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Abstract: Nowadays, measurement systems strongly rely on the Internet of Things paradigm,
and typically involve miniaturized devices on purpose. In these devices, the computational resources
and signal acquisition rates are limited in order to preserve battery life. In addition, the amount
of streamed data is affected by the network capacity strictly related to the transmission protocol
constraints and the environmental conditions. All those limitations are in contrast with the need of
exploiting all possible signal details for the task under study. In the specific application of interest,
i.e., Non-Intrusive Load Monitoring (NILM), they could lead to low performance in the energy
disaggregation process. To overcome these issues, an ad hoc data reduction policy needs to be adopted,
in order to reduce the acquisition and elaboration burden of the device, and, at the same time, to ensure
compliance with network bandwidth limits while maintaining a reliable signal representation. Moved
by these motivations, an extended evaluation study concerning the application of data reduction
strategy to the aggregate signal is presented in this work. In particular, a non-uniform subsampling
(NUS) scheme is defined together with a uniform subsampling (US) strategy and compared, in terms
of disaggregation performance, with the use of data at original sampling (OS) rate. A Deep Learning
based technique is used for disaggregation, having the aggregate active power signal sampled
according to diverse sampling schema mentioned above as input. The approaches are tested on the
UK-DALE and REDD datasets, and the combination of US+NUS configurations allows for achieving
a good performance in terms of F1-score, even superior than the one obtained with the OS rate, and a
remarkable data reduction at the same time.

Keywords: non-intrusive load monitoring; energy disaggregation; deep learning; neural networks;
non-uniform sampling; active power; computational energy management

1. Introduction

In the last several years, an increasing interest on the energy themes focused on the reduction
of emissions from fossil sources has led the researchers to develop solutions oriented to improve the
users’ energy awareness in everyday life actions, as well as to assist them to better schedule these
actions. Among these solutions, Non-Intrusive Load Monitoring (NILM) is surely one of the most
studied [1], in addition to other useful ones, such as energy management and analytic [2,3], load task
scheduling [4], or behaviour-based consumption [5]. These algorithms require high computational
burden, since their results could be requested in real time to provide an immediate feedback to the
user. In order to limit the computational burden of the algorithms, strategies to reduce the amount of
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data required by the applications could be taken into account. Focusing on the energy consumption
in a domestic scenario, in particular on the measurement of the appliance power signal, many time
instants do not present occurrences of noteworthy events, such as the absence of power consumption
(or consumption above a minimal threshold), i.e., at night and/or holidays, or time slots with a reduced
variation (low variance) of the power consumption profile (steady state of an appliance). Therefore,
in such scenarios, a data reduction policy is a possible solution. In contrast, during the active periods,
a higher level of detail of the power consumption trace is needed in order to guarantee the reliability
of the advanced elaboration service.

Nowadays, data acquisition systems are more and more oriented towards the use of cloud
computing resources, where centralized services can handle multiple requests. Such infrastructure
topology is directly applicable in the residential energy scenario, where a smart meter samples the
power consumption trace on the domestic power supply line and, by means of an Internet connection,
sends the data to the elaboration service on cloud. This scenario lies among the Internet of Things
(IoT) paradigm, which points toward the development of minimal devices capable of acquiring and
pre-process signals keeping a low elaboration power. Specifically, IoT devices are designed to meet
low power requirements, in order to have an improved battery life and longer life-span. To pursue
this goal, these devices will demand the main data elaborations to dedicated cloud centres with a
high computational power. Therefore, the introduction of application-oriented data reduction policies
results beneficial also from the point of view of the acquisition infrastructure, i.e., reduce the overall
data stream in order to limit the bandwidth requirements and support more data streams towards the
cloud service.

State-of-the-Art

In the scientific literature, several techniques have been proposed to deal with the NILM problem,
with different purposes, based on the steady states or transient states [6,7].

The kind of signal trait used for addressing the task depends on the signal detail needed, which
reflects on different sampling frequencies. The authors of [8] propose a qualitative performance trend
of the disaggregation algorithms for different sampling frequencies. Generally, despite the task to be
solved depending on the algorithm formulation, the disaggregation accuracy decreases proportionally
with the sampling frequency. A detailed study of Hidden Markov Model-based (HMM) algorithms
has been conducted in [9], where the authors evaluated the algorithms performance for sampling
rates ranging to 1 s to 6 min by using the REDD dataset. Generally, they found that higher sampling
rates provide more accurate disaggregation results. Similarly, the work presented in [10] evaluates the
effects of sampling rate reduction on the performance of Factorial Hidden Markov Model (FHMM)
and sparse-matrix-based algorithms for NILM [11,12]. The authors evaluated different sampling
periods, from 6 s to 15 min, and they showed that the performance degrades nonlinearly as the
sampling rate decreases. Basu et al. [13] evaluated the performance of two event-based algorithms
operating at different sampling rates 10 s and 15 min, and they observed that the latter achieves the
lowest performance.

These outcomes highlight the need to pursue ad hoc strategies for data reduction in order to
maintain details on the signal, otherwise it is reasonable to expect a deterioration in performance with
low sampling rates. Indeed, this assumption is confirmed by the strategies of data reduction proposed
in the literature that are focused either on the transmission of data only when significant changes
are detected, or on the compression of data before transmission. In the former group, the acquired
samples are transmitted to the NILM algorithm only when relevant events occur in the aggregate
power signal [14–20]. Generally, these methods reduce the amount of data during the transmission
preserving the details of the original signal, but they depend on the reliability of the event detection
method applied to the aggregated power signal. In addition, many state-of-the-art approaches rely on
the profile reconstruction before the application of the NILM algorithm. In this sense, the algorithm
does not deal with the data reduction of the aggregate power consumption, but it is applied to the
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signal at original frequency. The reliability of this procedure is strictly dependent on the relevant
samples detection, and on the profile reconstruction technique as well.

In the second class of approaches, data reduction is achieved through lossless or lossy compression
algorithms, and they are used depending on the transmission requirements to be satisfied. A study
on sampling rate reduction of aggregated power signal and its effects on NILM algorithms has been
conducted in [21]. The authors presented a method based on compressed sensing (CS) to reach a
lower-than-Nyquist sampling rate. Moreover, the work investigated how the restrictions to the CS
sensing matrix associated with random filtering and demodulation affects signal recovery and NILM
performance. The experiments have been conducted on the BLUED [22] dataset, exploiting the voltage
and current waveforms of the aggregate signals, and reporting the percentage error rate (PER) of the
working state prediction of each appliance. The results have shown that the proposed approaches
can give better NILM performance than direct subsampling with a NILM algorithm based on the one
proposed in [23].

As discussed above, the state-of-the-art highlights the lack of direct evaluations of NILM
algorithms with data reduction techniques. Indeed, in event-based approaches [14–20], the focus
is mainly on the evaluation of the transient event, with a resolution on the NILM problem using a
classification approach on the events detected or by reconstructing the signal at original rate. On the
other hand, in the data-compression based approach [21], the goal is to analyse the entire signal and to
compress the information exploiting its sparsity. Despite the study presenting a similar aim to the one
of the authors’ work, its peculiarity lies in the application with a high frequency sampled waveform,
with the reconstruction of the signal at the original rate before the application of the NILM algorithm.

The authors’ interest here is on the resolution of the NILM problem with an ad hoc data reduction
strategy for a residential environment, i.e., where power consumption signals are acquired by means of
smart meters, thus signals at sub-Hz frequencies. The work focus is on the application of an algorithm
which allows to easily manage various sampling frequencies of the power consumption signal, as well
as without a significant loss of performance. Specifically, up to the authors’ knowledge, none of
the studies have evaluated reduction strategies on the Neural NILM approach, proposed in [24].
Indeed, Neural NILM provides a flexible solution, from the point of view of the subsampling schema,
e.g., uniform and non-uniform, which can take advantage of the possibility of characterizing each
appliance with a different and dedicated network topology. In addition, this algorithm exploits both
the transient and the steady states information for the disaggregation aim, which allows for managing
the NILM problem with a higher information level with respect to other approaches. Specifically,
the disaggregated outputs carry on the total information of the appliances contribution, i.e., the events
occurred and the detailed energy consumption in the observation period.

The outline follows. Problem statement and work motivations are discussed in Section 2. Section 3
proposes an overview of the uniform and non-uniform subsampling strategies, and in Section 3.1
details on the adopted network topology are provided. Section 4 reports the experimental setup and
the adopted evaluation methods. Results’ discussion and advanced considerations are reported in
Section 5. Finally, Section 6 concludes the paper.

