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Abstract: Taking gob-side entry retaining with large mining height (GER-LMH) of the 4211 panel in
the Liujiazhuang coal mine as the engineering background, a numerical simulation was conducted
to study the surrounding rock deformation, stress, and plastic zone distribution of GER-LMH with
respect to retained entry width. The concept of critical retained entry width of GER-LMH was
proposed. In view of the deformation characteristics of surrounding rock, an innovative approach
to determine the critical width of GER-LMH based on the cusp catastrophe theory was proposed.
The cusp catastrophe functions were set up by approximate roadside backfill body rib convergence
and roof subsidence series with respect to different retained entry widths. The critical retained entry
width of GER-LMH was 4.0 m according to bifurcation set equations. Surrounding rock stability
control principle and technique of GER-LMH was proposed, including “rib strengthening and roof
control”: road-in support with high pre-stress rockbolts and anchor cables, roadside backfill body
construction technology with high-water quick consolidated filling materials and counter-pulled
rockbolt, road-in reinforced support technology with hydraulic prop support and roof master. Field
test and field monitoring results show that GER-LMH with supercritical retained entry width in the
4211 panel could meet the requirements for ventilation when the 4211 panel was retreating.

Keywords: large mining height; gob-side entry retaining; cusp catastrophe; critical retaining width;
surrounding rock control

1. Introduction

Gob-side entry retaining (GER) was tested and applied in the UK, Germany, Poland, and Russia
in the past few decades, while GER is widely applied in coal mining in China [1–7]. GER is a safe,
green and efficient mining technology with advantages including reduced excavation rates, relief
of the rapid movement of mining activities, improved coal recovery rates and settling of corner gas
accumulation, lowered panel temperatures and optimized working environments [8–14]. However,
GER would restrain the longwall panel advance speed. Figure 1 shows a typical section view of
the GER schematic diagram. When the longwall panel advances a certain distance, the RBB will be
constructed at a distance away from the active panel. The retained entry will be applied to the adjacent
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longwall panel. Under this condition, the surrounding rock control of GER would be affected by
overburden rock strata movements.

Currently, overburden rock strata movement of the longwall panel becomes more intense as the
mining height increases, and this brings about great challenges to maintain the surrounding rock
stability control for GER with large mining height (LMH). In China, the stability control techniques of
GER with small sections in thin and mid-thick coal seams have been well optimized and improved [15].
Many experts and scholars have begun to study the GER-LMH and its field practice. Hua proposed
that the roadside backfill body (RBB) support resistance increases as the mining height increases, and
the support action to the retained entry from the solid coal rib should be considered [16]. Han proposed
that the surrounding rock deformation is more sensitive to the reduction of the entry width when the
entry height is more than 3.0 m based on a numerical simulation [17,18]. Xue studied the distribution
characteristics of roof stress with respect to the mining height by theoretical calculation and numerical
modeling methods [19]. Xue and Han obtained the deformation distribution characteristics of the
entire section of the retained entry under the condition of 4.2 m large mining height, and proposed
the GER-LMH control strategy [17,19]. All of the research results indicate that there is a critical
retained entry width. When the retained entry width is less than the critical retained entry width,
the GER surrounding rock deformation increases gently. When the retained entry width is more
than the critical retained entry width, the GER surrounding rock deformation increases rapidly.
However, few researchers have focused on the critical retained entry width with LMH and its
surrounding rock control. Therefore, this paper attempts to analyze the critical retained entry width for
GER-LMH in the Liujiazhuang coal mine based on cusp catastrophe theory, then proposes the adaptive
surrounding rock stability control strategy of GER-LMH based on field tests, theoretical calculations,
and numerical simulations.
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2. Mining and Geological Conditions

