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Abstract: Advanced wind measuring systems like Light Detection and Ranging (LiDAR) is useful
for wake management in wind farms. However, due to uncertainty in estimating the parameters
involved, adaptive control of wake center is needed for a wind farm layout. LiDAR is used to track
the wake center trajectory so as to perform wake control simulations, and the estimated effective wind
speed is used to model wind farms in the form of transfer functions. A wake management strategy is
proposed for multi-wind turbine system where the effect of upstream turbines is modeled in form of
effective wind speed deficit on a downstream wind turbine. The uncertainties in the wake center
model are handled by an adaptive PI controller which steers wake center to desired value. Yaw angle
of upstream wind turbines is varied in order to redirect the wake and several performance parameters
such as effective wind speed, velocity deficit and effective turbulence are evaluated for an effective
assessment of the approach. The major contributions of this manuscript include transfer function
based methodology where the wake center is estimated and controlled using LiDAR simulations at
the downwind turbine and are validated for a 2-turbine and 5-turbine wind farm layouts.

Keywords: wind wakes; adaptive control; wake center estimation; yaw angle control; LiDAR;
wind power

1. Introduction

Wind power installations require precise control throughout their lifetime for optimal power
generation with minimal risk of loss of security and reliability. Wind turbines placed in a particular
fashion in a wind farm often experience low power production and high turbulence owing to wake
effects from upwind turbines. Wind wakes lead to low power production, reduce system efficiency
and necessitate appropriate control action for the entire wind farm. Wake effects from adjacent wind
turbines termed as wake mixing lead to change in ambient wind field conditions that alter dynamic
loading on the downwind turbines [1]. Wake models with varying fidelity have been developed over
the years with Jensen’s and Frandsen’s model being used widely for calculating velocity deficit for
a given downwind turbine. Additionally, added turbulence to the ambient wind field is a significant
cause for concern among wind farm operators.

Recently, a lot of focus has been laid on the control based dynamic models that modify wake
characteristics for a particular downwind turbine. The main goals of wind turbine and wind farm
control are to: (i) maximize power capture from the available wind resource and, (ii) minimize the
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structural loading caused by wake added turbulence [2]. The dynamic nature of wind causes power
fluctuations which can lead to reserve power capacity in terms of Battery energy storage system (BESS).
Efficient wind farm control can be achieved by two primary methods: (i) axial induction method that
aims to alter the pitch angle every time wind speed changes and optimizes rotor angle to capture
maximum power, and (ii) wake redirecting control which deflects the wake stream in order to achieve
optimal power capture for downwind turbines in a wind farm [3].

Simulation studies as well as experimental results have revealed that changing yaw angle of
the upwind turbine deflects the wake center of the wake field and changes the effective rotor area
under the shadow of upwind turbine [4]. Apart from yaw angle modification for upwind turbine,
repositioning of downwind turbines has been explored by Gebraad et al. [5]. In [6], Fleming et al. have
discussed several methods like individual pitch control (IPC) and tilt induced control to redirect wake
of wind field for the downstream turbines and various performance parameters are analyzed using
a high fidelity tool Simulator for On/Offshore Wind Farm Applications (SOWFA). Adaramola et al.
experimentally verified wake interference scenario where the total power capture from two wind
turbines was found to increase by 12% by operating upwind turbine in yawed condition [7]. The impact
of terrain and the effect of turbulent wind on power output was studied experimentally by Maeda et al.
with two Horizontal axis wind turbines (HAWT) placed in a wind tunnel [8]. In terms of optimization,
total power is optimized considering optimal induction factor and yaw angle control for a wind
farm with a single column layout [9]. Closed-loop control was first studied by Raach et al. where
the wake tracking characteristics are obtained through LiDAR mounted on wind turbine nacelle [10].
The wake center is estimated for a given downwind turbine and based on the estimation, the yaw
angle of the upwind turbine is varied. Doubrawa et al. have carried out experimental studies on wind
turbine wake characterization based on LiDAR measurements [11]. Results reveal that the wind speed
measurements carried out using LES data are found to be in good approximation with those from
LiDAR. Furthermore, on similar grounds, for wake characterization, a stochastic model is developed
that traces the wake shape and width [12]. The developed model on LES framework holds true
for far wake region thus removing limitations posed by Reynolds–averaged Navier Stokes (RANS)
model. Wang et al. have discussed various errors in measurement of radial velocity variance based on
doppler LiDAR [13]. Results indicate that LiDAR measurements nullify the errors in radial velocity
variance that aids accurate measurement of turbulence. Furthermore, the length of probe affects the
errors in radial velocity variance. A major challenge in addressing the control of wind farm is the
availability of accurate and precise measurement devices that are essential for the controller to change
the turbine properties.