2. Problem Statement and Motivations

The consumption power signal of any appliance is generally composed of a set of different
working states (including power off/on states), and it can be represented in terms of portions of
signal based on the presence of more or less rapid changes. Therefore, generally speaking, the signal
portions can be classified in either steady states or transient states [6]. Moreover, it is considered that
the analogue power signal is sampled at a specific frequency, denoted as original sampling rate from
here on.

Under this assumption, it is natural to consider the possibility to apply an ad hoc subsampling
strategy in order to preserve a higher level of detail during the transients, e.g., keep the original
sampling rate, whereas they downsample the signal during the steady phases. In fact, aiming to
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create models as generic as possible to represent the different typologies of appliances, the adopted
information cannot refer to the consumption levels only, i.e., the steady states, but has to exploit the
details contained in the transition states as well. In this way, it is possible to guarantee the ability to
discriminate the type of appliance (transient-based features widely use to appliance identification [6]),
as well as to reduce the overall amount of data processed and transmitted to the elaboration service in
compliance with the IoT paradigm. For example, in a real system, the smart meter will store in a buffer
the data acquired at the original sampling rate, whereas only the sub-sampled data are continuously
sent, after proper pre-processing. Whenever a transition state is automatically detected, the appropriate
amount of data in the buffer, at the original sampling rate, will be forwarded to the remote system that
performs the disaggregation.

Considering the application of this idea to the NILM paradigm, where the system receives as input
the aggregated signal and disaggregates it to produce the signals related to each appliance, two main
problems arise. On the one hand, the data acquisition system should be capable of exactly discerning
between steady and transient states by analysing the aggregated signal only, in order to modulate the
subsampling activity. On the other hand, the disaggregation algorithm should be capable of properly
operating with subsampled data (thus reduced information), in order to either reach performance
equivalent to the system without subsampling (reference system), or to achieve a marked reduction in
the data required by the elaboration system against a modest deterioration in performance.

The state-of-the-art discussed in the previous section confirms the practicability to apply a
non-uniform subsampling strategy at the aggregated data, keeping a high level of signal detail.
On the other hand, up to the authors’ knowledge, the state-of-the-art discussion highlighted a lack of
techniques for the data reduction, both based on event-detection or data compression, directly applied
and evaluated with NILM algorithms, in order to understand how the data reduction itself can affect
the NILM performance. Specifically, neither uniform or non-uniform subsampling approaches have
been evaluated in combination with the Neural NILM.

The main objective of this paper is the evaluation of the latter issue by considering the Neural
NILM [24] approach as the disaggregation algorithm. In order to validate the ad hoc subsampling
strategy, an extended evaluation study is presented, providing a comparison among the application
of different sampling rate on different datasets. In particular, the signal processed by the ad hoc
subsampling strategy, called non-uniform subsampling (NUS), can be decomposed in a signal
uniformly subsampled (thus applying a uniform subsampling—US), and portions of signal sampled at
the original sampling rate (OS). Therefore, in order to provide a comprehensive evaluation, it is needed
to compare the NUS performance against the one achieved by applying only a US and the performance
at the OS. Moreover, the evaluations will also consider the application of different subsampling rates
and different lengths of the transition windows for the NUS.

It should be noted that the detection the appliance states, i.e., steady and transient phases of the
power signal, lies outside the scope of this work. Specifically, the aim here is to evaluate the NILM
algorithm performance in different US and NUS conditions, minimizing external causes of errors,
such as the erroneous detection of a state. However, requiring the knowledge of the appliance state,
the algorithm relies on the clustering approach presented in [25].

Finally, the overall data reductions achievable with different NUS strategies, in contrast to the US
ones, are reported and discussed.

3. NUS in Neural NILM

The aggregate power in a household electrical circuit is composed of contributions due to known
loads, i.e., the power consumption related to loads modelled in the NILM algorithm, and to unknown
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contributions or noise components, i.e., the power consumption related to unmodeled loads and noise
present in the circuit. Specifically, the total active power, y[n], can be expressed as:

y[n] =
NA

∑
i=1

yi[n] + e[n], (1)

where NA is the number of modelled appliances—known contributions, yi[n] denotes the active power
signal of the i-th appliance, and e[n] is the overall noise component—unknown contributions and
circuit noise. The NILM paradigm relies on the extraction of the power consumption of the i-th
appliance, yi[n], from the aggregate power signal, removing the remaining components ni[n], and can
be formulated as:

yi[n] = y[n]− ni[n], where ni[n] =
NA

∑
j=1,j 6=i

yj[n] + e[n]. (2)

Under this assumption, a denoised condition is expressed as:

yi[n] = y[n]− ni[n], where ni[n] =
NA

∑
j=1,j 6=i

yj[n], (3)

where it is assumed that the aggregated power consumption signal is composed of known appliances
only, without additional unknown contributions—loads—or sources of noise. Therefore, the noise
component e[n] is set equal to zero, and Equation (2) can be reformulated as shown in Equation (3).
The assumption of a denoised scenario allows for avoiding undesired signals from masking the small
signal fluctuations of a specific appliance out of the aggregated signal. Therefore, working in a denoised
scenario allows the acquisition system to ideally perform an exact detection of the variations in the
aggregated signal and discerns the occurrences of steady and transient states. The noised scenario,
on the other hand, represents a more realistic case study and it has been considered in the experimental
evaluation. Assuming that the power signal is acquired by a measurement system capable of providing
samples at a sub-Hz sampling rate, the expectation is that it is possible to further “downsample” the
signal during the appliance steady states without losing essential information, while the sampling
rate is kept unchanged in the transition states, in order to preserve the information. Specifically,
the sampling rate reduction in a specific portion of the signal (the steady state) allows for reducing the
amount of data to be processed by the algorithm, thus lowering the computational burden. On the
other hand, this operation decreases the data transmitted from a smart meter to the disaggregation
service host.

As discussed in the previous section, in order to keep the original sampling rate during the
transition samples, and to apply the downsampling only in the steady phases, an ad hoc non-uniform
subsampling strategy is applied. The proposed US and NUS processing operations are used on the
aggregated data, already sampled at the OS rate; therefore, the approach differs from the nonuniform
sampling theory applied to analogue signals [26]. Specifically, as depicted in Figure 1, during the
subsampling processing, if a transition state is encountered, the algorithm collects a predetermined
number of samples at the original sampling rate, creating a selection window centred at the middle
of the transition edge, and thus providing a set of equal distributed samples centred on this event.
As a result, considering a vector of constant length as network input, depicted in Figure 2, an overall
shorter time interval with respect to the case of uniform subsampled points only, i.e., the green ones,
will be represented.

The selection window, which marks the signal portion to be acquired at the original sampling rate,
is called expansion window, and its length is expressed in terms of samples number at the original
rate, called expansion rate (ER). In fact, considering the majority of the signal being subsampled, from
the receiver point of view, the signal is expanded/upsampled, providing additional level of details
when a transition phase is met.
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Figure 1. Example of expansion window (red regions) with 1 min subsampling period and 30 s
expansion window length (NUS10-5). The NUS vector is composed of green and red points.
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Figure 2. Overview of the base network structure. In the input/output vectors, the green points/blocks
denote the samples at uniform subsampling, whereas the red ones mark the samples within the
expansion window.

Together with the selection window, a uniform subsampling is performed for the remaining data,
i.e., the steady states. The general subsampling period applied is expressed by means of the parameter
subsampling rate (SR) that specifies the multiplication factor applied to the original sampling rate,
which corresponds to the sampling period increasing factor.

Denoting with y[n], with n = 0, . . . , N − 1 where N is the number of samples, the n-th sample
at the original sampling rate for a given active power signal, the vector YOS of the original sampling
samples is defined as:

YOS = {y[i]|i ∈ {0, 1, . . . , N − 1}} . (4)

Accordingly, the vector YUS of uniform subsampled samples at SR= C is obtained as:

YUS =

{
y[i]|i ∈

{
0, C, 2C, . . . ,

⌊
N − 1

C

⌋
C
}

, C ∈ N
}

, (5)
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where bxc is the integer part of x. Finally, the vector YNUS of non-uniform subsampled samples at
SR = C and ER = G is expressed as:

YNUS = YUS ∪
{

y[i]|i = k + w, k ∈ E, w ∈
{
−
⌊

G
2

⌋
,−

⌊
G
2

⌋
+ 1, . . . , 0, . . . ,

⌊
G
2

⌋
− 1,

⌊
G− 1

2

⌋}
, G ∈ N

}
, (6)

where E = {e0, e1, . . . , eL−1}, with L the number of expansion windows, denotes the set of the indices
corresponding to each transient state within the N samples, i.e., the centres of the expansion windows.