The current case study was based of the mining and geological conditions of the 4211 panel in
the Liujiazhuang coal mine, Shanxi Province, China. The main #4 and #5 coal seams are 1.7 m and
1.8 m thick. The average thickness of the parting between the #4 and #5 coal seams is 0.5 m, and the
parting is mined out coupled with the #4 and #5 coal seams. The average dip angle of the #4 and #5
coal seams is 4 degrees. The rock strata above the #4 and #5 coal seam consist of sandy mudstone
(3.5 m thick), sandy mudstone and gritstone interbedding (6.3 m thick). Meanwhile, the floor strata
below the #4 and #5 coal seams consist of sandy mudstone (4.5 m thick) and sandstone (7.0 m thick).
The generalized stratigraphy of the 4211 panel is shown in Figure 2. The mining height of the 4211
panel is 4.0 m. The width of the 4211 panel is 200 m. The 4211 panel is developed by a three-entry
system. All sections of the entries are 4.5 wide by 4.0 m high, which are excavated along the 5# coal
seam floor (see Figure 3). The average overburden depth of the 4211 panel is 200 m. The coal pillar
width between the 4211 haulage entry and 4211 air-return entry (GER) is 30 m.
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Figure 2. Generalized stratigraphic column for the 4211 panel.
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High-strength rockbolts and anchor cable were used in the roof support. The diameter and length
of the roof rockbolts were 20 mm and 2.4 m, respectively. The rockbolt space of each row was 0.8 m.
The space between two rows of the rockbolts along the entry length was 0.8 m. The diameter and
length of the roof anchor cable were 17.8 mm and 6.3 m, respectively. The anchor cable space of each
row was 1.6 m. The space between two rows of the anchor cable along the entry length was 2.4 m.
A seven-hole “W” steel belt with 4.4 m long, 230 mm wide and 5 mm thick was used to connect the
roof rockbolt. The metal mesh was made of #18 galvanized iron wire to cover the roof immediately.
Meanwhile, rod bolt with 16 mm diametrical and 1.6 m long were employed in the coal rib support.
The rod bolt space of each row was 0.8 m. The space between two rows of the rod bolts along the entry
length was 0.8 m. A five-hole “W” steel belt with 3.8 m long, 230 mm wide and 5 mm thick was used
to connect the rib rod bolt.

3. An Innovative Approach to Determine the Critical Width of GER-LMH

3.1. Cusp Catastrophe Theory for the Critical Width of GER-LMH

Cusp catastrophe theory has been widely used in mining engineering, geotechnical engineering
and other underground mining activities [20–23]. The deformation process of GER surrounding rock
can be regarded as the evolution process of deformation catastrophe with the increase of the retained
entry width. Furthermore, the cusp catastrophe theory can be introduced to determine the critical
width of GER-LMH. Zhang et al. indicated that the retained entry width has a significant impact on
roof subsidence and RBB rib deformation [8,18,24]. Therefore, the critical width of GER-LMH can be
obtained by fitting the mathematical function between roof subsidence (RBB rib deformation) and the
retained entry width, establishing and computing the cusp catastrophe theory.
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On the basis of the cusp catastrophe theory, the cusp catastrophe function V(d) between roof
subsidence (RBB rib deformation) and the retained entry width (d) can be expressed as follows:

V(d) = a4d4 + a3d3 + a2d2 + a1d + a0 (1)

where, a0, a1, a2, a3, a4 are polynomial fitting parameters.
As Equation (1) is not the standard form of the cusp catastrophe function, variable conversion is

conducted to determine the standard cusp catastrophe function for the critical width of GER-LMH.
Defining d = p − q, q = a3/4a4, and substituting them into Equation (1), the rewritten cusp

catastrophe function can be expressed as follows:

V = c4 p4 + c2 p2 + c1 p + c0 (2)


c0

c1

c2

c4

 =


q4 −q3 q2 −q 1
−4q3 3q2 −2q 1 0
6q2 −3q 1 0 0
1 0 0 0 0




a4

a3

a2

a1

a0

 (3)

The standard cusp catastrophe function can be expressed as follows:

V
c4

= p4 + mp2 + np + C (4)

Equation (4) is the steady state equation of the standard cusp catastrophe model for the critical
width of GER-LMH. Phase space is a 3D space consisting of the state variable p and the variables m, n.
m, n can be obtained by the following equation:

m = c2
c4

= a2
a4
− 3a3

2

a4
2

n = c1
c4

= a1
a4
− a2a3

2a4
2 +

a3
3

8a4
3

 (5)

The critical point of the steady state function V is the solution of the equation. Hence, the balance
surface Z can be obtained by defining the first derivative of Equation (4) to zero, i.e.,:

V′= 4p3 + 2mp + n = 0 (6)

Figure 4 shows the balance surface Z and bifurcation set. All points on the balance surface (p, m,
n) are referred to as balance points of the steady state function V. The equation of singular points W
can be obtained by the following equation:

V ′′= 12p2 + 2m = 0 (7)

If the singularity points W is projected onto the control surface m-n, branch points Q can be
obtained based on the critical state of the steady state equation as follows:

∆ = 8m3 + 27n2 = 0 (8)

When the control points (m, n) jump over a branch point Q, a discontinuous catastrophe will occur.
The points located on the two branches of Q are singularity points of the system, i.e., catastrophe points.

