
energies

Article

Q-Learning-Based Operation Strategy for Community
Battery Energy Storage System (CBESS) in
Microgrid System

Van-Hai Bui, Akhtar Hussain and Hak-Man Kim *
Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu,
Incheon 22012, Korea; buivanhaibk@inu.ac.kr (V.-H.B.); hussainakhtar@inu.ac.kr (A.H.)
* Correspondence: hmkim@inu.ac.kr; Tel.: +82-32-835-8769; Fax: +82-32-835-0773

Received: 11 April 2019; Accepted: 8 May 2019; Published: 10 May 2019
����������
�������

Abstract: Energy management systems (EMSs) of microgrids (MGs) can be broadly categorized
as centralized or decentralized EMSs. The centralized approach may not be suitable for a system
having several entities that have their own operation objectives. On the other hand, the use of the
decentralized approach leads to an increase in the operation cost due to local optimization. In this
paper, both centralized and decentralized approaches are combined for managing the operation of a
distributed system, which is comprised of an MG and a community battery storage system (CBESS).
The MG is formed by grouping all entities having the same operation objective and is operated under
a centralized controller, i.e., a microgrid EMS (MG-EMS). The CBESS is operated by using its local
controller with different operation objectives. A Q-learning-based operation strategy is proposed for
optimal operation of CBESS in both grid-connected and islanded modes. The objective of CBESS in
the grid-connected mode is to maximize its profit while the objective of CBESS in islanded mode is to
minimize the load shedding amount in the entire system by cooperating with the MG. A comparison
between the Q-learning-based strategy and a conventional centralized-based strategy is presented to
show the effectiveness of the proposed strategy. In addition, an adjusted epsilon is also introduced
for epsilon-greedy policy to reduce the learning time and improve the operation results.

Keywords: artificial intelligence; battery energy storage system; energy management system;
microgrid operation; optimization; Q-learning-based operation

1. Introduction

Microgrid (MG) is a small-scale electric power system, which can be operated both in islanded and
grid-connected modes. The operation of the MG is generally carried out by an energy management
system (EMS) [1,2]. In recent years, the development of centralized EMSs has been extensively
studied and used for the operation of MGs [3–5]. However, these centralized EMSs are facing many
problems such as computational burden and complexity in communication networks especially,
when the numbers of control devices increase. Therefore, this may lead to scalability issues for future
expansion [6]. In addition, there are several entities in the MG system that have different owners and
different operation objectives [7]. Therefore, it is difficult to provide a common operation objective for
the operation of the entire system. Recently, decentralized EMSs are becoming popular due to their
ability to overcome the limitations of centralized EMSs [8–10]. In decentralized EMSs, each entity
in the system is monitored and controlled by a local controller, which only communicates with its
neighboring controllers via a communication network. Due to the lack of detailed information about
the other entities in the system, the solution may not be globally optimal [11].

Therefore, the use of centralized or decentralized EMSs is not efficient for the operation of a
distributed system with different entities having diverse operation objectives. A potential solution
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could be developing an EMS with a combination of both of these approaches to take advantage
of each framework. In this approach, a group of entities having the same operation objectives are
operated under a centralized controller, while the other entities having different operation objectives
are operated by using other local controllers. Centralized controllers gather all system information and
determine the optimal schedule for each component by using mathematical programming. On the
other hand, the reinforcement learning (RL) approach has been introduced for the distributed operation
of independent entities having local operation objectives in case the independent entities do not have
complete information of the environment [12–17]. In RL, agents learn to achieve a given task by
interacting with their environment. Since the agents do not require any model of the environment,
they only need to know the existing states and possible actions in each state. This method drives the
learning process based on penalties or rewards assessed on a sequence of actions taken in response to
the environment dynamics [17,18]. In contrast to the conventional distributed methods, learning-based
methods can be easily adapted with a real-time problem after the off-line training process. In RL,
Q-learning is a popular method and is widely used for the optimal operation of microgrids [19–23].
A fitted Q-iteration-based algorithm has been proposed in [19] for a BESS. A data-driven method is
utilized in [19] and it uses a state-action value function to optimize a scheduling plan for the BESS
in grid-connected mode. An RL-based energy management algorithm has been proposed by [20] to
reduce the operation cost of a smart energy building under unknown future information. The authors
in [21] have proposed a multiagent RL-based distributed optimization of a solar MG by optimizing the
schedule of an energy storage system. A two steps-ahead RL algorithm has been developed in [22] to
plan battery scheduling. By using this method, the utilization rate of the battery is increased during
high electricity demand while the utilization rate of the wind turbine for local demand is also increased
to reduce the consumer dependence on the utility grid. The authors in [23] have presented an improved
RL method to minimize the operation cost of an MG in the grid-connected mode.

