electronic devices, portable
devices and server power applications [4,5] require lower dc voltage level than the main ac voltage
source. The dc output voltage in boost rectifiers is always higher than the peak value of the main
input ac voltage. Therefore, in low dc voltage level applications, another dc-dc step-down converter is
necessary that follows the boost rectifier to form a two-stage structure as shown in Figure 1. Because of
the two-stage structure, power efficiency may degrade and the total number of components in the
system is increased. Thus, the efficiency, cost, and volume of the two-stage power conversion system
are not a good choice and need to be improved.

Step-down PFC rectifiers, such as buck converters are therefore considered. However, the buck
rectifier input current is discontinuous. A dead angle also exists when the line input voltage is lower
than the output voltage so that the input current cannot be easily shaped [6–8]. As a result, the step
up/down AC-DC topologies are developed including buck-boost, Cuk, and Sepic type rectifiers [9–11].
The buck-boost rectifier also has inherent discontinuous input current like the buck converter, and needs
an additional filter to smooth the input current. Although the Sepic rectifier has continuous input
current, the output current is still discontinuous and easily causes output voltage ripples.

Bridgeless rectifier topologies are explored in [12,13] to reduce the diode bridge conduction
losses and increase the conversion efficiency. The bridgeless PFC boost rectifiers, such as the dual
boost rectifier and the totem-pole boost rectifier, have been discussed [14]. Due to the need for lower
output voltage applications, the bridgeless Cuk/Sepic rectifiers [15,16] with two dc/dc Cuk/Sepic
circuit structures were proposed. The bridgeless Cuk rectifier [16] is shown in Figure 2. However,
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four diodes are still needed to achieve step up/down output voltage. Other bridgeless Sepic [17] and
Cuk [18] power-factor-correction rectifiers were also proposed with reduced number of components and
conduction losses. These rectifiers were operated in discontinuous conduction mode without current
loop control. A control method for bridgeless Cuk/Sepic power factor correction rectifier operated
in continuous conduction mode was also proposed to achieve power decoupling [19]. Although,
the bulky electrolytic capacitor can be replaced with a small film capacitor, this control method requires
an extra voltage sensor for the intermediate capacitor and the system cost is increased.

Pulsating power buffering technology [8,20,21] has recently expanded, which can reduce the
number of components including passive and active ones. Although rectifiers using pulsating
power buffering technology have high power density, high conversion efficiency and high reliability,
high voltage stress is still present in the switches and diodes [22], which leads to high switching and
conduction losses and reduces the rectifier life-span.

This paper proposes a bridgeless Cuk rectifier with modified dual loop control scheme. The voltage
stresses in the switches and diodes can be adjusted to low voltage levels by the proposed control
scheme, which may reduce the switching and conduction losses and increase the rectifier life-span.
The detailed operation principle and switching sequence of the bridgeless Cuk rectifier are explained.
Simultaneously, a modified dual loop control scheme is also proposed to achieve input current shaping
and output voltage regulation as well as voltage stress reduction.
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Figure 2. Bridgeless Cuk rectifier [16].

2. Circuit Topology and Switching Sequence

The bridgeless Cuk converter [19] discussed in this paper is shown in Figure 3. The proposed
control switching sequence and key waveforms in one switching period during the positive and
negative half line cycle are shown in Figure 4. For convenience of discussion the active switches are
assumed to be ideal active switches with anti-paralleling body diode. Both the input inductor Ls and
output inductor Lo are assumed to be operated in continuous conduction mode. The circuit operation
can be divided into three operation states in one switching period T for both positive and negative
half-line cycles. The circuit operation principle of the bridgeless Cuk converter during the positive
half-line cycle is discussed first, as follows:
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Figure 4. Control switching sequence and key waveforms in one switching period.

(1) State 1 (t0 ≤ t <t1): In this state, as shown in Figure 5, both switches S1 and S2 are turned on.
The zero-voltage switching of S2 is obtained due to body diode conducting in switch S2 in the pre-state,
i.e., State 3. The input inductor Ls is magnetized by the input voltage Vs so as to increase the inductor
current iLs. The inductor current iLs flows through diode D1 and switch S1 and goes back to the main
ac source. Simultaneously, the intermediate capacitor Cd releases energy to the output inductor Lo and
load. The equivalent circuit equations are described as Equations (1)–(4).