The number of elements of YOS, YUS, and YNUS are denoted, respectively, as KOS, KUS, and KNUS.
Essentially, the number of samples at original sampling, KOS, is equal to the total number of samples N,
in the US case KUS = b(N − 1)/Cc+ 1, whereas, in the NUS case, KNUS depends on the parameters
used in the subsampling procedure.

The detection of transient states is precomputed for each appliance independently, after which
all the detections are gathered over a common time base. This information is provided to the
pre-processing algorithm which performs the US and/or NUS on the aggregated data and returns the
data to be use as network input. In the transients’ detection, the working state changes as well as the
power-on/off switching activities are taken into account as transient states.

3.1. Neural NILM

The neural network architecture used for load disaggregation uses CNN layers, and it is based on
the architecture proposed by Kelly et al. [24], and further studied by the authors [27,28].

As depicted in Figure 2, the structure is based on the auto-encoder topology, where both encoding
and decoding portions are composed of convolutional layers concatenated to a linear activation
function and a max pooling layer. The encoding stage ends with a fully connected network based
on ReLU activation function [29], denoted as dense layer in Figure 2. Symmetrically, in the decoding
stage, the upsampling layers replace the max pooling ones.

The introduction of the max pooling operation allows the network to develop an independent
behaviour with respect to location of the activation inside the input window. Moreover, a reduction
of the features maps size is achieved, with a consequent reduction of the input neurons number in
the dense layer. Additionally, in order to respect the constraint of non-negative active power, a ReLU
activation has been adopted.

The Stochastic Gradient Descent (SGD) algorithm with Nesterov momentum [30] is used in the
training phase, and an early stopping technique is adopted in order to prevent overfitting. The network
is trained providing an aggregated signal (window) as input and the corresponding disaggregated
signal of a specific appliance as output. The loss between input and output is quantifies in terms of
mean squared error (MSE).

In the disaggregation phase, the input provided to the network corresponds to a sliding window
portion of the aggregated power signal with a specific stride. Therefore, the output/disaggregated
signal has to be properly reconstructed, since it presents more or less overlapping windows based on
the stride values. Specifically, the lower the stride, the higher the number of windows overlapped.
In order to produce the output signal, the samples are recombined by calculating a mean or a median
operation at each time instant. Both operations are evaluated because they both present shortcomings.
In the case of the mean operation, averaging the overlapped portions could produce an overall
underestimated signal. On the contrary, the median operation produces a better estimate, erasing the
outliers that are typically near to zero, only in the case of reliable samples statistic.

The approach based on denoising autoencoders used here for disaggregation employs an
individual neural network for each appliance of interest [24]. As will be evident in the experimental
evaluation (Section 5), the best performing subsampling method can be appliance-dependent,
and using an individual network for each appliance allows for combining the US and NUS techniques.
An example of this solution applied to the fridge and dishwasher appliances is depicted in Figure 3.
In the example, the fridge network takes as input the US samples (the green points in Figure 3), while
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the dishwasher network uses the NUS samples, i.e., both the green and the red points in Figure 3.
Clearly, each network provides an estimate only for the samples at its input. Assuming that the most
performing subsampling method for the fridge is US and for the dishwasher is NUS, this solution
allows for achieving a higher disaggregation performance compared to the use of a single technique.
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Figure 3. An example scheme of the combination of the NUS and US methods for the fridge and
dishwasher appliances.

4. Experimental Setup

The experiments have been conducted on active power signals contained in the UK-DALE [31]
and the REDD [11] datasets both in the denoised and noised conditions. The denoised condition has been
considered since it allows for evaluating the algorithms avoiding undesired signals from masking
the small signal fluctuations of a specific appliance out of the aggregated signal. On the other hand,
the noised condition represents the common situation encountered in real application scenarios.

Train and test data are extracted using the time intervals adopted in [28] for the UK-DALE dataset,
Table 1, and the ones assumed in [27] in the case of REDD dataset, Table 2. Specifically, within the given
intervals, the activations and the corresponding silence are extracted for each appliance. The first 20%
of the activations are adopted as validation data, whereas the remaining 80% are combined with silence
to compose the batches for the model training. A mean and variance normalization is applied to each
batch, whose parameters (mean and variance) are computed from a random sample of the training set.
Differently, a min-max normalization is performed on the target data, adopting the maximum power
consumption for the corresponding appliance.

Table 1. Details of train and test time intervals for UK-DALE dataset.

Building
Train Test

Interval Days Interval Days

1 12 April 2013–21 October 2014 555 22 October 2014–15 December 2014 56
2 22 May 2013–26 September 2013 128 27 September 2013–10 October 2013 13
5 29 June 2014–01 September 2014 64 01 September 2014–07 September 2014 6
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Table 2. Details of train and test time intervals for REDD dataset.

Build.
Train Test

Interval Days Interval Days

1 18 April 2011–20 May 2011 31 21 May 2011–24 May 2011 3
2 17 April 2011–29 April 2011 11 30 April 2011–01 May 2011 1
3 16 April 2011–28 April 2011 11 21 May 2011–27 May 2011 6

The availability of signals acquired in several buildings allows the evaluation of the algorithm
performance in seen and unseen conditions. For each appliance, in the case of seen condition,
two buildings are used both for training and testing, whereas, in the case of unseen condition, the model
is trained on the same data used in the seen condition, then tested over the data related to a different
building. The number of buildings used for each dataset has been limited according to the specifications
of [27].

The experiments presented in the following sections are conducted both in US and NUS conditions,
as well as at OS. The sampling rate adopted as OS rate is 6 s. In particular, the UK-DALE dataset already
provides data at this rate, whereas the REDD dataset has been downsampled. In the case of US, a fixed,
reduced sampling rate is applied at the whole data without discrimination of the appliance working
state. On the other hand, in case of NUS, both subsampling and expansion window, as discussed above,
are applied. As a general notation, for the experiments conducted with US, the subsampling rate is
expressed with a number concatenated to the string “US”, for example with a SR = 10 the experiment
is denoted as US10. In the case of NUS, both SR and ER are concatenated to the string “NUS” and
separated from each other by the symbol “-”, i.e., for SR = 10 and ER = 10, the NUS experiment is
marked as NUS10-10.

As discussed above, the NUS experiments require the knowledge of all the possible state
transitions of all the appliance in the aggregated signal. However, being the scope of the work
to provide an extensive validation of the NUS idea, the evaluations have been performed by
assuming an a priori knowledge of the transition points (oracle scenario), therefore minimizing
the occurrence of errors (expansion windows badly positioned) due to wrong estimations of the state
transition points. A detection as accurate as possible of the state changes has been carried out by
processing each appliance separately. The information generated for each appliance, composed of
pairs timestamp—state label, is then combined in an aggregated ground-truth. The process relies on
the estimation of the different power levels, i.e., working states, by applying a k-means algorithm [32].
At first, the clustering procedure is executed over the whole train set by setting a predefined number of
clusters for the appliance to be evaluated. Gaussian variables, mean and variance, are inferred for each
cluster, then exploited in the state classification over the test set. At this point, to reveal the transition
instants, the difference between each label and the previous one is performed over the output time
series that contains the detected states. More details concerning the whole procedure are available
in [25].

The hyperparameters of the neural networks have been determined by conducting a grid
search separately for the two datasets. This procedure allows for determining the most performing
configurations, that, however, are specific for the target dataset. This represents a general problem for
neural networks-based algorithms [33,34], and here it has not been taken into account, since the main
focus of this paper is the evaluation of different sampling strategies regardless the network topology.