However, most of the existing Q-learning-based operation methods have been developed
for optimal operation of an agent in the grid-connected mode only for a particular objective,
i.e., maximization of profit (competitive model). However, in the case of islanded mode, they may
have adverse effects and reduce the reliability of the entire system, such as the increased load shedding
amount. Therefore, an energy management strategy, which is applicable for both grid-connected
and islanded modes with different objectives need to be developed. In addition, most of the existing
literature on Q-learning-based methods have been developed for optimal operation of a single MG and
only focused on the operation of the local components of an MG. Adjacent MGs can be interconnected
to form a multi-microgrid system to improve network reliability by sharing power among MGs and
other community entities [11]. However, the power transfers between other community entities and
among MGs of the network have not been considered in the existing Q-learning-based operation
methods [19–23]. Therefore, the existing methods are not suitable to apply for multi-microgrid systems.

In order to overcome the problems mentioned above, a Q-learning-based energy management
strategy is developed in this paper for managing the operation of a distributed system. The system
is comprised of an MG and a community BESS (CBESS). A microgrid EMS (MG-EMS) is used for
managing the operation of the MG while a Q-learning-based operation strategy is proposed for the
optimal operation of the CBESS. In contrast to the existing literature [19–23], where only grid-connected
mode operation is considered, both grid-connected and islanded mode operations are considered in
this study. The objective in grid-connected mode is to maximize the profit of the CBESS via optimal
charging/discharging decisions by trading power with the utility grid and other MGs of the network.
However, in islanded mode, the objective is to minimize the load shedding amount in the network
by cooperating with the MGs of the network. Due to the consideration of power trading among
community resources and MGs of the network, the proposed method can be easily extended for
multi-microgrid systems. However, the existing methods in the literature [19–23] focus on simplified
single MGs, cannot be applied for networked MGs. To analyze the effectiveness of the proposed
Q-learning-based optimization method, the operation results of the proposed method are compared
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with the conventional centralized EMS results. Simulation results have proved that the proposed
method can get similar results with the centralized EMS results, despite being a decentralized approach.
Finally, an adjusted epsilon method is applied in the epsilon-greedy policy to reduce the learning time
and improve the operation results.

2. System Model

2.1. Test System Configuration

Figure 1 describes a test system configuration, which is comprised of an MG and a CBESS. In this
study, MG is a group of entities having the same operation objectives, such as CDG, RDGs, BESS,
and loads, which are operated under a centralized controller (i.e., MG-EMS), while the CBESS having
different operation objectives is operated by using its local controller. A Q-learning-based operation
strategy is proposed for CBESS.
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In the grid-connected mode, power can be traded among MG, CBESS, and the utility grid for
minimizing the total operation cost. In islanded mode, the MG system is not connected to the utility
grid, CBESS and MG can trade power to minimize load shedding in the network. The MG considered
in this study consists of a controllable distributed generator (CDG), a renewable distributed generator
(RDG) system, a BESS as the energy storage device, and residential loads. MG is operated by an
MG-EMS for minimizing its operation cost. In grid-connected mode, MG-EMS communicates with the
utility grid to get the buying/selling price and decides the amount of buying/selling power to be traded
with the utility grid and CBESS. In islanded mode, MG cannot trade with the utility grid. Thus MG
cooperatively operates with CBESS to minimize the load shedding amount. The detailed algorithms
for both operation modes are explained in the following section.

2.2. Q-Learning-Based Operation Strategy for CBESS

Q-learning is a model-free reinforcement learning where an agent explores the environment and
finds the optimal way to maximize the cumulative reward [19–23]. In Q-learning, the agent does not need
to have any model of the environment. It only needs to know the existing states and possible actions in
each state. Each state-action pair is assigned an estimated value, called a Q value, which is the brain of the
agent. A Q-table represents all the knowledge of an agent about the environment. When the agent comes
to a state and takes an action, it receives a reward. The reward is used to update the Q value of the agent.
The overall Q-learning principle diagram for CBESS is summarized in Figure 2.
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Figure 2. Q-learning principle diagram.