Ls
diLs

dt
= vs, (1)

Lo
diLo

dt
= vCd − vo, (2)

Cd
dvCd

dt
= −iLo, (3)

Co
dvo

dt
= iLo −

vo

Ro
, (4)



Energies 2020, 13, 199 4 of 16
Energies 2020, 13, x FOR PEER REVIEW 4 of 16 

 

vs

Ls LoCd

Co vo

vLs vCd

vCo

vLo

Ro

is iLs

iLo

Dd

S1
D1

D2 S2

iCd

ioiCo

 

Figure 5. Equivalent circuit of the bridgeless Cuk converter in State 1 during positive half line cycle. 

(2) State 2 (t1 ≤ t <t2): In this state, as shown in Figure 6, switch S1 is turned on and switch S2 is 

turned off. Switch current ids1 is increasing. Input inductor Ls is still magnetized by the input voltage 

Vs so as to increase the inductor current iLs which still flows through diode D1 and switch S1 and then 

goes back to the main ac source. The voltage of intermediate capacitor Cd remains constant. 

Simultaneously, the output inductor Lo is demagnetized and releases energy to the load through the 

diode Dd. The equivalent circuit equations are expressed as Equations (5)–(8). 

s
Ls

s v
dt

di
L  , (5) 

o
Lo

o v
dt

di
L  , (6) 

0
dt

dv
C Cd

d , (7) 

o

o
Lo

o
o

R

v
i

dt

dv
C  , (8) 

vs

Ls LoCd

Co vo

vLs vCd

vCo

vLo
is iLs

iLo

Dd

S1

D2 S2

iCd

Ro

ioiCo

D1

 

Figure 6. Equivalent circuit of the bridgeless Cuk converter in State 2 during positive half line cycle. 

(3) State 3 (t2 ≤ t <t3): In this state, as shown in Figure 7, switch S1 is turned off and S2 is also turned 

off. Input inductor Ls is demagnetized by the voltage −(Vcd−Vs) so as to decrease the inductor current 

iLs which flows through diodes D1 and Dd, and the body diode of switch S2 and goes back to the main 

ac source. The intermediate capacitor Cd is charged by the input inductor current iLs. Simultaneously, 

the output inductor Lo still releases energy to the load through diode Dd. The equivalent circuit 

equations are given by Equations (9)–(12). 

Cds
Ls

s vv
dt

di
L  , (9) 

o
Lo

o v
dt

di
L  , (10) 

Ls
Cd

d i
dt

dv
C  , (11) 

Figure 5. Equivalent circuit of the bridgeless Cuk converter in State 1 during positive half line cycle.

(2) State 2 (t1 ≤ t <t2): In this state, as shown in Figure 6, switch S1 is turned on and switch
S2 is turned off. Switch current ids1 is increasing. Input inductor Ls is still magnetized by the input
voltage Vs so as to increase the inductor current iLs which still flows through diode D1 and switch S1

and then goes back to the main ac source. The voltage of intermediate capacitor Cd remains constant.
Simultaneously, the output inductor Lo is demagnetized and releases energy to the load through the
diode Dd. The equivalent circuit equations are expressed as Equations (5)–(8).

Ls
diLs

dt
= vs, (5)

Lo
diLo

dt
= −vo, (6)

Cd
dvCd

dt
= 0, (7)

Co
dvo

dt
= iLo −

vo

Ro
, (8)
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(3) State 3 (t2 ≤ t <t3): In this state, as shown in Figure 7, switch S1 is turned off and S2 is also turned
off. Input inductor Ls is demagnetized by the voltage −(Vcd−Vs) so as to decrease the inductor current
iLs which flows through diodes D1 and Dd, and the body diode of switch S2 and goes back to the main
ac source. The intermediate capacitor Cd is charged by the input inductor current iLs. Simultaneously,
the output inductor Lo still releases energy to the load through diode Dd. The equivalent circuit
equations are given by Equations (9)–(12).

Ls
diLs

dt
= vs − vCd, (9)

Lo
diLo

dt
= −vo, (10)

Cd
dvCd

dt
= iLs, (11)

Co
dvo

dt
= iLo −

vo

Ro
, (12)
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Referring the gate signals shown in Figure 4, while the bridgeless Cuk converter is operated
during the negative half line cycle, the circuit operation principle in the proposed control switching
sequence can be described as follows:

(1) State 1 (t0 ≤ t <t1): In this state, as shown in Figure 8, both the switches S1 and S2 are turned on.
The zero-voltage switching of S1 is obtained due to body diode conducting in switch S1 in the pre-state,
i.e., State 3. The input inductor Ls is magnetized by the input voltage Vs so as to increase the inductor
current iLs in the inverse direction. The inductor current iLs flows through diode D2 and switch S2 and
goes back to the main ac source. Simultaneously, the intermediate capacitor Cd releases energy to the
output inductor Lo and load. The equivalent circuit equations are described as Equations (13)–(16).