Due to the uncertainties like the random wind and the unpredictable wake affect, the wind
farms require highly efficient control schemes so as to achieve good performance. Adaptive control
is a mechanism used when the system encounters uncertainties due to its ability to adapt or handle
parameter uncertainties [14–17]. The parameter estimator estimates the unknown or uncertain
parameter. Adaptive control provides automatic adjustment of controllers for maintaining desired
system performance when system parameters are not precisely known [18–21]. The performance of
the system is measured and compared with the desired values. Based on the error term generated
by comparison, the adjustable controller adapts the changed condition through different adaption
mechanisms. Such adaptive control techniques are also developed and further analysis has taken place.

The major contributions of this paper include transfer function based methodology where the
wake center is estimated and controlled using LiDAR simulations at the downwind turbine. The wake
management for a wind farm is achieved by controlling the wake center for desired yaw angle of wind
turbine based on an adaptive control. The proposed methodology based on the effective velocity deficit
and effective wake center is validated for multi-model wake scenario and multiple wake scenario for
a 5-turbine wind farm layout.

This paper is organized as follows. Section 2 describes the closed-loop control methodology
and Section 3 highlights the wake center formulation for multi-model and multiple wake scenario.
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In Section 4 various performance parameters are discussed for waked wind farms, and in Section 5,
framework for test model and simulation results are illustrated for the wind farm performance.

2. Methodology

The closed-loop control strategy revolves around two basic tasks, that is: (i) estimation of wind
field measurements and, (ii) control of the wake center position for desired yaw angle input. The LiDAR
sensor works on the principle of laser based light assisted detection and ranging which measures the
incoming wind speed from an upwind turbine placed at at a particular distance known as LiDAR
distance (dLiDAR). The yaw angle adjustment however decreases the power captured by the upwind
turbine and increases the same for downwind turbine. Wake center on the other hand has no definition
as per the recent literature involving the closed-loop control of the wind farm [22]. The current work
deals with a wake management strategy based on transfer function model for wind turbine and wake
center estimation. Furthermore, the wake center trajectory is tracked based on LiDAR simulations and
is controlled for desired yaw angle of upstream turbines. The LiDAR is used to track the position of
wake center in order to steer the wake flow away from downstream turbine. LiDAR gives an estimate
of wind speed before it actually interacts with turbine thus providing necessary information to the
adaptive controller to act in uncertain conditions. The wake center deflection due to yaw misalignment
is further explained in Section 2.2.

LiDAR is Light Detection and Ranging system installed at the top of wind turbine nacelle for
accurate wind speed measurement. The wind speed is measured before it interacts with the wind
turbine thus ensuring time for effective control strategies for improved wind farm performance [23].
Two types of LiDAR measurement systems are commercially available: continuous-wave (CW) LiDAR
and pulsed-wave LiDAR, but the former is preferred for economic reasons [24]. LiDAR emits a laser
beam of specified frequency and wavelength and the receiver collects the backscattered beam for further
processing. The LiDAR efficiency depends on the range for which the beam is used. The detected
wind speed is then processed for Doppler spectra using Fourier analysis and then it is time-averaged
followed by line-of-sight velocity estimation.

Next, we describe various components of closed-loop control of wake center estimation: wind
turbine model, wake center estimation model and control action for desired yaw angle alignment.
Figure 1 shows a schematic block diagram of wake center estimation based on an adaptive PI control
strategy for a desired yaw angle.

G1(s) G2(s)
Adaptive 

PI
Controller 

+ -

Wind Turbine  
Model

Wake Estimation 
Model

γref γ, CT δ( )dlidar

Reference wake 
center

Estimated wake 
centerδref

Figure 1. Wake center estimation for a single set of upwind and downwind turbines.