Figure 3 shows the states and possible actions of CBESS. In this study, each state is a vector s with
three features: time interval, SOC of CBESS, and market price signal at the current interval. The CBESS
agent starts from an initial state with an initial value of SoC and initial interval t. The CBESS is operated
for a 24-hour scheduling horizon and each time interval is set to be one hour. Therefore, the initial
interval t is usually taken as the first interval (t = 1). CBESS chooses a random action and receives
a reward according to the action. CBESS will perform several actions until reaching the goal state.
CBESS can be either in charging, discharging, or idle mode in each state. Thus, SoC of CBESS can also
be increased, decreased, or kept the same with the previous state depending on the choosing action
and charging/discharging amount. This amount could be any values in the operation bounds of CBESS.
There are some special cases, as following.
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Figure 3. Possible states and actions of a community battery storage system (CBESS).

If the CBESS is fully charged, it cannot charge more. In case the CBESS decides to charge, it is
facing a high penalty to avoid this action in the future and the suitable actions are discharging or idle
mode. In contrast, if the CBESS is fully discharged, the CBESS cannot discharge more. It is facing a
high penalty for a discharge decision and the suitable actions are charging or idle mode. The objective
of CBESS is to maximize its profit by optimal charging/discharging decisions. This can be obtained by
maximizing the cumulative reward following the Q-table. The reward function for CBESS is determined
by Algorithm 1 based on the chosen action. In grid-connected mode, the charging/discharging price
signals are taken from the market price signals. However, in islanded mode, MG-EMS decides the
charging/discharging price signals to increase the utilization of CBESS for minimizing load shedding
amount. For instance, during off-peak load intervals, the charging price is low, CBESS buys surplus
power for charging mode. During the peak load intervals, in order to avoid load shedding in the MG
system, the discharging price is high. Thus CBESS discharges power to fulfill the shortage power.
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Algorithm 1: Reward Function for CBESS

1: Input: a state s and action a
2: if a = “charge” do
3: if SoC = SoCmax do
4: r = a high penalty
5: else
6: r = −Pchar.price
7: end if
8: else if a = “idle” do
9: r = 0
10: else a = “discharge” do
11: if SoC = SoCmax do
12: r = a high penalty
13: else
14: r = Pdis.price
15: end if
16: end if

The learning strategy for CBESS is summarized in Algorithm 2. Firstly, the discount factor (γ) and
learning rate (α) are taken as input data for the algorithm. The value of the discounted factor contributes
to determining the value of the future reward. This value varies from 0 to 1, in case the value is near 0,
the immediate reward is given preference and in case the value is near 1, the importance of future
rewards is increased. The learning rate affects the speed of convergence of Q values. The value of the
learning rate also varies from 0 to 1. However, it should be a small value to ensure the convergence of
the model. Therefore, the value of the discount factor and learning rate are 0.99 and 0.1, respectively.
The CBESS agent explores the environment for a large number of episodes. In each episode, the CBESS
agent starts from an initial state (interval t = 1 with an initial value of SoC), the agent performs several
actions until reaching the goal state and updates its knowledge (Q-table). The choosing action is based
on the epsilon-greedy policy, which is a way of selecting random actions with uniform distribution
from a set of possible actions [24,25].

Algorithm 2: Q-Learning-Based Operation Strategy for CBESS

1: Input data: setting α,γ
2: Initialize a Q-table arbitrarily ·
3: for episode < episodemax do
4: while s is not terminal do
5: Initialize a starting state s (i.e., interval = 1, SoC = SoCini, and market price (interval = 1))
6: Select a possible action a from s using ε-greedy policy
7: Take action a and observe reward r, and come to state s’ (Algorithm 1)
8: if s’ is not in Q-table do
9: Initialize Q(s’, ai) = 0
10: end if
11: Update the Q-table: Q(s, a)← Q(s, a) + α·[r + γ·maxa′Q(s′, a′) −Q(s, a)]
12: Update state s to the next state s’ with new SoC
13: if interval = 24 do
14: s is terminal
15: end if
16: end while
17: end for
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Using this policy, the agent selects a random action with ε probability and an action with a
probability of (1 − ε) that gives a maximum reward in a given state. After performing an action, the Q
value is updated by using Equation (1).

Q(s, a)← Q(s, a) + α.[r + γ.maxa′Q(s′, a′) −Q(s, a)]
s← s′

(1)

The current state is moved to a next state with updated SoC. The process for each episode is
terminated when the goal state is reached. The CBESS can find optimal actions after exploring the
environment with a large number of episodes.