Given natural effects and human activities, the GER system usually changes from a balanced state
to an unstable state. When the retained entry width is in a critical condition, it is extremely sensitive to
the increase of the retained entry width. A small increase of the retained entry width was likely to
induce surrounding rock instability of GER, i.e., a catastrophe in GER.
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3.2. Implementation Procedure to Determine the Critical Retained Entry Width of GER-LMH Based on Cusp
Catastrophe Theory

Implementation procedure to determine the critical retained entry width of GER-LMH based on
the cusp catastrophe theory is as follows:

(1) A 3D numerical model of GER-LMH is established, in which rock mechanical parameters are
normally selected and determined;

(2) 3D numerical models with different retained entry width are established and calculated;
(3) Roof subsidence and RBB deformation with respect to retained entry width can be obtained

by setting monitoring points. Then cusp catastrophe function would be obtained by fitting the
relationship between the retained entry width and roof subsidence (RBB deformation);

(4) According to the cusp catastrophe criterion of the critical width of GER-LMH, the critical width
of GER-LMH is determined by determining whether the roof subsidence and RBB deformation
are mutated or not.

Calculation flow for the implementation procedure to determine the critical retained entry width
of GER-LMH based on the cusp catastrophe theory is shown in Figure 5.
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4. Relationship between Surrounding Rock Stability of GER-LMH and Retained Entry Width

4.1. 3D Numerical Model of GER-LMH

A 3D numerical model was constructed in FLAC3D software based on the 4211 panel mining and
geological conditions in the Liujiazhuang coal mine. The model was consisted of part of the 4211 panel
(100 m), part of the 4212 panel (100 m), and the entry system between them. The RBB width in the
global model is 3.0 m. The dimensions of the model are 207.5 m × 100 m × 54 m (length ×width ×
height) along the x, y, and z axial direction, as shown in Figure 6. At the top of the model, a vertical
load (vertical stress 5 MPa) is applied to simulate the overburden weight. According to the in-situ
stress test results [25–27], the horizontal stress is equal to the vertical stress. The horizontal and bottom
sides are roller constrained. The Mohr–Coulomb model is applied to simulate the rock strata including
the RBB. On the basis of the laboratory results for the mechanical properties of rock and RBB, the
parameters employed in the model have been determined. Moreover, some trial model tests have been
carried out and the mechanical parameters are adjusted in reference to the in-situ measurement on the
displacement [7,28–31]. The final rock strata property parameters in the numerical model are shown
in Table 1. The modeling process is as follows: (i) calculating the initial state induced by the gravity;
(ii) modeling the excavations of the 4211 air-return entry; (iii) retreating 4211 panel; (iv) modeling the
retaining of the 4211 air-return entry with respect to retained entry width (2.5, 3.0, 3.2, 3.5, 3.8, 4.0, 4.5
and 5.0 m).
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Table 1. Rock mechanics parameters.

Rock Strata Bulk Modulus
(GPa)

Shear Modulus
(GPa)

Cohesion
(MPa)

Friction Angle
(◦)

Tensile Strength
(MPa)

Overlying rock strata 7.62 5.05 3.76 42 2.80
Main roof 9.35 6.13 3.92 42 3.88

Immediate roof 6.12 4.16 1.73 24 0.38
4# and 5# coal seam 4.94 2.43 1.50 24 0.20

Immediate floor 6.67 4.00 1.90 26 0.65
Main floor 9.35 6.13 2.92 40 1.23

Underlying rock strata 7.62 5.05 3.16 38 2.80
RBB 4.50 2.20 2.80 32 1.50

4.2. Surrounding Rock Stability of GER-LMH with Respect to Retained Entry Width

4.2.1. Surrounding Rock Deformation of GER-LMH with Respect to Retained Entry Width

The schematic diagram for GER deformation monitoring is shown in Figure 7. The deformation
of the coal rib to the RBB rib can be obtained by measuring the horizontal distance between the A
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pin and the B pin. The roof to floor deformation can be obtained by measuring the vertical distance
between the C pin and D pin.
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Figure 7. Schematic diagram for GER surrounding rock deformation monitoring.