2.1. Wind Turbine Model

The wind turbine is modeled from basic actuator disk theory with the extracted power from
ith wind turbine wind given as

Pi =
1
2

ρA0Cpu3
i , (1)

where ρ is the air density, A0 is the swept rotor area, Cp is the power coefficient and ui is the wind
speed at the ith turbine [25]. However, in case of yawed wind turbines, the power output from
the upwind turbine is altered by a factor of cosq γ, where q is a tunable parameter. According to
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experimental studies carried out by Fleming et al., the wake steering is observed for q = 1.4 to
q = 2.2 [26]. Furthermore, in a study carried out by Jonkman et al., it is found that the power coefficient
of upstream turbine in yawed condition gets modified by a factor cosq γ [27]. In order to capture power
at a maximum value of Cp = 0.482 including losses accounted by turbulent wakes, the value of q is
found to be 2 . In this paper, we consider a 2-DOF model for a nacelle and the yaw alignment of an
upwind turbine is modeled according to a 2nd order differential equation given as

γ̈ + 2Dωγ̇ + ω2γ = ω2γre f , (2)

where ω is the undamped eigen frequency, D is the damping factor, γre f is the desired yaw angle input
for the wind turbine.

The transfer function for the wind turbine is estimated using system identification toolbox with
a reference yaw angle (γre f ) being the input and γ being the actual yaw angle. The demanded yaw
angle is varied from −25◦ to 25◦ and the recorded output γ is calculated. The transfer function so
obtained has estimation accuracy of 99.99% with np = 2 poles and nz = 1 zero and is of the form

G1(s) =
0.533s + 0.01094

s2 + 0.1538s + 0.002736
. (3)

Optimized power from an upstream wind turbine in yawed condition as stated by Qian et al. [28]
is given as

Pi =
1
2

ρA0Cp u3
i cos3(γi). (4)

In (4), the power captured by an upstream turbine is calculated based on the yaw angle setting
corrected by the adaptive PI controller. LiDAR simulations track the wake center in order to steer it
to a desired value. The wind turbine model is based on the yaw misalignment of the turbine which
further impacts the power captured at the downstream turbine by deflecting the wake flow behind
upstream turbine. The velocity profile at the downstream turbine is further explained in Section 4.
In totality, the wind turbine model based on yaw misalignment forms an integral part of the wake
management strategy.

2.2. Wake Center Estimation

Various closed-loop control studies done for wind farm power improvement involve estimation
of center of the wake field originating from the upwind turbine. The wake center position for a given
upwind turbine can be estimated using several functional relationships between the yaw angle
misalignment and longitudinal distance between the turbines. Howland et al. have demonstrated the
estimation error between experimental and theoretical wake center deflection is found to be ±0.02D
for a 3D printed porus drag disk model of wind turbine [4]. Empirically, wake center is calculated for
a yawed upwind turbine and depends on the downwind distance d between two turbines. As per
Jimnez et al. [29], the wake center due to yaw misalignment is given as

δ(d) =
ξinit

(
15
( 2kdd

D0
+ 1
)4

+ ξ2
init

)
30kd
D0

( 2kdd
D0

+ 1
)5 −

ξinitD0(15 + ξ2
init)

30kd
, (5)

ξinit(γ, CT) =
1
2

cos2(γ) sin(γ)CT , (6)

Mγ = −2γ̇Ω cos ψIb, (7)

where ξinit is the initial angle the wake stream makes with rotor axis of the upwind turbine, d is the
distance between upwind and downwind turbine, D0 is the turbine diameter, γ is the yaw angle of the
upwind turbine and kd is the model parameter subjected to uncertainties. Furthermore, Equation (7)
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represents the yaw bearing moment due to yaw misalignment where γ̇ is the yaw rate (in rad/sec),
Ω is the angular velocity of rotor, ψ is the azimuth angle of blades and Ib is the moment of inertia of
blades [30].