2.3. Operation Strategy for Microgrid and CBESS

Figure 4 shows the detailed operation strategy for MG and CBESS. In the grid-connected mode,
MG-EMS receives the market price signals from the utility grid. MG-EMS also gathers all information
of the MG system and performs optimization to minimize the total operation cost. The amount of
surplus/shortage power is determined based on the optimal results. Then the MG-EMS waits for
information from the other external systems. The CBESS also learns from the environment and updates
its knowledge according to Algorithm 2. The amount of charging/discharging power is determined at
the end of the process. All information for trading amount with the external system is informed by
CBESS. After gathering the information from the CBESS and the utility grid, MG-EMS decides the
amount of buying/selling power from/to the utility grid and CBESS and informs the optimal results to
its components. In islanded mode, there is no connection to the utility grid. Load shedding could
be implemented to maintain the power balance. In order to reduce the amount of load shedding,
CBESS could be in cooperative operation mode with the MG. After performing optimization by
MG-EMS, the information of surplus/shortage power is determined in each interval of time. Similarly,
CBESS learns with a large number of episodes for optimizing its operation based on the feedback from
MG-EMS. The final operation of CBESS is informed to MG-EMS with the charging/discharging amount.
Finally, MG-EMS reschedules the operation of all the components based on the charging/discharging
amount from CBESS. Load shedding is implemented for maintaining the power balance in the whole
system in case of having a shortage of power.
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2.4. Mathematical Model

In this section, a mixed integer linear program (MILP)-based formulation is presented for
day-ahead scheduling (i.e., T = 24 h) for all components in MG system for both grid-connected
and islanded modes. In grid-connected mode, the objective function (2) is to minimize the total
operation cost associated with the fuel cost, start-up/shut-down cost of CDGs, and cost/benefit of
purchasing/selling power from/to the utility grid, as shown in Equation (2).

min


∑
i∈I

∑
t∈T

(
CCDG

i · PCDG
i,t + yi,t ·CSU

i + zi,t ·CSD
i

)
+

∑
t∈T

(
PRBuy

t · PBuy
t

)
−

∑
t∈T

(
PRSell

t · PSell
t

)
 (2)

The constraints associated with CDGs include Equations (3)–(8). Constraint (3) enforces the upper
and lower operation bounds of CDGs. Equation (4) gives the on/off status of CDGs. The start-up and
shut-down modes are determined by using constraints (5) and (6) based on the on/off status of CDGs.
The bounds for ramp up/ramp down rates of CDGs are enforced by Equations (7) and (8), respectively.

ui,t · Pmin
i ≤ PCDG

i,t ≤ ui,t · Pmax
i ∀i ∈ I, t ∈ T (3)

ui,t =

{
1 CDG is on
0 CDG is o f f

∀i ∈ I, t ∈ T (4)

yi,t = max
{
(ui,t − ui,t−1), 0

}
∀i ∈ I, t ∈ T (5)

zi,t = max
{
(ui,t−1 − ui,t), 0

}
∀i ∈ I, t ∈ T (6)

PCDG
i,t − PCDG

i,t−1 ≤ RUi · (1− yi,t) + Pmin
i · yi,t ∀i ∈ I, t ∈ T (7)

PCDG
i,t−1 − PCDG

i,t ≤ RDi · (1− zi,t) + Pmin
i · zi,t ∀i ∈ I, t ∈ T (8)

The power balance between the power sources and power demand is given by Equation (9).
The buying/selling power is the amount of power trading with the external systems, which is divided
into trading with the utility grid or CBESS, as given in Equations (10) and (11), respectively.

PPV
t + PWT

t +
∑
i∈I

PCDG
i,t + PBuy

t + PB−
t =

∑
l∈L

PLoad
l,t + PSell

t + PB+
t ∀t ∈ T (9)

PSell
t = PSell_Grid

t + PSell_CBESS
t ∀t ∈ T (10)

PBuy
t = PBuy_Grid

t + PBuy_CBESS
t ∀t ∈ T (11)

The constraints related to BESS include Equations (12)–(16). Constraint (12) and (13) are the
maximum charging/discharging power of the BESS. The value of SoC is updated by Equation (14) after
charging/discharging power at each interval of time. Equation (15) shows the value of SoC is set by
initial SoC at the first interval of time (t = 1). The operation bounds of BESS are enforced by (16).