Regarding the UK-DALE dataset, the experiments have been performed by conducting a grid
search within the following sets: [1× 4, 1× 16, 1× 32] for the kernels dimension, [32, 128] for the
number of features maps, [2, 4] for the pool size of the pooling layer, [512, 4096] for the number
of neurons in the dense layer. Moreover, 2 CNN layers have been adopted in both encoding and
decoding stages: in the former stage, the number of feature maps of the second layer is twice the
number of feature maps in the first layer, while it is the opposite for the decoder. In the case of REDD
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dataset, after a preliminary evaluation, only one CNN layer has been taken into account, whereas the
grid search has been performed over a wider set for each parameters with respect to the UK-DALE.
Specifically, the set [1× 8, 1× 16, 1× 32, 1× 128] has been assumed for the kernels dimension, [8, 16,
32, 128] for the number of features’ maps, [1, 2, 4] for the pool size of the pooling layer, and [128, 512,
4096] for the number of neurons in the dense layer.

For both datasets, in the pooling layers, the pooling stride has been fixed to 1, the max epochs
have been set to 20,000, the validation in train has been performed every 10 epochs, the early stopping
condition has been evaluated every 2000 validations (thus 20,000 epochs), the batch size is composed
of 64 sequences, and the adaptive learning rate has started from 0.1 and reduced by a factor of 10 if the
improvement in validation is lower than 0.01.

For each appliance, thus for each dataset, the length of the input window has been set equal to the
one in the reference work [27] in the case of NUS experiments, whereas, in the case of US, the window
length is reduced proportionally to the SR factor.

Additionally, the tests for each possible configuration, both network parameters and US/NUS
approaches, have been executed adopting different strides of the sliding window (or hop size) of
the input data and two different types of data reconstruction: [1, 8, 16, 32] and [mean, median],
respectively. Therefore, given nine different sampling configurations (OS, US5, US10, US20, NUS5-5,
NUS10-5, NUS10-10, NUS20-10 and NUS20-20) for the UK-DALE dataset a total of 1080 models have
been generated, whereas 5184 models for the REDD dataset. Specifically, considering the different
sliding window strides and reconstruction techniques, an overall total of 8640 and 41,472 evaluations
have been carried out in the case of UK-DALE and REDD datasets, respectively. Furthermore,
in contrast with [27,28], the data augmentation procedure, proposed in [24], has not been adopted
during the generation of the batches. Therefore, a comparison against the achieved OS results cannot
be carried out.

The experiments have been performed exploiting both a local cluster and an HPC resource.
Specifically, the former is composed of two PCs equipped respectively with Intel i7-4930K@3.40 GHz,
32 GB RAM, GTX TITAN X 12 GB, GTX 1080 8 GB, and Intel i7-6850K@3.60 GHz, 32 GB RAM,
TITAN X (Pascal) 12 GB, TITAN Xp 12 GB. The latter system is the HPC GALILEO at CINECA,
and the experiments have relied on a maximum of 6 nodes, each one equipped with 2x8-cores Intel
Haswell@2.40 GHz, 128 GB RAM, and 2 Nvidia K80 GPUs.

The project is developed in Python and the neural network is based on the Keras library [35]
using the TensorFlow backend [36]. All the code is publicly available [37].

Evaluation Methods

The performance has been evaluated by relying on the metrics proposed in [38] specific to energy
disaggregation. In particular, for the i-th appliance, with i = 1, . . . , NA and NA number of appliances,
ŷi[k] denotes the disaggregated power signal, yi[k] is the ground-truth power signal, and K is the
overall samples number, the energy-based precision and recall are defined as:

Pi =
∑K−1

k=0 min(ŷi[k], yi[k])

∑K−1
k=0 ŷi[k]

, Ri =
∑K−1

k=0 min(ŷi[k], yi[k])

∑K−1
k=0 yi[k]

. (7)

Information about the power consumption that has been correctly classified is given by the recall,
whereas information about the power correctly assigned to an appliance is given by the precision.
The F1-score is a geometric mean between precision and recall, and is given as (for the i-th appliance):

F1i = 2
Pi · Ri

Pi + Ri
. (8)
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Finally, once the precision and the recall of each appliance are computed, the averaged values of
precisions and recalls over the appliances are exploited to compute the overall F1-score.

A first set of evaluations has been conducted by comparing the outputs generated for each
possible configuration of OS, US, and NUS, against the corresponding ground-truth, where also
the ground-truth has been re-sampled accordingly. This evaluation will be denoted as specific-rate
evaluation from here on.

In this configuration, the metrics in Equation (7) are calculated using the signal samples taken
from the related samples vector:

yi[k] ∈ YOS/US/NUS
i , ŷi[k] ∈ ŶOS/US/NUS

i , (9)

with k = 0, 1, . . . , KOS/US/NUS − 1.

Moreover, a so-called max-rate evaluation has been performed, in order to produce evaluations for
each tested configuration by reporting the data to the condition of the original sampling. Specifically,
the output generated by each US configuration has been up-sampled to the original sampling rate
(that is the higher maximum frequency for the signal) by applying the zero-insertion followed by an
interpolation filter. In the case of NUS, the same upsampling procedure has been performed over the
uniform sampling points (the ones acquired applying the SR parameters), then the points within an
expansion window (therefore at original sampling rate) will replace the interpolated data within the
same temporal window. In this configuration, the metrics in Equation (7) are calculated using the
signal samples taken from the OS samples vector:

yi[k] ∈ YOS
i , ŷi[k] ∈ ŶOS

i , (10)

with k = 0, 1, . . . , N − 1.

5. Experimental Results

5.1. Data Reduction Evaluation

The application of US and NUS approaches allows for achieving an overall reduction of the
elaborated data. Detailed information about the reductions achieved for each configuration is reported
in Tables 3 and 4, in the case of UK-DALE and REDD datasets, respectively.

Table 3. Details of data reduction achieved at different configurations of US and NUS with
UK-DALE dataset.

Sampling Method Building 1 Building 2 Building 5 Overall

Samples ∆% Samples ∆% Samples ∆% Samples ∆%

OS 8,798,999 100% 2,016,000 100% 997,561 100% 11,812,560 100%

US5 1,759,800 20% 403,200 20% 199,512 20% 2,362,512 20%
US10 879,900 10% 201,600 10% 99,756 10% 1,181,256 10%
US20 439,950 5% 100,800 5% 49,878 5% 590,628 5%

NUS5-5 2,178,932 24.76% 457,193 22.68% 237,281 24.79% 2,873,406 24.33%
NUS10-5 1,351,455 15.36% 262,420 13.02% 142,247 14.26% 1,756,122 14.87%

NUS10-10 1,604,546 18.24% 308,998 15.33% 166,290 16.67% 2,079,834 17.61%
NUS20-10 1,204,890 13.69% 214,125 10.62% 120,083 12.04% 1,539,098 13.03%
NUS20-20 1,616,211 18.37% 305,631 16.16% 158,487 15.89% 2,080,329 17.61%
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Table 4. Details of data reduction achieved at different configurations of US and NUS with
REDD dataset.

Sampling Method Building 1 Building 2 Building 3 Overall

Samples ∆% Samples ∆% Samples ∆% Samples ∆%

OS 498,378 100% 171,884 100% 252,266 100% 922,528 100%

US5 99,676 20% 34,377 20% 50,453 20% 184,506 20%
US10 49,838 10% 17,188 10% 25,227 10% 92,253 10%
US20 24,919 5% 8594 5% 12,613 5% 46,126 5%

NUS5-5 111,978 22.47% 37,547 21.84% 58,288 23.11% 207,813 22.53%
NUS10-5 63,687 12.78% 20,758 12.08% 34,033 13.49% 11,8478 12.84%

NUS10-10 74,597 14.97% 24,074 14.01% 42,067 16.68% 140,738 15.26%
NUS20-10 51,084 10.25% 15,862 9.23% 30,390 12.05% 97,336 10.55%
NUS20-20 70,338 14.11% 22,491 13.086% 44,405 17.60% 137,234 14.88%

In the case of US configurations, regardless the dataset, data reduction is directly proportional to
the SR parameter, whereas, regarding the combination of US+NUS, the achieved reduction will always
be equal to the NUS one. In particular, the measurement system (smart meter) has to collect and to
forward data to the NILM service at the OS sampling rate whatever a state change is detected, since the
measurement system is not aware of which network relies on the US or NUS sampling scheme.

In the case of NUS configurations, the reduction is not directly proportional to the SR factor
because additional samples (expansion windows) at OS are taken into account. However, the NUS
approach allows for reaching an overall reduction between 24.33% and 13.03% for the UK-DALE
dataset, and between 22.53% and 10.55% for the REDD dataset. Specifically, considering the
best combinations for the UK-DALE dataset in both seen and unseen scenarios, US5+NUS5-5 and
US20+NUS20-10, only the 24.33% and 13.03% of the original data is used, respectively. In the case of
REDD, both seen and unseen scenario reach the maximum performance with US5+NUS5-5, thus using
only 22.53% of the overall data.