The most challenging problem in modeling the wake effects is the tuning of model parameter kd
which defines the wake recovery. The LiDAR based closed-loop control method scans various points in
wind field located at a particular distance and measures the effective wind speed at the rotor hub [31].
In order to compute the wake center deflection caused due to changing yaw angles, appropriate
LiDAR distance dLiDAR must be considered for accurate wake center estimation. The transfer function
for the wake center estimation is computed using the system identification toolbox available in
MATLAB/Simulink and is estimated for single set of upwind and downwind turbine. The yaw angle
that needs to be aligned, acts as the input and estimated the wake center acts as the output of the
transfer function. The values of yaw angle (in degrees) are varied in the range of −25◦ to 25◦ and the
corresponding values of wake center are obtained using (5). The model parameter kd is chosen as 0.15
and is subjected to variations under different atmospheric conditions. The transfer function for the
wake estimation model obtained with estimation accuracy of 93.76% with np = 2 poles and nz = 0
zeros and is of form

G2(s) =
−0.158

s2 + 2.56× 10−12s + 0.2404
. (8)

2.3. Controller Design

The main aspect of the wake center estimation process is its control for desired yaw angle
alignment in order to maximize wind power capture for the downwind turbines. A simple PI control
based strategy is applied in order to maximize wind farm performance in terms of power capture,
effective turbulence, velocity deficit and turbine tower displacement. A PI control of the following
form is selected to achieve desired performance

f = Kp

(
δ(γ) +

1
Ti

∫
δ(γ)dt

)
, (9)

where f is the yaw angle for the turbine, δ(γ) is the estimated wake center, Kp, Ti are the proportional
gain and time constant. The PI control gain parameters are tuned using PID tuning feature of
MATLAB/Simulink.

3. Wake Center Estimation and Adaptive Control

LiDAR based wake center estimation and control can be further extended for a multi-model
approach where a single set of upwind and downwind turbine is evaluated for different input
conditions. The wake center estimation depends on several factors like initial wake stream angle,
distance between upwind and downwind turbine, rotor diameter and model parameter kd as defined
in (5). Furthermore, apart from aforementioned factors the wake development zone, that is, near-wake
zone and far-wake zone also plays an important role in estimating the wake center [32]. In the present
study the multi-model wake center estimation is studied using a data-driven approach where the
model parameter kd is kept constant and the LiDAR scanning distance, that is, dLiDAR is varied in terms
of multiples of rotor diameter (D0). Figure 2 shows a diagrammatic representation for multi-model
transfer function-based estimation of wake center. The control objective is to track a reference wake
center for yaw angle alignment of upwind turbine in a given wind farm in presence of uncertainties.
Several transfer function models can be obtained by varying LiDAR scanning distance (dLiDAR).
The conventional PID control method can be expanded by using an adaptive PI controller for different
models of wake center estimation. The transfer function for the respective models can be obtained
using System identification toolbox available in MATLAB/Simulink and its estimation accuracies are
depicted in Table 1.
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Figure 2. Block diagram representation for wake center estimation.

Table 1. Estimationaccuracies for multi-model transfer function models.

LiDAR Distance (dLiDAR) Estimation Accuracy (%)

1D0 93.76
1.5D0 95.08
2D0 94.94

2.5D0 94.82
3D0 94.71

Wake Center Estimation and Control for Multiple Turbines

In the previous section, we study the wake center estimation and control for a single set of upwind
and downwind turbine. However, in reality there are multiple upwind turbines for a given downwind
turbine in a wind farm layout. The wake trajectory for a downwind turbine depends on the layout of
the wind farm which may be symmetrical or asymmetrical. For multiple upwind turbines, the effective
velocity deficit can be estimated based on wake model proposed by Bastankhah and Porte-Agel [33].
The model assumes a Gaussian profile for velocity deficit for a downwind turbine depending on
various factors such as thrust coefficient CT , radial distance from the wake center line r and wake
width at a given downwind distance x. The velocity in wake affected region is given as

u = u0

(
1− C(x)e

−r2

2σ2
)

, (10)

C(x) = 1−
√

1− CT

8(σ/D0)2 , (11)

σ

D0
= k

x
D0

+ ε, (12)

where C(x) is the maximum normalized velocity deficit caused at a given downwind distance x and σ

is the wake width as a function of wake expansion constant k and rotor diameter D0. The effective
wake deficit can be calculated based on the linear superposition and quadratic superposition principles.
In case of linear superposition, the wake deficit caused by individual upwind turbine is added
arithmetically and is expressed as

∆ulin
i =

N

∑
j=1

(
1−

uj

u0

)
, (13)

where ∆uj is the velocity deficit caused by jth upwind turbine and ∆ui is the effective velocity deficit at
ith downwind turbine and N are the total number of upwind turbines.