0 ≤ PB+
t ≤ PCap

B ·

(
SoCB

max − SoCB
t−1

)
·

1
1− LB+ ∀t ∈ T (12)

0 ≤ PB−
t ≤ PCap

B ·

(
SoCB

t−1 − SoCB
min

)
· (1− LB−) ∀t ∈ T (13)

SoCB
t = SoCB

t−1 −
1

PCap
B

·

( 1
1− LB− · P

B−
t − PB+

t · (1− LB+)
)
∀t ∈ T (14)

SoCB
t−1 = SoCB

ini if t = 1 (15)
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SoCB
min ≤ SoCB

t ≤ SoCB
max ∀t ∈ T (16)

In grid-connected mode, CBESS also optimizes its operation to maximize its profit. The CBESS is
decided to charge power from the utility grid during off-peak price intervals or from the MG. It is in
discharging mode during peak price intervals. The constraints for CBESS in grid-connected mode
are shown in Equations (17)–(23). The total CBESS charging/discharging amount are the sum of
charging/discharging power from/to both the utility grid and MG, as shown in Equations (17) and (18).
The charging and discharging bounds are given by Equations (19) and (20). In this paper, the maximum
charging/discharging power is 10% of the capacity of CBESS at each interval of time [22]. The value of
SoC of CBESS is updated by using Equations (21) and (22). Finally, the operation bounds of CBESS is
enforced by Equation (23).

PCB+
Grid,t + PCB+

MG,t = PCB+
t ∀t ∈ T (17)

PCB−
Grid,t + PCB−

MG,t = PCB−
t ∀t ∈ T (18)

0 ≤ PCB+
t ≤ min

{
0.1 · PCap

CB , PCap
CB ·

(
SoCCB

max − SoCCB
t−1

)
·

1
1− LCB+

}
∀t ∈ T (19)

0 ≤ PCB−
t ≤ min

{
0.1 · PCap

CB , PCap
CB ·

(
SoCCB

t−1 − SoCCB
min

)
· (1− LCB−)

}
∀t ∈ T (20)

SoCCB
t = SoCCB

t−1 −
1

PCap
CB

·

( 1
1− LCB− · P

CB−
t − PCB+

t · (1− LCB+)
)
∀t ∈ T (21)

SoCCB
t−1 = SoCCB

ini if t = 1 (22)

SoCCB
min ≤ SoCCB

t ≤ SoCCB
max ∀t ∈ T (23)

In islanded mode, the system is disconnected from the utility grid. MG system can only trade its
surplus/shortage power with CBESS. In peak intervals, MG and CBESS could not fulfill the power
demand in the system. Therefore, the load shedding should be performed to keep the power balance
in the system. In order to reduce the load shedding amount, MG-EMS performs optimization for
minimizing both the total operation cost and the load shedding amount. The cost objective function is
changed to (24) with the generation cost and the penalty for load shedding. The power balance of
the power source and power demand is given by Equation (25) for the islanded mode. Additionally,
the objective function (24) is also constrained by Equations (3)–(8) and Equations (12)–(16).

min


∑
i∈I

∑
t∈T

(
CCDG

i · PCDG
i,t + yi,t ·CSU

i + zi,t ·CSD
i

)
+

∑
t∈T

(
Cpen

t · PShort
t

)
−

∑
t∈T

(
Ctrade

t · PSur
t

)  (24)

PPV
t + PWT

t +
∑
i∈I

PDG
i,t + PB−

t =
∑
l∈L

PLoad
l,t + PB+

t + PSur
t − PShort

t ∀t ∈ T (25)

In the islanded mode, the objective of CBESS is to reduce the amount of shortage power in MG
system by optimal charging/discharging mode decisions. The CBESS is decided to charge surplus
power from the MG system and discharge during intervals having shortage power. Constraints (26)
and (27) show the bounds for charging/ discharging amount at an interval of time. These constraints
also ensure that the charging mode is possible when the MG has surplus power, while the discharging
mode is possible when the MG has shortage power. Additionally, the CBESS are also constrained by
Equations (21)–(23) for updating the value of SoC and operation bounds of CBESS.

0 ≤ PCB+
t ≤ min

{
0.1.PCap

CB , PCap
CB ·

(
SoCCB

max − SoCCB
t−1

)
·

1
1− LCB+ , PSur

t

}
∀t ∈ T (26)

0 ≤ PCB−
t ≤ min

{
0.1.PCap

CB , PCap
CB ·

(
SoCCB

t−1 − SoCCB
min

)
· (1− LCB−), PShort

t

}
∀t ∈ T (27)
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In this paper, a Q-learning-based operation strategy for CBESS is proposed for the optimal
operation of CBESS. To show the effectiveness of the Q-learning-based operation, the results of
Q-learning-based operation methods are compared with the results of the centralized operation
method. The detailed numerical results are presented in the following section.