Moreover, the application of the NUS by keeping an appliance window constant at the OS
produces some side effects that could negatively affect the performance. The first side effect, with a
minor impact on the performance, regards the reduction of the activations number usable by the
algorithm, due to the increase of the SR and ER parameters. Specifically, in the train phase of a
specific appliance, since each input window of aggregated signal is associated with the corresponding
activation, if multiple activations appear within the same input window, one is discarded. Therefore,
the SR and ER values’ increase shrinks the activations together, increasing the discarding rate.
The latter effect concerns the reduction of the silences number for a specific appliance, which is
the temporal window without the footprint of the specific appliance in both input-aggregated and
output-disaggregated data. As discussed above, the shrink of activations due to NUS will also reduce
the available samples of silence among the activations. As shown in the next section, the fridge is
heavily affected by this problem, since it is characterized by a long activation and a great number
of activations.

5.2. Denoised Scenario

5.2.1. UK-DALE

In the case of UK-DALE dataset, the appliances taken into account in the experiments are
the dishwasher, fridge, kettle, microwave, and washing machine, i.e., those with the major
energy contribution.

Concerning the seen scenario, the results in Table 5 show that the lower reduction in the overall
performance, considering specific-rate evaluations, is achieved by a subsampling rate of 5 for the
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US configurations, and by a subsampling rate of 5 with an expansion window of 5 in case of NUS.
Respectively, the US5 configuration achieves an overall degradation of just 1.9% with respect to OS,
whereas the NUS configuration presents a significant degradation of about 11.5%. However, US10,
NUS10-10 and NUS20-20 have a performance deterioration within the 3% from the best reference value.

Table 5. UK-DALE specific-rate evaluations (F1-score) for the different configurations in seen scenario.
Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.704 0.823 0.902 0.757 0.438 0.739

US5 0.641 0.825 0.886 0.755 0.439 0.726
US10 0.619 0.808 0.780 0.744 0.448 0.693
US20 0.608 0.799 0.529 0.652 0.426 0.608

NUS5-5 0.878 0.305 0.851 0.578 0.488 0.654
NUS10-5 0.804 0.229 0.824 0.505 0.488 0.607
NUS10-10 0.812 0.259 0.857 0.556 0.507 0.631
NUS20-10 0.762 0.238 0.845 0.531 0.538 0.614
NUS20-20 0.813 0.279 0.889 0.583 0.513 0.643

From Table 5, it is possible to note that the F1-score of some of the appliances improves. In the
case of US5, the fridge and washing machine achieve a relative improvement of about 0.2%, whereas
for US10, the washing machine reaches a 2.3% improvement.

In the case of NUS, the dishwasher presents a marked improvement for all the configurations,
as well as the washing machine, with a maximum of 24.9% at NUS5-5 and 23.0% at NUS20-10,
respectively. The kettle performs slightly worse than the OS, whereas both fridge and microwave seem
to suffer of the NUS. As mentioned in the previous section, a possible cause of bad performance of
the fridge is the shrinking of the activations that also reduces the number of silence samples among
activations. Specifically, in the normal condition, the fridge presents 587 silences, whereas 0 silences are
detected in the case of NUS10-10.

Therefore, as shown in Table 6 combining the US and NUS methods, for the same subsampling
ratio, it is possible to achieve a better overall disaggregation behaviour. Specifically, for US5+NUS5-5
and US10+NUS10-10, the combinations allow for reaching higher performance with respect to the OS,
with an increase of about 4.6% and 1.5%, respectively. Despite the other combination resulting in a
performance degradation, the reduction is reduced, from 0.2% to 3%.

Table 6. UK-DALE specific-rate evaluations (F1-score) with combination of US and NUS configurations
in seen scenario. Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.704 0.823 0.902 0.757 0.438 0.739

US5+NUS5-5 0.878n 0.825u 0.886u 0.755u 0.488n 0.773
US10+NUS10-5 0.804n 0.808u 0.824n 0.744u 0.488n 0.738
US10+NUS10-10 0.812n 0.808u 0.857n 0.744u 0.507n 0.751
US20+NUS20-10 0.762n 0.799u 0.845n 0.652u 0.538n 0.721
US20+NUS20-20 0.813n 0.799u 0.889n 0.652u 0.513n 0.738

u: US applied; n: NUS applied.

The evaluations adopting the max-rate approach executed for the combinations of US and
NUS are reported in Table 7. These results confirm that, despite the disadvantageous conditions,
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the US5+NUS5-5 allows for reaching good performance. Specifically, the same results of OS are
achieved, with the exception of US20+NUS20-10, which reaches a degradation of 11.3%. For the
remaining configurations, the degradation is from 5% to 6.8%. In order to provide a better insight, a
comparison between OS and best combination US+NUS is reported in Figure 4.

Table 7. UK-DALE max-rate evaluations (F1-score) with combination of US and NUS configurations in
seen scenario. Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.704 0.823 0.902 0.757 0.438 0.739

US5+NUS5-5 0.880n 0.816u 0.803u 0.656u 0.507n 0.739
US10+NUS10-5 0.825n 0.788u 0.748n 0.567u 0.481n 0.689
US10+NUS10-10 0.816n 0.788u 0.745n 0.597n 0.515n 0.702
US20+NUS20-10 0.770n 0.757u 0.676n 0.524n 0.517n 0.656
US20+NUS20-20 0.797n 0.757u 0.721n 0.608n 0.515n 0.690

u: US applied; n: NUS applied.
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US20+NUS20-10 reaches good performance. Specifically, an increase of about 22.6% is achieved with
respect to OS, as well as the remaining combinations, with an overall improvement from 7.0% to 12.0%.

These results show that in both seen/unseen scenario the sampling reduction allows an overall
increment of the disaggregation performance.

The performance differences of each sampling method can be analysed more in detail by observing
the related disaggregated profiles. Considering the seen scenario and Building 1, the disaggregated
profiles of the most performing combo parametrisation is US5+NUS5-5.
The disaggregated profiles of the dishwasher are represented in Figure 5. The appliance behaviour is
distinctive, with multiple working state changes and steady state with long permanence, therefore the
activation is well represented by exploiting the non-uniform sampling scheme. Indeed, the NUS5-5
provides a more accurate appliance profile, in particular during the transient phases, and it avoids
low performance in the steady states that could result from the recombination of the outputs in the
overlapped portion. Figure ?? shows the disaggregated profiles of the microwave. In this case, the
activations in the dataset presents a high variability in duration and shape, therefore the analysis of
transient phases only of the activation could remove critical information. Indeed, NUS5-5 method
reproduces an inaccurate profile, as it does not reach the peak value of the consumption. In this case,
the uniform sub-sampling scheme provides a good reproduction of the activations, but the reduction
of the sampling frequency implicates a loss of details, which are more relevant in short activations,
with respect to other appliances with longer activation. For those reasons, the sampling scheme which
gives the most accurate reconstructed profiles, with a consequent higher performance, is the original
sampling method.

5.2.2. REDD

In the case of REDD dataset, the appliances taken into account in the experiments are the
dishwasher, fridge, microwave, and washer dryer, i.e., those with the major energy contribution.

The results achieved on the REDD dataset in the seen scenario are reported in Table 11. First of all,
the sampling reduction in the case of US20 restricts too much the microwave window, therefore no
valid inputs/outputs have been produced.

In the case of US, the best configuration is US5 and presents a slight degradation, about 1.5%,
respect to the OS. Whereas the NUS configurations achieved worse degradations. However, the
dishwasher achieves better performance in NUS configurations, respect to both OS and US, by
reaching the maximum for NUS5-5, as well as the microwave. Whereas, washer dryer presents better
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Figure 4. Comparison of disaggregation performance at specific-rate for UK-DALE dataset in seen (a)
and unseen (b) scenario.

Figure 4. Comparison of disaggregation performance at specific-rate for UK-DALE dataset in seen (a)
and unseen (b) scenario.

For the unseen scenario, as shown in Table 8, the US configurations reach the worst performance
with respect to OS. In particular, the minimum degradation is achieved with US5, about 2.9%, whereas
US20 reaches about 14.3% of performance reduction. On the contrary, the NUS20-10 performs better
than OS, achieving an improvement of about 6.8%. The remaining NUS configurations show a
degradation from 3.9% to 8.5%.