Figure 8 shows the roof subsidence at the middle of the entry and RBB deformation at the middle
of the RBB.
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Figure 8. Relationship between the retained entry width and roof subsidence, RBB deformation.

It shows that the retained entry width has a significant impact on roof subsidence and RBB
deformation; both the roof subsidence and RBB deformation increase as the retained entry width
increases. Meanwhile, Figure 9 presents the increment of surrounding rock deformation for GER.
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Figure 9. Increment of surrounding rock deformation for GER.

It shows that both the increment of roof subsidence and RBB deformation present a Λ-shaped
distribution, i.e., there is a critical retained entry width. When the retained entry width is less than
the critical value, both the increment of roof subsidence and RBB deformation increase. When the
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retained entry width is more than the critical value, both the increment of roof subsidence and RBB
deformation decrease.

4.2.2. Roof Plastic Zone Distribution of GER-LMH with Respect to Retained Entry Width

Numerical simulation results indicate that the retained entry width has a significant impact on
roof plastic zone distribution rather than other parts of surrounding rock. Figure 10 shows the variation
law of tensile failure area and tensile failure depth of roof.
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Figure 10. Effect of retained entry width on roof failure.

It can be seen that:

(1) When the retained entry width increases from 2.5 m to 4.5 m, the roof tensile failure depth
increases from 0.5 m to 1.5 m while the roof tensile failure area increases from 1 m2 to 3.5 m2.

(2) There is a critical value of the retained entry width. When the retained entry width is no more
than 4.0 m, the roof tensile failure depth is 1.0 m. When the retained entry width is more than
4.0 m, the roof tensile failure depth is 1.5 m.

4.2.3. Surrounding Rock Stress of GER-LMH with Respect to Retained Entry Width

The vertical stress distribution characteristics of the immediate roof are shown in Figure 11 by
setting a measuring line on the immediate roof. The in-situ stress value at the depth of the measuring
line was 5.57 MPa.
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Figure 11. Vertical stress distribution of the immediate roof with respect to retained entry width.
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It shows that:

(1) The vertical stress distribution exhibits apparent partition characteristics. Both the immediate
roof above the RBB and above the solid coal rib are located in the zone of stress concentration,
while the immediate roof above the retained entry is located in the zone of stress relief.

(2) The vertical stress distribution of the immediate roof forms a two peak distribution. The first
peak occurs in the middle of the backfill area, and the second peak occurs above the solid coal.
The second peak is larger than the first peak, and the location of the two peaks scarcely moves.
The location of the second peak is about 5.2 m away from the solid coal rib.

Figure 12 shows the vertical stress of the immediate roof at the middle of the retained entry.
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Figure 12. Vertical stress of the immediate roof at the middle of the retained entry.

It shows that:

(1) Vertical stress of the immediate roof above the entry increases as the distance away from the
retained entry roof surface increases regardless of the retained entry width.

(2) Vertical stress of the immediate roof at the same depth decreases as the retained entry width
increases. However, the stress relief zone increases for the surrounding rock at the same depth as
the retained entry width increases. When the retained entry width is 3.5 m and 4.5 m, the depth of
vertical stress below 4 MPa is 1.5 m and 3.5 m, respectively. Therefore, the larger the retained entry
width, the more the vertical stress reduction and the greater the surrounding rock failure depth.

(3) Tensile stress occurs in the shallow part of the immediate roof. The range of tensile stress of
the immediate roof increases as the retained entry width increases, and the range and degree of
surrounding rock tensile failure increases.