3. Numerical Results

3.1. Input Data

In this study, the test MG system has a PV, a WT, a CDG, a BESS, and load demand, as shown in
Figure 1. The MG is interconnected with a CBESS and the utility grid. The system can be operated in
both grid-connected and islanded modes. The analysis is conducted for a 24-hour scheduling horizon
(T = 24 h) and each time interval is set to be 1 hour. The MILP-based model for MG is implemented in
Python integrated with CPLEX 12.6 [26]. The Q-learning-based model for CBESS is also implemented
in Python. The market price signals, load profile, and the total output of RDGs are shown in Figure 5a,b,
respectively. The information of the CDG unit, BESS, and CBESS are tabulated in Table 1. The operation
bounds of BESS and CBESS were chosen as [0%, 100%], same as [27]. The detailed numerical results
are shown in the following sections for both grid-connected and islanded modes.
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Figure 5. Input data: (a) market price signals and load profile; (b) output power of the renewable
distributed generator (RDG).

Table 1. The detail parameters of BESS, CBESS, and controllable distributed generator (CDG).

Parameters BESS CBESS Parameters CDG

Max. PCap (kWh) 200 300 Max. Pmax(kWh) 500
Initial PCap

· SoCini (kWh) 50 150 Min. Pmin (kWh) 0
Min. PCap

· SoCmin (kWh) 0 0 Cost/kWh CCDG (KRW) 136
Char. Loss L+ (%) 5 3 Start-up cost CSU (KRW) 200
Dis. Loss L− (%) 5 3 Shut-down cost CSD (KRW) 100

3.2. Operation of the System in Grid-Connected Mode

This section presents the operation of the MG and CBESS in grid-connected mode. The MG-EMS
performs optimization to minimize the total operation cost of the MG. The amount of buying/selling
power is determined based on the amount of surplus/shortage power in the MG system, as shown in
Figure 6a. The buying/selling power of the MG is traded with two external systems, i.e., CBESS and
the utility grid. It can be observed from Figure 6b that the CBESS always decides to import power
from cheaper resources. During intervals 3, 4, 6, the generation cost of CDG is less than the buying
prices from the utility grid. Therefore, CBESS decides to charge surplus power from MG instead of
buying from the utility grid. Figure 6c shows the buying power of the MG system. The MG decides to
import power from the external systems for minimizing the total operation cost. At intervals 2 and 5,
MG imports power from the utility grid to fulfill load amount with cheaper price compared with the
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generation cost. During peak price intervals (12–15), MG also imports power from CBESS to fulfill the
shortage power and reduce the amount of buying power from the utility grid. The optimal operation
of CBESS is shown in Figure 6d by using the centralized-based approach. The Q-learning-based
operation of CBESS is compared with the centralized-based operation to show the effectiveness of the
proposed method.
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Figure 6. External trading from the microgrid (MG): (a) total trading amount from the MG;
(b) selling power from the MG to CBESS and grid; (c) buying power of MG from CBESS and
grid; (d) centralized-based operation of CBESS.

By using the proposed method, the CBESS learns more and more to update its experience.
After each episode, the CBESS updates its knowledge (Q-table) about the environment, as shown in
Algorithm 2. Through the process, CBESS becomes more intelligent. The process is off-line training;
it means the CBESS is trained with 24-hours forecasted data and the CBESS can optimally operate
with its experience in real-time. After learning with a large number of episodes, CBESS can operate
in an optimal way during a day based on its experience. Figure 7 shows the state value of CBESS
(Q value) after learning with a different number of episodes. The red color represents the higher value
of reward and the blue color represents a lower value of total reward for CBESS. The main idea of
Q-learning is to try to receive the highest cumulative reward. With 10 episodes, CBESS randomly
charges/discharges from the initial state (interval t = 1 and SoC = 50%), as shown in Figure 7a, when the
episodes are increased to 1000 and 10,000, CBESS is more intelligent, as shown in Figure 7b,c. It tries
to charge during off-peak price intervals (1–7) and discharges during peak price intervals (9–15 and
20–22). However, the CBESS also does not charge to 100% during off-peak price intervals. It is not an
optimal way for operation of CBESS. Figure 7d shows the state values of CBESS with 50,000 episodes.
CBESS charged/discharged almost similarly with the optimal operation that is obtained from the
centralized-based operation. The detailed Q-learning-based CBESS actions are shown in Table 2.
In order to clearly show the operation of CBESS, Figure 8 shows the operation of CBESS with a
different number of episodes. It can be observed that the operation of CBESS converges to that of the
centralized-based operation with an increase in the number of episodes. To determine the number of
episodes, the CBESS is trained with a different number of episodes. When the results are not changed
with a higher number of episodes, it means the model has achieved the optimal result. In this case
study, the CBESS can reach the optimal operation with 100,000 episodes.
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Figure 8. The operation of CBESS based on the Q-table with a different number of episodes.