Similarly quadratic superposition principle for deficit proposed by Katic et al. [34] is

∆uquad
i =

√√√√ N

∑
j=1

(∆uj)2. (14)
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In case of non-yawed turbines, the power production at the downwind turbine is reduced due to
shadow effect of multiple upwind turbines, and thus the same needs to be addressed with effective
wake management strategies. One of the method to increase power production is yawing upwind
turbine(s) and the second is to displace downwind turbine laterally. However, latter seems to be
unrealistic owing to micro-siting adjustments for optimal locations [35]. Hence yawing the upwind
turbine is as an effective solution to control the wake center. In case of multiple wake scenario where
a downwind turbine sees wake effect from more than one upwind turbine, the thrust coefficient is
transformed by cos3(γj), where γj is the yaw angle alignment of the jth upwind turbine for j ∈ X
(set of upwind turbines).

The transformed velocity deficit at ith downwind turbine is given as

ui = u0

(
1− Cij(x)e

−r2

2σ2
ij
)

, (15)

Cij(x) = 1−

√
1−

CT cos3(γj)

8(σij/D0)2 , (16)

σij

D0
= k

xij

D0
+ ε, (17)

β = 0.5

(
1 +
√

1− CT√
1− CT

)
, (18)

where ε = 0.25
√

β, σij is the wake width at distance xij between jth upwind and ith downwind turbine.
The velocity deficit for each set of upwind turbine is calculated using (15) for a given yaw angle setting
γj and for N such upwind turbines the effective velocity deficit at ith downwind turbine is determined
using quadratic superposition principle in (14). Block diagram showing wake center computation
based on yaw angle and velocity deficit is in Figure 3.

G1(s) G21(s)PI1

G1N(s) G2N(s)PIN

G12(s) G22(s)PI2

γ1

γ2

γN

Δu1

Δu2

ΔuN

γ
ref

1

γ
ref

2

γ
ref

N

y
ef f
c

Adaptive PI
Control

Yaw angle to 
Velocity deficit

Velocity deficit to
Effective wake center

Figure 3. Wake center estimation based on transfer function in case of multiple wake scenario.

The proposed methodology involves estimating effective wake center for the downwind turbine
based on the effective velocity deficit caused by upwind turbines. Thus, an empirical relationship
between effective wake and center and velocity is determined which is given as

f (y) = ume
−(y−µy)2

2σ2
LiDAR , (19)

σLiDAR = kdLiDAR + εD0, (20)
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where y, µy are the hub height and wake center location for an effective velocity deficit of f (y) for
a given LiDAR distance dLiDAR and um is the maximum velocity deficit and is implemented to estimate
the wake center in multiple wake scenario as shown in Figure 3. Using the system identification toolbox
available in MATLAB/Simulink, the transfer function models for each upwind turbine are evaluated
for highest estimation accuracy. Further the overall transfer function comprising Multiple-Input Single
Output (MISO) formulation is computed with inputs as yaw angles and output as effective wake center.

4. Performance Parameters for Waked Wind Farms

Several performance parameters are assessed to study the effectiveness of a waked wind farm.
Wind speed deficit caused by upwind turbines can be modeled using Jensen’s model, Frandsen’s
model and the Gaussian model, and leads to reduced power production for downwind turbines and
increased air turbulence. Changing yaw angle settings of upwind turbine deflects the wake stream
for a given downwind turbine and therefore changes the wake center position thereby reducing the
portion of downwind turbine under wake shadow as illustrated in Figure 4. The effective wind speed
at the downwind turbine based on Jensen’s model for a longitudinal distance x and radial distance r
from wake center line is

u(x, r) = u0

[
1− 2a

( r0

r0 + kx

)2]
, (21)

where u0 is the free flow wind speed, r0 is the rotor radius and k is the wake expansion constant.
The wake stream is deflected by an angle φj for a given yaw angle misalignment γj and wind direction
θj given as

φj = (0.6aj + 1)γj + θj, (22)

where aj is the axial induction factor for given turbine j ∈ X (set of all upwind turbines). The wind
speed at the downwind turbine considering the wake deflection caused by yaw misalignment is

ui(x, r) =


u0

[
1− 2aj

( 1
1 + 2kL cos(φj)

)2
× cos2(4.5φj)

]
, φj ≤ 20◦

u0, φj > 20◦,
(23)

where L = x
D0
∈ [2, 3, 4, 5] is the turbine spacing factor expressed as a multiple of turbine diameter.