However, in the case of US, both microwave and fridge show a good performance improvement,
instead of the marked deterioration of the dishwasher, which falls from 18.6% to 23.3%. On the contrary,
the NUS configurations report a marked improvement in the dishwasher performance, as well as for
microwave and washing machine, but a severe degradation for the fridge, from 63.0% to 75.5%.

Therefore, adopting the combination of US and NUS, all the configurations outperform the OS, as
reported in Table 9. Specifically, US20+NUS20-10 reaches an improvement of about 27.6%, and the
remaining combinations show improvements from 12.5% to 14.5% with respect to the OS.
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Table 8. UK-DALE specific-rate evaluations (F1-score) for the different configurations in unseen scenario.
Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.622 0.895 0.900 0.102 0.131 0.559

US5 0.487 0.871 0.894 0.121 0.167 0.543
US10 0.506 0.861 0.805 0.120 0.123 0.509
US20 0.477 0.850 0.521 0.120 0.248 0.479

NUS5-5 0.820 0.332 0.904 0.131 0.284 0.537
NUS10-5 0.762 0.251 0.892 0.173 0.310 0.513
NUS10-10 0.784 0.257 0.925 0.199 0.237 0.527
NUS20-10 0.647 0.220 0.925 0.717 0.355 0.597
NUS20-20 0.660 0.244 0.941 0.267 0.314 0.511

Table 9. UK-DALE specific-rate evaluations (F1-score) with combination of US and NUS configurations
in unseen scenario. Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.622 0.895 0.900 0.102 0.131 0.559

US5+NUS5-5 0.820n 0.871u 0.904n 0.131n 0.284n 0.639
US10+NUS10-5 0.762n 0.861u 0.892n 0.173n 0.310n 0.630
US10+NUS10-10 0.784n 0.861u 0.925n 0.199n 0.237n 0.640
US20+NUS20-10 0.647n 0.850u 0.925n 0.717n 0.355n 0.713
US20+NUS20-20 0.660n 0.850u 0.941n 0.267n 0.314n 0.629

u: US applied; n: NUS applied.

The evaluations adopting the max-rate approach executed for the combinations of US and
NUS are reported in Table 10. These results confirm that, despite the disadvantageous conditions,
the US20+NUS20-10 reaches good performance. Specifically, an increase of about 22.6% is achieved
with respect to OS, as well as the remaining combinations, with an overall improvement from 7.0%
to 12.0%.

Table 10. UK-DALE max-rate evaluations (F1-score) with combination of US and NUS configurations in
unseen scenario. Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.622 0.895 0.900 0.102 0.131 0.559

US5+NUS5-5 0.882n 0.862u 0.788n 0.121u 0.292n 0.626
US10+NUS10-5 0.853n 0.842u 0.730n 0.115u 0.301n 0.598
US10+NUS10-10 0.865n 0.842u 0.737n 0.115u 0.272n 0.602
US20+NUS20-10 0.752n 0.810u 0.636n 0.793n 0.409n 0.685
US20+NUS20-20 0.786n 0.810u 0.694n 0.115u 0.423n 0.587

u: US applied; n: NUS applied.

These results show that, in both seen/unseen scenario, the sampling reduction allows an overall
increment of the disaggregation performance.
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The performance differences of each sampling method can be analysed more in detail by observing
the related disaggregated profiles. Considering the seen scenario and Building 1, the disaggregated
profiles of the best performing combo parametrisation is US5+NUS5-5.

The disaggregated profiles of the dishwasher are represented in Figure 5. The appliance behaviour
is distinctive, with multiple working state changes and steady state with long permanence; therefore,
the activation is well represented by exploiting the non-uniform sampling scheme. Indeed, the NUS5-5
provides a more accurate appliance profile, in particular during the transient phases, and it avoids
low performance in the steady states that could result from the recombination of the outputs in
the overlapped portion. Figure 6 shows the disaggregated profiles of the microwave. In this case,
the activations in the dataset present a high variability in duration and shape; therefore, the analysis of
transient phases only of the activation could remove critical information. Indeed, the NUS5-5 method
reproduces an inaccurate profile, as it does not reach the peak value of the consumption. In this case,
the uniform sub-sampling scheme provides a good reproduction of the activations, but the reduction
of the sampling frequency implicates a loss of details, which are more relevant in short activations,
with respect to other appliances with longer activation. For those reasons, the sampling scheme which
gives the most accurate reconstructed profiles, with a consequent higher performance, is the original
sampling method.
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Figure 5. The ground truth and the disaggregated profile of the dishwasher in the UK-DALE dataset,
Building 1, using the OS, US5, and NUS5-5 methods. The best disaggregation performance for the
dishwasher is provided by the NUS5-5 configuration.
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Figure 6. The ground truth and the disaggregated profile of the microwave in the UK-DALE dataset,
Building 1, using the OS, US5, and NUS5-5 methods. The best disaggregation performance for the
microwave is provided by the OS configuration.

5.2.2. REDD

In the case of REDD dataset, the appliances taken into account in the experiments are the
dishwasher, fridge, microwave, and washer dryer, i.e., those with the major energy contribution.

The results achieved on the REDD dataset in the seen scenario are reported in Table 11. First of all,
the sampling reduction in the case of US20 restricts too much the microwave window, therefore no
valid inputs/outputs have been produced.

In the case of US, the best configuration is US5 and presents a slight degradation, about 1.5%,
with respect to the OS, whereas the NUS configurations achieved worse degradations. However,
the dishwasher achieves better performance in NUS configurations, with respect to both OS and US,
by reaching the maximum for NUS5-5, as well as the microwave, whereas washer dryer presents better
performance in all the US configurations than NUS ones. As a result, in the combinations US+NUS,
all the configurations outperform the OS. Specifically, the best result is achieved by US5+NUS5+5,
with a performance improvement of about 13.0%, and the remaining configurations present overall
improvements from 3.5% to 10.7%. In order to provide a better insight, a comparison between OS and
best combination US+NUS is reported in Figure 7.
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Table 11. REDD specific-rate evaluations (F1-score) for the different configurations in seen scenario.
Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Microwave Washer Dryer Overall

OS 0.489 0.636 0.600 0.708 0.614

US5 0.510 0.555 0.519 0.796 0.605
US10 0.497 0.527 0.382 0.678 0.559
US20 (not valid) 0.530 0.487 - 0.666 0.580

NUS5-5 0.768 0.588 0.589 0.258 0.565
NUS10-5 0.726 0.442 0.582 0.217 0.522
NUS10-10 0.718 0.473 0.670 0.328 0.559
NUS20-10 0.624 0.381 0.674 0.278 0.515
NUS20-20 0.659 0.425 0.727 0.397 0.561

Combo US+NUS

US5+NUS5-5 0.768n 0.588n 0.589n 0.796u 0.694
US10+NUS10-5 0.726n 0.527u 0.582n 0.678u 0.663
US10+NUS10-10 0.718n 0.527u 0.670n 0.678u 0.680
US20+NUS20-10 0.624n 0.487u 0.674n 0.666u 0.635
US20+NUS20-20 0.659n 0.487u 0.727n 0.666u 0.649

u: US applied; n: NUS applied.

Also evaluating the US+NUS combinations at the max-rate condition, Table 12, almost
all configurations outperform the OS, with improvements from 1.3% to 13.0%, confirming the
US5+NUS5-5 as best combination.

Table 12. REDD max-rate evaluations (F1-score) for the different configurations in seen scenario.
Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Microwave Washer Dryer Overall

OS 0.489 0.636 0.600 0.708 0.614

US5+NUS5-5 0.803n 0.615n 0.564n 0.762u 0.694
US10+NUS10-5 0.773n 0.520u 0.522n 0.611u 0.637
US10+NUS10-10 0.774n 0.520u 0.582n 0.611u 0.649
US20+NUS20-10 0.774n 0.502n 0.582n 0.563u 0.622
US20+NUS20-20 0.662n 0.473u 0.519n 0.563u 0.572

u: US applied; n: NUS applied.

The results achieved by the REDD dataset in the unseen scenario are reported in Table 13. First of
all, the sampling reduction in the case of US20 restricts too much the microwave window, therefore
no valid inputs/outputs have been produced. The best configuration for US, US5 perform a slight
degradation, about 4.2% with respect to OS, whereas a worse degradation is achieved by US10, 14.3%.
In the overall performance, the NUS configurations present degradation from 15.1% to 32.7%.