5. Stability Control of Surrounding Rock for GER-LMH with Supercritical Width

5.1. Critical Width of GER-LMH

According to aforementioned calculation flow and numerical results, when RBB deformation
is the independent variable, cusp catastrophe function between the retained entry width and RBB
deformation can be obtained as follows (retained entry width is no more than 4.0 m):

V(d) = −11.054d4 + 94.251d3 − 187.07d2 − 86.985d + 618.79

where, ∆ = −8.669 × 103 < 0, i.e., a discontinuous catastrophe firstly occurs.
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When roof subsidence is the independent variable, cusp catastrophe function between the retained
entry width and roof subsidence can be obtained as follows (retained entry width is no more than 4.5 m):

V(d) = −1.4356d4 + 12.863d3 − 3.4416d2 − 53.633d + 274.67

where, ∆ = −1.23 × 105 < 0, i.e., a discontinuous catastrophe firstly occurs.
Therefore, when RBB deformation is the independent variable, the critical retained entry width is

4.0 m; when roof subsidence is the independent variable, the critical width is 4.5 m. The final critical
retained entry width can be determined the smaller value synthetically, i.e., the critical retained entry
width of GER with 4.0 m mining height is 4.0 m in the 4211 panel of the Liujiazhuang coal mine.

5.2. Stability Principle of Surrounding Rock for GER-LMH with Supercritical Retained Entry Width

The average mining height of the 4211 panel in the Liujiazhuang coal mine is 4.0 m. The retained
entry width is 4.5 m more than the critical retained entry width while the RBB width is 3.0 m. Therefore,
GER of the 4211 air-return entry is the GER with LMH and supercritical width. Stability principle of
surrounding rock for MER-LMH with supercritical width was proposed including “rib strengthening
and roof control”.

“Rib strengthening” refers to high strength support by high strength and high pre-stress additional
rockbolts to the solid coal rib and constructing the RBB with high-water quick consolidated filling
materials and counter-pulled rockbolts:

(1) High strength and high pre-stress rockbolts were employed to reinforcement the solid coal rib
by improving the support resistance to the roof, reducing the plastic zone depth and area of the
solid coal rib, and transferring the concentrated stress to distant solid coal. Therefore, the rotation
angle and subsidence of the overlying roof would decrease.

(2) High-water quick consolidated filling materials and counter-pulled rockbolts would be used
to construct the RBB with strong bearing capacity and plastic deformation. Therefore, the roof
above the RBB can be supported in time to recover the condition of three-dimensional pressure.

“Roof control” refers to reinforcement support by high pre-stress anchor cable to the roof above
the retained entry and the RBB:

(1) High pre-stress anchor bolts were employed to enhance the support strength, improve the roof
adhesion, and reduce the roof separation between the main roof and the immediate roof.

(2) Anchor cables were employed to support the roof above the RBB to restrain the tensile failure
expansion for the shallow immediate roof. Meanwhile, the bending resistance of the roof was
enhanced, the RBB support resistance was diminished, and the bearing capacity of the RBB
was improved.

(3) Hydraulic props with high resistance were employed to support the roof to decrease the roof
rotation and floor heave, which improved GER surrounding rock stability.

According to the numerical simulation results, Figure 13 shows the tensile failure distribution
with respect to different support. It shows that the roof tensile failure depth around the RBB is greater
than that around the solid coal rib. The maximum tensile failure depth is 3.5 m when there is no
support to the entry. However, when the above mentioned support is employed, the tensile failure
area and depth of the roof decreases evidently, especially the roof around the RBB. The maximum
tensile failure depth of the roof is 1.0 m while that of the solid coal rib is 1.3 m, which is less than
the rockbolt anchor depth. Hence, rockbolt support with anchor cables can reduce the tensile failure
extent of the roof and the solid coal rib, and helps to stabilize the surrounding rock of GER-LMH with
supercritical retained entry width.
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5.3. Stability Technique of Surrounding Rock for GER-LMH with Supercritical Retained Entry Width

Both the rockbolt and anchor cable support are used to support the retained entry of 4211 panel.
High-water quick consolidated filling materials and counter-pulled rockbolts are used to construct
the RBB. The detailed support technique is as follows, and the designed support layout is shown in
Figure 14.

Reinforcement support: A row of anchor cables with 18.9 mm diameter and 8.3 m length were
employed to support the roof.