Thus a yaw angle misalignment of γj on the upwind turbine WTj deflects the wake stream on the
downwind turbine WTi by an angle of φj leading to velocity profile like (23). The power captured by
a yawed upwind turbine is changed by a factor of cos3 γ. It is assumed that the axial induction factor
remains constant throughout the waked condition.

Figure 4. Wake stream deflection caused by yaw angle misalignment.
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Similarly the effective air turbulence acting on a downwind turbine can be measured by modifying
the yaw angle of the upwind turbine in order to reduce dynamic loading on that downwind turbine.
The overall turbulence intensity due to ambient wind field and wake added turbulence is a vector sum
given as

Ie f f =

√√√√I2
a + K2

N

∑
i=1

(1−
√

1− CT cos γi)x−2/3
i , (24)

where Ia is the ambient wind turbulence and Ie f f is calculated for a given downwind distance xi for
given N upwind turbines for a wind farm and K is constant usually taken as 0.93 [36].

5. Adaptive PID Control Scheme

Performance of the wind farm depends on the effective wind speed seen by the different turbines
while considering the wake effect. That is, the power output of the wind farm can change according
to operational and environmental conditions. To obtain stable output power, the wind farm must
operate under controlled conditions. Reduced order transfer function described in the previous section
enables design of adaptive PID controller in order to control the wind turbines in the wind farm, so as
to supply variable load.

Transfer function of plant and PID controller Gp2(s) and Gc2(s) are given by

Gp2(s) =
A

s2 + a1 s + a0
, (25)

Gc2(s) = kp + kd s +
ki
s

, (26)

where A, a1 and a0 are constant of transfer function and kp, kd and ki are proportional, differential and
integral gains of PID controller.

Let us parametrize kd = k, kp = 2kλ and ki = λ2k and a closed loop transfer function wc2 is given by

wc2 =
A Gc2(s)

s2 + a1 s + a0 + A Gc2(s)
, (27)

w−1
c2 = 1 + (s2 + a1 s + a0) A−1 G−1

c2 (s). (28)

From Figure 5, the reference input is given by

r = w−1
c2 xd = xd + ((s2 + a1 s + a0) A−1 Gc(s)−1) xd (29)

= xd + ẅd + a1 ẇd + a0 wd (30)

where xd is the desired output and wd = (A−1 Gc2(s)−1) xd. Using (30) the block diagram (Figure 5)
can be further represented as Figure 6.

Figure 5. Closed loop transfer function.
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Figure 6. Modified block diagram of closed loop system.

Moving Pa0 and Pa1 from forward to feedback path, controller and closed loop transfer function
can be represented as

Gc2(s) =
(k + 2λP) s2 + (2λk + λ2P) s + λ2k

s
, (31)

Gp2(s) =
(k + 2λP) s2 + (2λk + λ2P) s + λ2k

Ps3 + (k + 2λP) s2 + (2λk + λ2P) s + λ2k
. (32)

Closed loop transfer function can be given as

wc2(s) =
Gc2(s)

Ps2 + Gc2(s)
. (33)

Now, (30) can be represented as

r = w−1
c2 xd = (1 + Ps2Gc2(s)−1) xd = xd + Pẅd. (34)

Plant input u can be given as

u = Pẍd + Pa1 ẋ + Pa0 x + Gc2(s)e

= P(ẍd + 2λe + λ2e) + Pa1 ẋ + Pa0x + k
(

ė + 2λe + λ2
∫

e(u)du
)

.

We define control error e1(t) and auxiliary error e2(t) as

e1(t) = ẍd + 2λė + λ2e, (35)

e2(t) = ė + 2λe + λ2
∫

e(u)du. (36)

Plant input can be represented using control and auxiliary error

u = Pẍd + Pâ1 ẋ + Pâ0 x + e2(t). (37)

Using estimate of â0 and â1, the adaptive control input u can be given as

u = Pẍd + Pa1 ẋ + Pa0 x + e2(t). (38)

From (26), derivative of state can be represented as

ẍ = −a1 ẋ− a0 x + P−1 u. (39)
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Substituting (38), in (39), we get

ẍ = −a1 ẋ− a0x + P−1(Pe1(t) + Pâ1 ẋ + Pâ0 + Pk e2(t)) (40)

= ã1 ẋ + ã0x + e1(t) + P−1ke2(t). (41)