As for the seen case, the dishwasher achieves better performance in NUS configurations, with
respect both to OS and US, reaching the max for NUS5-5; in addition, the microwave performs better
in NUS with respect to US, whereas washer dryer presents better performance in US configurations
than in NUS ones. As a result, in the combinations US+NUS, the US5+NUS5-5 outperforms OS with
an improvement of about 3.2%, whereas US10+NUS10-5 and US10+NUS10-10 produce performance
close to OS, with a slight degradation of about 2.2% and 0.4%, respectively.
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Table 13. REDD specific-rate evaluations (F1-score) for the different configurations in unseen scenario.
Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Microwave Washer Dryer Overall

OS 0.243 0.809 0.671 0.755 0.646

US5 0.323 0.761 0.619 0.731 0.619
US10 0.323 0.723 0.424 0.705 0.554
US20 (not valid) 0.143 0.614 - 0.656 0.475

NUS5-5 0.535 0.671 0.621 0.358 0.549
NUS10-5 0.514 0.440 0.568 0.339 0.474
NUS10-10 0.476 0.515 0.662 0.398 0.514
NUS20-10 0.354 0.401 0.633 0.345 0.435
NUS20-20 0.444 0.472 0.676 0.440 0.512

Combo US+NUS

US5+NUS5-5 0.535n 0.761u 0.621n 0.731u 0.666
US10+NUS10-5 0.514n 0.723u 0.568n 0.705u 0.632
US10+NUS10-10 0.476n 0.723u 0.662n 0.705u 0.644
US20+NUS20-10 0.354n 0.614u 0.633n 0.656u 0.566
US20+NUS20-20 0.444n 0.614u 0.676n 0.656u 0.599

u: US applied; n: NUS applied.
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Figure 6. The ground truth and the disaggregated profile of the microwave in the UK-DALE dataset,
Building 1, using the OS, US5, and NUS5-5 methods. The best disaggregation performance for the
microwave is provided by the OS configuration.
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Figure 7. Comparison of disaggregation performance at specific-rate for REDD dataset in seen (a) and
unseen (b) scenario.

about 3.2%. Whereas, US10+NUS10-5 and US10+NUS10-10 produce performance close to OS, with a
slight degradation of about 2.2% and 0.4%, respectively.

Figure 7. Comparison of disaggregation performance at specific-rate for REDD dataset in seen (a) and
unseen (b) scenario.

Evaluating the US+NUS combinations at the max-rate, Table 14, the US5+NUS5-5 confirms the
good performance, with an improvement with respect to OS of about 1.4%.

These results show that, in both seen/unseen scenarios, the sampling reduction allows an overall
increment of the disaggregation performance.
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Table 14. REDD max-rate evaluations (F1-score) for the different configurations in the unseen scenario.
Appliance best score and overall best score are highlighted.

Appliance

Sampling Method Dishwasher Fridge Microwave Washer Dryer Overall

OS 0.243 0.809 0.671 0.755 0.646

US5+NUS5-5 0.562n 0.759u 0.642n 0.655u 0.655
US10+NUS10-5 0.560n 0.710u 0.571n 0.575u 0.611
US10+NUS10-10 0.518n 0.710u 0.630n 0.575u 0.619
US20+NUS20-10 0.393n 0.578u 0.630n 0.469n 0.522
US20+NUS20-20 0.523n 0.578u 0.619n 0.511n 0.565

u: US applied; n: NUS applied.

5.3. Noised Scenario

In order to evaluate the performance of the proposed approach in a realistic scenario, further
experiments have been performed in noised condition for the UK-DALE dataset. Specifically,
with reference to Equations (1) and (2), the noise component e[n], which represents the contribution
provided by unknown appliances and circuit noise, has not been removed. Therefore, the aggregated
power consumption signal adopted during the disaggregation phase corresponds with the actual
“main” signal, thus recorded at the general switch of the house.

The overall best US and NUS configurations prevailing in the combo comparison in both seen
and unseen conditions for the denoised scenario have been selected for the evaluation also in the noised
condition. Specifically, for the UK-DALE dataset, the best performance is achieved at SR = 5 and
ER = 5, thus US5 and NUS5-5, in seen condition, and at SR = 20 and ER = 10, thus US20 and NUS20-10
in unseen condition. Thus, the best network resulting for each appliance has been re-trained with
noised signals. The results of the noised evaluations are reported in Tables 15 and 16 for seen and unseen
scenarios, respectively.

Table 15. UK-DALE specific-rate evaluations (F1-score) in noised condition for seen scenario.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.621 0.717 0.879 0.601 0.464 0.669

US5 0.631 0.679 0.674 0.542 0.348 0.598
US20 0.536 0.639 0.381 0.359 0.268 0.440

NUS5-5 0.860 0.294 0.792 0.277 0.492 0.571
NUS20-10 0.575 0.237 0.725 0.001 0.463 0.422

Combo US+NUS

US5+NUS5-5 0.860n 0.679u 0.792n 0.542u 0.492n 0.679
US20+NUS20-10 0.575n 0.639u 0.725n 0.359u 0.463n 0.557

u: US applied; n: NUS applied.

With respect to the denoised scenario in seen condition, Table 5, the disaggregation performance at
OS achieved an overall degradation of about 9.5%, whereas US5 and US20 configurations reached an
overall loss of 17.6% and 27.6%, and NUS5-5 and NUS20-10 configurations of 12.6% and 31.2%. As for
the denoised condition, the combination of US5+NUS5-5 confirmed to achieve better performance than
OS, with a slight degradation with respect to the denoised scenario of about 12.1%.

Concerning the unseen performance, compared to the denoised scenario results in Table 8,
the configurations in noised condition present an overall more significant degradation than the one
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in seen scenario. Specifically, a performance worsening of 13.2% is reached by the OS, whereas US5
and US20 configurations present an overall degradation of 20.6% and 31.1%, respectively, NUS5 and
NUS20-10 of 20.8% and 40.8%, respectively. As shown, the lower performance deteriorations are
achieved with US5 and NUS5; indeed, the combo US5+NUS5-5 achieves slight better performance
than OS, instead of US20+NUS20-10 as in the denoised scenario.

Table 16. UK-DALE specific-rate evaluations (F1-score) in noised condition for unseen scenario.

Appliance

Sampling Method Dishwasher Fridge Kettle Microwave Washing Machine Overall

OS 0.470 0.696 0.798 0.098 0.128 0.485

US5 0.426 0.637 0.734 0.084 0.117 0.431
US20 0.364 0.559 0.273 0.073 0.230 0.330

NUS5-5 0.541 0.249 0.710 0.135 0.236 0.425
NUS20-10 0.344 0.144 0.546 0.006 0.250 0.353

Combo US+NUS

US5+NUS5-5 0.541n 0.637u 0.734u 0.135n 0.236n 0.487
US20+NUS20-10 0.364u 0.559u 0.546n 0.073u 0.250n 0.400

u: US applied; n: NUS applied.

5.4. Discussion

The results obtained from the application of the proposed sub-sampling techniques allow
elaboration on the capability to recognize an appliance mainly from their steady or transient state
information, therefore to discriminate appliances whose information is in a steady state or a transient
state dominant. The following considerations have been carried out by observing the appliances
behaviours exposed in denoised scenarios reported in Section 5.2.1 and Section 5.2.2. The considerations
are expressed per appliance typology in order to provide insights independently from the adopted
dataset and related only to the appliance category. Moreover, for each appliance in the datasets, the
main characteristics regarding number and length of the activations, as well as number and power
consumption of the working states, are reported in Table 17.

A first and clear case of appliance with dominant information in the transient state is the
dishwasher. Despite this being the appliance with the longest activations (Table 17), thus having
a higher number of steady state samples with respect to the transient state ones, all the NUS
configurations produced better performance than OS, as shown in Tables 5, 8, 11 and 13. The main
information is concentrated on the transition states, and the reduction of the data during the steady
state (the US reduce the data for both steady and transition states) helps the network to efficiently
acquire a clear understanding of the appliance behaviour. On the other hand, a uniform reduction of
the number of samples produces a reduction of all the samples in both steady and transient phases,
without providing an advantage during the training process.