Roadside support: High-water quick consolidated filling materials with water-cement ratio 1.5:1
were employed to construct the RBB with 3.0 m width. Counter-pulled bolts with 22 mm diameter and
1.7 m length were employed to improve the bearing capacity of the RBB. The counter-pulled bolt space
of each row was 0.8 m. The space between two rows of the counter-pulled bolts along the entry length
was 0.8 m. Meanwhile, round steel ladder beam was welded with 16 mm diameter and 3.6 m length
(see Figure 15).Energies 2019, 12, x FOR PEER REVIEW 13 of 16 
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Figure 14. The 4211 air-return entry support layout for GER (units: mm).
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Roof support above the RBB: A row of anchor cable with 18.9 mm diameter and 8.3 m length
were employed to support the roof above the RBB. The anchor cable spacing of each row was 1.75 m.
The space between two rows of the anchor cable along the entry length was 0.8 m.

Solid coal rib reinforcement support before the GER: A row of rockbolts with 20 mm diameter
and 2.4 m long were employed to support the solid coal rib 100 m away from the active 4211 panel.
The additional rockbolts would be located between the previous two rows of rod bolts.

Reinforcement support after GER: Hydraulic props with high resistance were employed to support
the roof within the range of 120 m behind the active 4211 panel. A row of hydraulic props was retained
with a space of 1.2 m and a distance off 0.45 m to the solid coal rib. The spacing between two rows of
the props along the entry length was 1.0 m.
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Figure 15. RBB for GER of the 4211 air-return entry (units: mm).

5.4. Stability Technique of Surrounding Rock for GER-LMH with Supercritical Retained Entry Width

To evaluate the performance of GER-LMH with supercritical retained entry width, field
monitoring results of the GER-LMH with supercritical retained entry width during the period of
4211 panel mining are presented in Figure 16. The figure shows that when the active 4211 panel passed
the monitoring site at a distance of 120 m, the roof to floor displacement and solid coal rib to RBB rib
placement were about 440 mm and 634 mm, respectively.Energies 2019, 12, x FOR PEER REVIEW 14 of 16 
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Figure 16. Monitoring results of the surrounding rock displacement.

Considering the minimum requirement of the retained entry section for ventilation and
transportation, the section of the retained entry in the 4211 panel could meet the requirements. Field
monitoring results showed that GER design of the 4211 panel in the Liujiazhuang coal mine was
rational, and confirmed the feasibility of the GER-LMH with supercritical retained entry width.
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6. Discussion

To calibrate the global numerical model, the calibrations of the global numerical model by
comparing the outputs of the global numerical model with field monitoring results are essential.

In the field test, GER with supercritical retained entry width was conducted in the 4211 panel, and
the construction speed of the retained entry is 1.8 m/day. Figure 17 shows the comparison between
the field measured and numerical simulated displacement during the period of 4211 panel mining.
The red solid line presents the numerical simulated roof to floor displacement and the blue solid line
presents the numerical simulated RBB rib to coal rib displacement, while the filed monitoring GER
surrounding rock displacement curves are shown by triangles and squares. Both the filed monitoring
measured and numerical simulated GER surrounding rock displacement curves show a similar change
trend. After a period, both the roof to floor displacement and RBB rib to coal rib displacement arrive a
constant value.
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7. Conclusions

(1) Numerical simulation results show that the retained entry width has a significant effect on
surrounding rock stability of GER-LMH. Roof subsidence, RBB deformation of GER-LMH, roof
tensile failure depth and tensile failure area increase as the retained entry width increases, which
indicates a critical retained entry width.

(2) In the present study, an innovative approach to determine the critical width of GER-LMH based
on cusp catastrophe theory has been proposed. The cusp catastrophe functions between roof
subsidence (RBB rib deformation) and the retained entry width are established by increasing the
retained entry width gradually. The critical retained entry width is determined according to the
bifurcation set equation and cusp catastrophe functions. GER of the 4211 air-return entry with
4.5 m wide in the Liujiazhuang coal mine belongs to GER-LMH with supercritical width.

(3) The stability principle of surrounding rock for GER-LMH with supercritical width was proposed
including “rib strengthening and roof control”. Field tests and field monitoring results show that
the GER-LMH with supercritical retained entry width in the 4211 panel with RBB 3.0 m wide
and high-strength anchor cable-rockbolt support could meet the requirement for ventilation and
transportation during the period of 4211 panel mining.

(4) The proposed approach based on cusp catastrophe theory provides criteria to judge how much the
critical retained entry width should be. It also provides a new way for safe coal mine production
under similar conditions.
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