From (36), we get

ė2 = ë + 2 λ ė + λ2 e (42)

= ẍd − ẍ + 2 λ ė + λ2 e. (43)

Substituting (41) in (43), we get

ė2 = ẍd − ã1 ẋ + ã0 x− e1(t)− Pke2 + 2λė + λ2e (44)

= −P−1ke2 − (ã1 ẋ + ã0 x) (45)

Choosing appropriate adaptive laws as

˙̂a1 = γ3 ẋ e2, ˙̂a2 = γ4 x e2, (46)

and a Lyapunov candidate function as

V2 =
1
2

(
e2

2 +
ã1

2

γ3
+

ã0
2

γ4

)
, (47)

we find
V̇2 = P−1ke2

2 < 0. (48)

Therefore, by the corollary of the Barbalet Lemma, the stability of the transfer function (26).
Both the fraction of transfer function is stable individually. Hence, an algebraic sum of fractions or
complete system is stable.

6. Results and Discussions

Closed-loop control is carried out with a test model containing two wind turbines in a wind farm.
Both the wind turbines have same rotor diameter of D0 = 80 m and a hub height of 90 m. Wind turbine
1 (WT1) is upwind turbine and wind turbine 2 is downwind turbine (WT2) with a lateral spacing of
400 m between them. The wake wind speed at WT2 is calculated based on Jensen’s model using (23).
The wake expansion constant is taken as 0.0075 and is subjected to uncertainties given the atmospheric
conditions. The yaw angle setting of the upwind turbine WT1 is kept at γ1 = 0◦ initially and wind
direction is assumed to be facing directly to the turbine hub. The wake center is estimated based on
the deflection caused by yaw misalignment and is measured at a LiDAR scanning distance (dLiDAR) of
1D0. In our simulation study, measurement range of LiDAR chosen is 0–250 m at a suitable hub height
of 90 m [37]. Furthermore, the transfer function model (Figure 1) estimates the wake center which is
then controlled for required yaw angle by a PI controller. The mean wind speed is 8 m/s initially and
after 500 s a step change of 10 m/s is applied. An ambient air turbulence of 10% is assumed. The wind
turbine model and wake center estimation model are then simulated in MATLAB/Simulink for model
parameter kd = 0.15.

Figures 7 and 8 illustrate the wind farm performance parameters in terms of wake center
estimation and total wind power captured with and without wake redirection control. The reference
wake center is kept at 5 m initially and at time t = 500 s the reference is changed to −5 m. The wake
center estimated is then controlled for desired yaw angle which then ultimately alters the wake stream
for the downwind turbine. The wake characteristics thus change the velocity profile downwind to
upwind turbine (here WT1). The mean wind speed during first 500 s is 8 m/s and during rest of the
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time it is 10 m/s. The total power captured by the wind farm is plotted (for with and without wake
redirection control) under a fixed model uncertainty of kd = 0.15 and LiDAR scanning distance of
1D0. Wake redirection based on proposed methodology leads to a power capture increase of about
7.552% for two turbine wind farm layout compared to 4.5% increase as reported by Raach et al. [2].
However, the total power capture can still be optimized by varying the downstream distance between
the turbines and simultaneously varying the yaw angle of upstream turbine. Furthermore, the yaw
bearing moment is determined due to the adaptive control action taken for wake management based
on (7) and is illustrated in Figure 9. The blade mass is taken as 69 tonnes for rotor diameter 80 m
and azimuth angle ψ = 0◦. The Power Spectral Density curve on the other hand shows that at high
frequencies the spikes in yaw bearing moment are less due to the adaptive control strategy. Such a
smooth control action ensures an improved lifetime operation of yaw motor.
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Figure 9. Yaw bearing moment and its power spectral density.

Figure 10 shows the input to plant sensitivity for the single wake scenario. According to Figure 1,
the wind turbine model and wake center estimation model are treated as combined plant and hence
have a transfer function G1(s)G2(s).
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Figure 10. Controller sensitivity for G1(s)G2(s) for single wake scenario.

Next, we evaluate the effective air turbulence on WT2 with and without yaw misalignment.
Figure 11 shows the variation of effective air turbulence in presence of wake interactions. As we
increase the lateral spacing between the turbines, the turbulence on downwind turbine (here WT2)
decreases and for a fixed lateral spacing, the maximum turbulence intensity is observed at γ = 0.
Thus changing yaw angle of the upwind turbine is beneficial for the dynamic operation of downwind
turbine under wake effect.