On the contrary, the fridge information seems to be principally correlated with the steady states
and their power levels. In fact, applying a significant data reduction (SR = 20) results in a modest
degradation of the performance as shown in Tables 5, 8, 11 and 13. On the other hand, the application
of the NUS reduces the number of steady state samples compared to the transient state ones, resulting in
an alteration of the steady/transient states ratio, which affects the training phase negatively. Moreover,
an additional side effect caused by the NUS sub-sampling affects the fridge by producing a further
reduction of the performance. In particular, a windowing procedure is applied at the network input to
select the portions of the dataset with the target appliance activations and the portions without the
target appliance activations, the latter used to train the network to recognize the silence for the specific
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appliance. In the case of the fridge, its activations are present for almost 50% of the dataset duration,
since the fridge is continuously active. The NUS method reduces the length of the silence portions,
and almost zero examples are provided at the network during the training phase.

Table 17. Appliances details.

Activations Working States

Appliance Nr. Length * Nr. Power + (W)

UK-DALE

Dishwasher ∼271 915/±86 3 2.3k/±60–120/±10–0
Fridge ∼18k 256/±1853 2 90/±20–0
Kettle ∼3k 29/±262 2 2.3k/±45–0
Microwave ∼3k 22/±20 2 1.4k/±210–0
Washing machine ∼520 910/±145 4 1.9k/±150–360/±85–180/±45–0

REDD

Dishwasher ∼18 1076/±150 3 1.1k/±35–240/±15–0
Fridge ∼800 223/±139 2 210/±70–0
Microwave ∼350 18/±24 2 1.5k/±65–0
Washer dryer ∼520 533/±419 2 2.7k/±40–0

*: average length and standard deviation as number of samples at OS. +: average and standard deviation for
each working state.

Differently from the previous appliances, the kettle and the microwave present a heterogeneous
behaviour. In the working state, the kettle is characterized by a high power consumption (Table 17),
which allows it to be easily recognizable. On the other hand, its activations are rather short compared
to the ones of other appliances, thus, increasing the SR, the number of valid samples is strongly
reduced, in some cases to just two samples, and the high consumption power helps the disaggregation
process. On the contrary, in the case of NUS, even if the SR increases, for values of ER equal to 10 and
20, essentially all the activation samples are used; therefore, the target activations are kept unaltered,
whereas the activations of the remaining appliances are fully affected by the NUS sub-sampling.
Indeed, good performance is achieved from NUS10-10 to NUS20-10 in both seen and unseen scenarios:
a slight degradation with respect to OS in the seen case, and slight better results in the unseen one,
as reported in Tables 5 and 8, respectively.

The microwave presents short activations similarly to the ones of the kettle, and it exhibits the
same behaviour for both US and NUS methods in the REDD dataset as shown in Tables 11 and 13.
In the case of UK-DALE, despite the performance increment with the NUS method for increasing SR,
the overall performance presents a significant degradation compared to the OS of the kettle (see Tables 5
and 8). As reported in the appliance details, Table 17, the microwave in the UK-DALE dataset presents
a high standard deviation of the power level for the working state. This high variability depends on
random spikes during the activations that reach instant power levels between 2.2 kW and 2.7 kW, thus
almost double the average consumption power reported in Table 17. These spikes in the footprints
are mainly present in Building 1, used to train the network and perform the tests in seen condition,
whereas no spikes are present in Buildings 2 and 5, as depicted in the traces in Figure 8. Specifically,
Building 2 data have been adopted in both training and test phases for the seen scenario, whereas
Building 5 data have been exclusively used in the test phase for unseen condition.

Therefore, the strong heterogeneity in the footprints negatively affects the training phase of the
network by producing a final model both unable to fully represent the appliance behaviour in seen
tests, i.e., lowering the achievable performance, and completely inappropriate to disaggregate the
unseen data, i.e., traces with a marked incongruity with respect to the ones used in the training phase.
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Figure 8. Microwave footprints in the UK-DALE dataset for Building 1 (a), 2 (b), and 5 (c).

Based on the data reported in Table 17, the washing machine should be the most difficult appliance
to recognize due to the low number of activations, their significant length, the large number of working
states (four) and the presence of two working states with close power consumption. Indeed, the results
related to the washing machine are lower than the ones of the other appliance. However, the high
number of working states, thus of transition phases, take fully advantage of the NUS method and
better performance than OS and US are archived for all NUS configurations.

Compared to the washing machine, the washer dryer presents only 2 working states without any
intermediate states. Indeed, differently from the washing machine, the NUS method does not provide
any benefit on the performance. Specifically, the high F1-score is achieved either in OS or US with a
slight decimation of the data (SR= 5). Therefore, the network exploits the information associated with
the power levels of the steady states in accordance with what reported in Table 17. The washer dryer
has the highest power level among all the appliances, therefore the power information of the state is
enough to produce a good disaggregation of the appliance.

6. Conclusion

In this work, an extended experimental campaign, in order to perform an advanced analysis and to
validate the Neural NILM approach in combination with an ad hoc non-uniform subsampling strategy,
has been presented. Two subsampling policies, US and NUS, have been evaluated using UK-DALE
and REDD datasets in both seen and unseen scenarios by assuming a denoised environment, thus signals
without contributions from unknown appliances and circuit noise. Exploiting the possibility of the
Neural NILM to characterize each appliance with a dedicated network topology and subsampling
strategy, different combinations of US+NUS have been also evaluated. Specifically, selecting for each
appliance the best policy between US and NUS, the overall disaggregation results have outperformed
the ones achieved at OS, in terms of F1-score. Moreover, the application of US and NUS strategies
achieves a significant reduction of the overall data, i.e., requiring less data to be collected and
transmitted by a measurement system - smart meter.

Figure 8. Microwave footprints in the UK-DALE dataset for Building 1 (a), 2 (b), and 5 (c).

Based on the data reported in Table 17, the washing machine should be the most difficult appliance
to recognize due to the low number of activations, their significant length, the large number of working
states (four) and the presence of two working states with close power consumption. Indeed, the results
related to the washing machine are lower than the ones of the other appliance. However, the high
number of working states, thus of transition phases, take full advantage of the NUS method and better
performance than OS and US is archived for all NUS configurations.

Compared to the washing machine, the washer dryer presents only two working states without
any intermediate states. Indeed, differently from the washing machine, the NUS method does not
provide any benefit for the performance. Specifically, the high F1-score is achieved either in OS or US
with a slight decimation of the data (SR = 5). Therefore, the network exploits the information associated
with the power levels of the steady states in accordance with what reported in Table 17. The washer
dryer has the highest power level among all the appliances, therefore the power information of the
state is enough to produce a good disaggregation of the appliance.

6. Conclusions

In this work, an extended experimental campaign, in order to perform an advanced analysis
and to validate the Neural NILM approach in combination with an ad hoc non-uniform subsampling
strategy, has been presented. Two subsampling policies, US and NUS, have also been evaluated using
UK-DALE and REDD datasets in both seen and unseen scenarios by assuming a denoised environment,
thus signals without contributions from unknown appliances and circuit noise. Exploiting the
possibility of the Neural NILM to characterize each appliance with a dedicated network topology
and subsampling strategy, different combinations of US+NUS have also been evaluated. Specifically,
selecting for each appliance, the best policy between US and NUS, the overall disaggregation results
have outperformed the ones achieved at OS, in terms of F1-score. Moreover, the application of US
and NUS strategies achieves a significant reduction of the overall data, i.e., requiring less data to be
collected and transmitted by a measurement system—smart meter.
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In order to have an insight into the performance in a realistic scenario, additional evaluations have
been carried out by assuming a noised scenario for the UK-DALE dataset. Specifically, the best US and
NUS configurations in denoised conditions have been evaluated in noised ones as well. The achieved
results confirmed the advantage provided, in the general results, by adopting a combination of
US+NUS strategies.

As discussed, the NUS evaluations have been executed by assuming an a priori knowledge of
the state transition points, aiming to reduce the disaggregation errors due to external causes, i.e.,
the application of expansion windows for erroneous detection of the signal transitions. Therefore,
in future works, the effort will be toward the development of a pre-processing stage to automatically
detect the transitions states in the aggregated power signal. Moreover, a further advancement to
investigate will regard the possibility to adopt different networks to separately take care of steady
and transient phases. The goal is to produce a network to work with slow changes, thus at a lower
sampling rate, and another one to work with fast changes, thus at a higher sampling rate. Finally, more
extended datasets, e.g., REFIT [39], will be taken into account for the experimental phase.
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