Table 2. CBESS actions with 50,000 episodes.

Interval
SoC

Action Interval SoC Action
Initial = 50%

1 50 Idle 13 50 Discharge
2 50 Charge 14 40 Idle
3 60 Charge 15 40 Discharge
4 70 Charge 16 30 Discharge
5 80 Charge 17 20 Discharge
6 90 Charge 18 10 Charge
7 100 Idle 19 20 Idle
8 100 Discharge 20 20 Idle
9 90 Discharge 21 20 Discharge
10 80 Discharge 22 10 Discharge
11 70 Discharge 23 0 Idle
12 60 Discharge 24 0 Idle
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Finally, the total profit of CBESS is summarized in Table 3 with a different number of episodes.
Total profit of CBESS is increased with the increase in a number of episodes. With 100,000 episodes,
CBESS can get the highest profit and optimally operate like using a centralized EMS.

Table 3. Total profit of CBESS with the different number of episodes and centralized EMS.

Number of Episodes 1000 10,000 50,000 100,000 Centralized EMS

Total profit 25,640 26,850 27,420 27,990 27,990

3.3. Operation of the System in Islanded Mode

In islanded mode, the MG cannot trade with the utility grid. CBESS plays an important role in the
operation of MGs for reducing the load shedding amount. CBESS is used to shift the surplus power to
other intervals having shortage power. It means CBESS charges the surplus power and discharges
for fulfilling the shortage power. Figure 9a shows the total surplus/shortage amount in the MG for
each interval. The optimal operation of BESS is demonstrated in Figure 9b using the centralized EMS.
The load shedding amount can be significantly decreased by interacting with the CBESS. The total load
shedding amount is 597 kWh without CBESS and 306 kWh with CBESS, as shown in Figure 9c.
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Figure 9. Operation of MG and CBESS in islanded mode: (a) the amount of surplus/shortage power in
MG; (b) the optimal operation of CBESS by centralized EMS; (c) the load shedding amount in MG.

The Q-table of CBESS is trained by varying the number of episodes. The numerical results of
Q-learning with a different number of episodes are also compared with the results of centralized-based
operation, as shown in Figure 10. CBESS can optimize its operation similar to the centralized-based
operation when the number of episodes is greater than 50,000. Table 4 shows the increase in load
shedding amount compared with using the centralized EMS. The load shedding amount is reduced by
increasing the number of episodes.
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Figure 10. SoC of CBESS based on the Q-table with different episodes.

Table 4. Increasing load shedding amount with a different number of episodes and centralized EMS.

Number of Episodes 500 5000 50,000 Centralized EMS

Increasing in load shedding amount (%) 26.5 16.7 0 0

3.4. Effects of Epsilon (ε) on the Operation of CBESS

In this section, the effects of epsilon-greedy policy on the operation of CBESS are analyzed in
detail. The value of epsilon is usually taken as a fixed value. It decides the probability of choosing
a random action that is ε. To reduce the learning time, the value of epsilon is chosen as a lower
value. However, it could get a trap in local optima. To overcome the problem, the value of epsilon is
adjusted after some episodes for reducing the learning time and avoiding the trapping in local optima,
as shown in Figure 11. When CBESS starts to learn, its knowledge about the environment is limited.
Thus the value of epsilon is taken as a high value for increasing the exploring time. After each episode,
CBESS has more knowledge about the environment, and the value of epsilon is decreased for using its
prior knowledge.
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Figure 11. The value of epsilon during learning time.

Figure 12 shows the Q values of CBESS with different values of epsilon. It can be observed that
the optimal operation of CBESS can be accurately determined when epsilon equals 0.9 or using the
adjusted epsilon method. In case epsilon equals 0.1, CBESS got a local optimization, and CBESS always
tried to discharge from the initial state (interval t = 1, SoC = 50%) to get its profit, but it is not the
optimal way for operation of CBESS. Table 5 shows the learning time of CBESS with different values of
epsilon. In case epsilon equals 0.9 or adjusted epsilon, the learning time is increased compared with
the case of epsilon equals 0.1. However, the optimal operation can be accurately determined for both
cases. Considering ε value 0.1 as the reference, the computation time increased by 13% and 8.9% for
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fixed epsilon (ε = 0.9) and adjusted epsilon, respectively. It can be concluded that the adjusted epsilon
is the best way to reduce the leaning time with optimal results.Energies 2019, 12, 1789 14 of 17 
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Table 5. Increasing learning time with a different value of epsilon.