Ls
diLs

dt
= vs, (13)

Lo
diLo

dt
= vCd − vo, (14)

Cd
dvCd

dt
= −iLo, (15)

Co
dvo

dt
= iLo −

vo

Ro
, (16)
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(2) State 2 (t1 ≤ t <t2): In this state, as shown in Figure 9, switch S2 is turned on and switch S1

is turned off. The switch current ids2 is increasing. Input inductor Ls is still magnetized by the input
voltage Vs so as to increase the inductor current iLs in the inverse direction which still flows through
diode D2 and switch S2 and then goes back to the main ac source. The intermediate capacitor Cd
voltage remains constant. Simultaneously, the output inductor Lo is demagnetized and releases energy
to the load through diode Dd. The equivalent circuit equations are expressed as Equations (17)–(20).

Ls
diLs

dt
= vs, (17)

Lo
diLo

dt
= −vo, (18)

Cd
dvCd

dt
= 0, (19)
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Co
dvo

dt
= iLo −

vo

Ro
, (20)
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(3) State 3 (t2 ≤ t <t3): In this state, as shown in Figure 10, switch S2 is turned off and S1 is also
turned off. Input inductor Ls is demagnetized in the inverse direction by the voltage (Vcd + Vs) so as to
decrease the inductor current iLs which flows through diodes D2, Dd and the body diode of switch S1

and goes back to the main ac source. The intermediate capacitor Cd is charged by the input inductor
current iLs in the inverse direction. Simultaneously, the output inductor Lo still releases energy to the
load through diode Dd. The equivalent circuit equations are given by Equations (21)–(24).

Ls
diLs

dt
= vs + vCd, (21)

Lo
diLo

dt
= −vo, (22)

Cd
dvCd

dt
= −iLs, (23)

Co
dvo

dt
= iLo −

vo

Ro
, (24)
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To further reveal the potential merits of the proposed step up/down converter with modified
dual loop control, Table 1 is provided to summarize comparisons for the bridge Cuk [11], bridgeless
Cuk [16], and the proposed step up/down converter with modified dual loop control. It is worth
mentioning that the power levels of the three converters in Table 1 are all at small power levels like
the fly-back converter. Although the control methods may be different, the harmonics of the three
converters all meet the IEC61000-3-2 Class D standard.
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Table 1. Comparisons of step up/down converters.

Topology Bridge Cuk [11] Bridgeless Cuk [16] Proposed Step Up/Down
Converter with Control

Control Dual Loop Dual Loop Modified Dual Loop
Switch 1 2 2
Diode 5 4 3

Inductor 2 4 2
Capacitor 2 3 2

Total Number of Components 10 13 9
Voltage Gain vo

|vs |
= D

(1−D)
vo
|vs |

= D
(1−D)

vo
|vs |

= Do
(1−Dw)

Voltage stresses of switches vo/D vo/D vo/Do
D or Do one solution one solution Multiple solutions

Harmonics meet the standard meet the standard meet the standard

3. Control Scheme and Parameter Design

3.1. Control Scheme

According to the circuit analysis in the previous section, assume the duty ratio DW = D1 + D2

and D0 = D1. While the main ac voltage is operating in the positive half line cycle vs > 0, by utilizing
state-space averaged technique and flux balance theory in the input inductor Ls and output inductor
Lo, one can obtain the equations

vCd =
vS

(1−DW)
, (25)

vCd =
vo

Do
, (26)

Similarly, while the main ac voltage is operating in the negative half line cycle vs < 0,
the corresponding symmetrical equations can also be obtained as

vCd =
−vS

(1−DW)
, (27)

vCd =
vo

Do
, (28)

Merging Equations (25)–(28) in both the positive and negative half line cycles of the main ac
voltage, the voltage gain of the bridgeless Cuk converter is obtained as

vo

|vS|
=

Do

(1−DW)
, (29)

As can be observed from Equation (29), the output voltage is related to the two parameters Do and
DW. If the input and output voltages are given, infinite different kinds of solutions exist in the Equation
(29). However, in the same operation condition for the conventional dual loop control scheme shown in
Figure 11, only one solution is obtained, i.e., Do =DW. Therefore, in order to reduce the voltage stresses
of all switches and diodes in the circuit, the conventional dual loop control scheme is not suitable.
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A modified dual loop control scheme is proposed. The proposed control scheme for the bridgeless
Cuk converter is shown in Figure 12. The actual input current iLs compared with the current command
iLs* to generate the current error as the input of the current controller and then produce the control
signal VDw. The actual output voltage Vo compared with the output voltage command Vo* generates
the voltage error as the voltage controller input. The voltage controller generates the current command
amplitude and also the control signal VDo. In the conventional dual loop control scheme, only one
control signal is produced to achieve both input current shaping and output voltage regulation. In the
proposed control scheme, two control signals VDw and VDo are produced to control the input current
shaping and output voltage regulation. Thus, the intermediate capacitor voltage is not fixed and can
be adjusted to fit a better low voltage level. Hence, the intermediate capacitor voltage stress could
be reduced and the adopted electrolytic capacitor life span could also be increased. According to the
circuit analysis in Section 2, the voltage stresses of active switches S1 and S2, diodes D1, D2, and Dd are
clamped and equal to the intermediate capacitor voltage. The average switching power loss Ps in one
switching period caused by transitions can be defined as

Ps = 0.5VDSIDS[tc(on) + tc(o f f )], (30)

where tc(on) and tc(o f f ) are the turn-on and turn-off crossover intervals, respectively. For simplification,
the switches are operated in the same turn-on and turn-off crossover intervals and at the same switching
frequency fs. The average switching power loss is then proportional to the voltage across the switch
VDS and the entire current IDS which flows through the switch as

Ps ∝ VDSIDS, (31)

According to the above equation, if the intermediate capacitor voltage is adjusted to fit a better
low voltage level, the average switching power loss is also reduced. This is also true for the diodes.
Therefore, the total losses in semiconductor devices can be reduced and the efficiency can be lifted.
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3.2. Parameter Design

To verify the feasibility of the proposed step up/down AC/DC converter with modified dual loop
control, a parameter design for inductor and capacitor is discussed. In order to find the boundary
between the continuous and discontinuous modes for input inductor Ls, one can find that the critical
value of K1 at boundary between modes, Kcrit(Dw), is function of duty cycle Dw and can be expressed as

K1 > Kcrit(Dw), where K1 =
2Ls

RoTs
and Kcrit(Dw) =

(1−Dw)
2

Dw
(32)

The critical value Kcirt (Dw) is plotted vs. duty cycle Dw in Figure 13. Consider inductor Ls is
operated in CCM and the switching frequency is fs. The maximum input current ripple is less than
25% of the fundamental current. The minimum input inductor Ls value can be derived by the equation

Ls ≥
vs,max

0.25 · ∆iLs,BCM
·

DW

fs
, (33)
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where ∆iLs,BCM is the input current ripple while inductor L1 is operated in BCM. Consider that inductor
Lo is operated in BCM and one can find that the critical value for K2 at the boundary between modes,
Kcrit(Do), is function of the duty cycle Do and can be expressed as
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K2 > Kcrit(Do), Where K2 =
2Lo

RoTs
and Kcrit(Do) =

1−Do

2
(34)

The critical value Kcirt (Do) is plotted vs. duty cycle Do in Figure 14. Similarly, the minimum value
of inductor Lo also can be derived as

Lo ≥
vCd,max

∆iLo,BCM
·

Do

fs
, (35)

where ∆iLo,BCM is the output current ripple while inductor Lo is operated in BCM.
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Consider the output capacitor and assume the switching ripple is neglected. The output capacitor
must be large enough to minimize the output ripple because the output voltage ripple frequency is
twice the input line frequency. The output filter capacitor can be determined by

Co =
Po

ωVo(2∆Vo)
, (36)

where ∆Vo is the output voltage ripple and ω is the input line angular frequency.
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4. Simulation and Experimental Results

To verify the validity of the bridgeless step up/down AC/DC converter, some simulation results
are executed and a prototype system is constructed to facilitate the theoretical results as verification.
The simulation and experimental parameters are listed in Table 2. The input voltage is the AC grid
with 110 Vrms and 60 Hz fundamental frequency. The controlled output voltage is 48 V and the load
is 48 Ω. The assigned output power rating is 48 W. The simulation results for the input voltage Vs,
input current is and the corresponding intermediate capacitor voltage Vcd are shown in Figure 15.
It follows from Figure 15 that the input current shaping can be achieved. Figure 16 shows the switching
control signals for switch S1 and S2 and the corresponding voltage and current of switch S2 during
the positive half-line cycle. As can be seen from Figure 16, the ZVS turn-on of switch S2 is obtained
during the positive half-line cycle. Similarly, Figure 17 shows the switching control signals for switch
S1 and S2 and the corresponding voltage and current of switch S1 during the negative half-line cycle.
It also can be seen from Figure 17 that the ZVS turn-on of switch S1 is obtained during the negative
half-line cycle.