Epsilon 0.9 0.1 Adjusted Epsilon

Computation time (s) 45.77 40.5 44.1
Increasing time (%) 13 0 8.9

4. Future Extension of the Proposed Strategy

In this study, an operation strategy for CBESS is proposed for maximizing profit in the
grid-connected mode and reducing load shedding in islanded mode. The operation of CBESS
is determined based on the information of the forecasted market price signals and surplus/shortage
power of the MG. However, it is difficult to determine this information exactly. Thus the operation
strategy of CBESS considering the uncertainties of market price signals and surplus/shortage power
should be considered. These uncertainties result in a large state space, i.e., continuous state space.

As discussed in the previous section, in Q-learning, a Q-table is used to represent the knowledge of
the agent about the environment. The Q-value for each state and action pair reflects the future reward
associated with taking such an action in this state. However, Q-learning-based operation methods are
only suitable for problems with small state space. They are not suitable for a continuous state space or
for an environment with uncertainties. With any new state, the agent has to learn again to update the
Q-table for optimizing the decisions. This could take a long time for the learning process in a real-time
problem. Therefore, a model which maps the state information provided as input to Q-values of the
possible set of actions should be developed, i.e., the Q-function approximator [28–30]. To solve this
problem, Q-learning is combined with a deep neural network, which is called deep Q-learning method
to enhance the performance of Q-learning for large scale problems. The operation strategy of CBESS
using deep Q-learning will be discussed in a future extension of this study considering a continuous
state space.



Energies 2019, 12, 1789 15 of 17

5. Conclusions

In this paper, a Q-learning-based energy management strategy has been developed for managing
the operation of an MG integrated with a CBESS. An MG-EMS has been developed to manage the
operation of the MG system. A Q-learning-based operation strategy for CBESS has been developed for
optimizing its operation. By using the proposed strategy for CBESS, the efficiency and reliability of the
entire system have significantly improved. Moreover, a comparison between the proposed strategy and
a centralized-based method has been presented for showing the effectiveness of the proposed method.
It can be observed that the CBESS can optimally work with the proposed strategy with a large number
of episodes. The CBESS accurately determined the optimal operation like the centralized-based method
in both grid-connected and islanded modes with different operation objectives. To reduce learning
time, an adjusted epsilon has also been introduced for epsilon-greedy policy. By using the adjusted
epsilon, the learning time has been reduced, and operation results have been improved.
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Nomenclature

Abbreviations
BESS Battery energy storage system
CDG Controllable distributed generator
EMS Energy management system
MG Microgrid
RDG Renewable distributed generator
SoC State-of-charge
Identifiers and Sets
I Set of CDGs in MG
L Set of residential loads in MG
T Set of time intervals
Constants
CCDG

i , CSU
i , CSD

i Operation, start-up, and shut-down costs of unit i
Pmin

i , Pmax
i Operation bounds of unit i

PRBuy
t , PRSell

t Buying/selling price at time t
Cpen

t , Ctrade
t Penalty for power shortage and trading price in islanded mode at time t

RUi, RDi Ramp up, ramp down rate of unit i
PPV

t , PWT
t Output power of solar and wind turbine at time t

PLoad
l,t Load amount of unit l at time t

PCap
B , PCap

CB Capacity of BESS and CBESS
SoCB

ini, SoCCB
ini Initial value of SoC of BESS and CBESS

SoCB
min, SoCB

max Operation bounds of BESS
SoCCB

min, SoCCB
max Operation bounds of CBESS

LB+, LB− Losses for charging/discharging of BESS
LCB+, LCB− Losses for charging/discharging of CBESS
Variables
ui,t On/off mode of unit i at time t
yi,t, zi,t Start-up and shut-down statuses of unit i at time t
PCDG

i,t Output power of unit i at time t
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PBuy
t , PSell

t Buying/selling power at time t from/to the external systems
PSell_Grid

t Selling power at time t from MG to the utility grid
PSell_CBESS

t Selling power at time t from MG to CBESS

PBuy_Grid
t Buying power of MG at time t from the utility grid

PBuy_CBESS
t Buying power of MG at time t from CBESS

PCB+
Grid,t, PCB+

MG,t Charging power of CBESS at time t from the utility grid and MG

PCB−
Grid,t, PCB−

MG,t Discharging power of CBESS at time t to the utility grid and MG

PB+
t , PB−

t Charging/discharging power of BESS at time t.
SoCB

t State of charge of BESS at time t
PCB+

t , PCB−
t Charging/discharging power of CBESS at time t.

SoCCB
t State of charge of CBESS at time t

Q(s, a) Q value of state s, doing action a
PSur

t , PShort
t Surplus/shortage power of MG at time t
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