Consider that the load is a dynamic load and/or RL load such as a dc motor whose armature
winding resistance is Ra = 0.5 Ω, armature winding inductance is La = 0.5 mH, back electromotive
force is 47 V. Figure 18 shows the simulation results for the input voltage, input current and the
corresponding intermediate capacitor voltage. As can be observed from Figure 18, the output power is
about 120 W and the power factor correction is also achieved. Hence, the proposed converter can indeed
be operated in the RL load. Consider the intermediate capacitor voltage which can be adjusted using
the control signal VDo based on Equations (26) and (28). Figure 19 shows the simulation results for the
input voltage and the corresponding input current, and the control signal VDo and the corresponding
intermediate capacitor voltage VCd under the low control signal VDo value. Figure 20 shows the same
simulated condition under the high control signal VDo value. It can be seen from Figures 19 and 20 that
the lower the control signal VDo value, the higher the intermediate capacitor voltage VCd. That the duty
ratio Do affects the intermediate capacitor voltage level and also the voltage stresses of the switches
and diodes in the circuit is very important information. This also implies that the duty ratio Do affects
the converter power losses and efficiency. Finally, to facilitate understanding of the proposed step
up/down converter with modified dual loop control and as verification, a prototype is constructed with
a TMS320F28335 digital signal processor (DSP). The experimental hardware construction block diagram
is shown in Figure 21. Figures 22 and 23 show the experimental results for the switching control signals
and the corresponding voltage and current of switches S2 and S1 during positive and negative half-line
cycles, respectively. As can be observed from Figures 22 and 23, the ZVS soft switching of switches
S2 and S1 were indeed achieved and agreed with the simulation results. The measured harmonic
distribution of the input current is shown in Figure 24. One can find that the measured harmonic
currents meet the IEC 61000-3-2 Class D harmonic standards.

In order to understand the total harmonic distortion THDi of the input currents in the three
converters listed in Table 1, the PSIM software is adopted to carry out the simulation. The input voltage
is 110Vrms, the output voltage is controlled at 48 V and the load is 2 A. The corresponding parameters
and simulated results are shown in Table 3. As can be seen from Table 3, the input current THDi of the
bridge Cuk [11] is better than that of the bridgeless Cuk [16] and the proposed Cuk with modified
dual loop control scheme. Nevertheless, the parameter value of the bridge Cuk input inductor [11] is
larger than those for the other two. Although the bridge Cuk [11] has the smallest input current THDi,
the input inductor may make it appear bulky.
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Table 2. Parameters of the bridgeless Cuk converter for simulation and experimentation.

Parameters Value

Input Inductor Ls 1.5 mH
Output Inductor Lo 50 uH

Intermediate Capacitor Cd 5 uF
Output Capacitor Co 470 uF

Switching frequency fs 50 kHz
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Figure 24. The measured harmonic distribution of the input current compared with IEC61000-3-2 Class
D standard.

Table 3. Comparisons of the total harmonic distortion of the step up/down converters.

Parameters Bridge Cuk [11] Bridgeless Cuk [16] Proposed Step Up/Down
Converter with Control

Input inductor 6.4 mH 1mH × 2 1.5 mH
Output inductor 206 uH 22uH x 2 50 uH

Intermediate capacitor 0.61 uF 1uF x 2 5 uF
THDi of

Input current 5.6% 15.2% 13.3%

5. Conclusions

This paper presented a bridgeless step up/down converter with modified dual loop control scheme.
The proposed system has ZVS soft switching in switches S1 and S2 during the negative and positive
half-line cycle operation, respectively. Thus, the switching losses can be reduced and the thermal
stress can be balanced between switches S1 and S2. There are fewer components compared to the
bridge Cuk and the bridgeless dual Cuk configuration. Therefore, the size and cost can be reduced.
In addition, based on the proposed control scheme, the voltage stresses of the intermediate capacitor,
active switches, and diodes can all be reduced. To verify the validity of the proposed step up/down
converter, simulation, and experimental results are offered. From simulation and experimental results,
the proposed bridgeless step up/down converter can indeed achieve input current shaping and output
voltage regulation as well as reduce the switching and conduction losses.
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