The simulations are carried out for a multi-model system where the LiDAR scanning distance
dLiDAR is varied and the wake center is calculated for a single upwind turbine wind farm. The distance
is varied in terms of multiples of rotor diameter D0. The wake center is calculated for a given yaw
angle setting and downstream distance using (5). Transfer function for wake model is estimated using
system identification toolbox in MATLAB with yaw angle as input and wake center as output. Model
order is chosen based on best fit estimation, and parameters such as wake growth factor k = 0.0075
and γ1 = 5◦ are chosen for multi-model wake scenario.
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Figure 11. Variation of effective turbulence with yaw angle misalignment.

WT1 and WT2 are placed 400 meters apart with LiDAR at WT2. In our simulation, the wake center
trajectory at different scanning distances dLiDAR = 1.5D0, 2D0, 2.5D0 and 3D0 is estimated. Based
on each dLiDAR, the wake center deflection is calculated and a transfer function is obtained for the
same. The wake center calculated from different models is then allowed to track reference wake center
for desired yaw angle of upwind turbine WT1 using adaptive PI controller. Figure 12 illustrates the
wake center deflection based on multi-model approach. Here the model uncertainty in form of dLiDAR
is considered. For dLiDAR = 2D0, the control action achieved is smooth and fast when compared
to others.
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Figure 12. Wake center deflection based on multi-model approach. Blue (solid) line represents reference
wake center and orange (dotted) represents estimated wake center deflection.

Furthermore, wake center in case of multiple wake effect is estimated for wind farm layouts with
5 turbines as shown in Figure 13. The wake center is estimated for wind turbines WT4 and WT5 based
on effective velocity deficit caused by the respective upwind turbines. Wind turbine WT4 sees wake
effect from WT1 and WT2. Similarly, wind turbine WT5 experiences wake effect from WT1, WT3 and
WT4. The downstream distances for the upwind turbines are illustrated in terms of rotor diameter
(D0). The velocity deficit due to individual upwind turbine is calculated using (15) based on Gaussian
deficit proposed by Bastankhah and Porté-Agel [33]. Furthermore, the deficit is determined for WT4

and WT5 considering upwind turbines in yawed condition, so as to deflect wake stream behind rotor.
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Figure 13. Schematic for 5 turbine wind farm layout in non-yawed and yawed condition.

Table 2 highlights various parameters and their values used to compute effective velocity deficit
with yaw angle γj for j ∈ [1, 2, 3, 4].

Table 2. Wind turbine Parameters for WT4 and WT5.

Parameter Value

Rotor diameter (D0) 80 m
Wake growth factor (k) 0.0075
Model parameter (kd) 0.15
Thrust coefficient (CT) 0.888

γ1 [−5◦, 5◦]
γ2 [−10◦, 10◦]
γ3 [−25◦, 25◦]
γ4 [−15◦, 15◦]

The effective velocity deficit in yawed condition for WT4 and WT5 is calculated using (14) based
on quadratic superposition principle. The transfer function model is built to estimate wake center
deflection as shown in Figure 3. The system identification toolbox is used to estimate the overall
transfer function with yaw angle being input and effective wake center calculated using (19) as the
output. In Figure 3, N represents the total number of upwind turbines.

Figure 14 represents the wake center estimation for WT1 and WT2 which are upwind turbines for
WT4. The wake center for WT1 and WT2 is estimated and then controlled using adaptive PI-controller
for desired yaw angle as listed in Table 2. In Figure 14, yre f

c1 , yre f
c2 refer to the reference wake centers

for turbines WT1 and WT2 respectively. Similarly for WT5, the wake center for upwind turbines WT1,
WT3 and WT4 is estimated and controlled using am adaptive PI-controller.

Figure 15 illustrates the reference and estimated wake centers for WT1 and WT4 based on transfer
function model.
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Figure 14. Wake center estimation for upwind turbines WT1 and WT2.

Figure 15. Wake center estimation for upwind turbines WT1 and WT4.

7. Conclusions

The LiDAR based closed-loop adaptive control for desired yaw angle is studied for a two turbine
wind farm layout. Closed-loop adaptive control technique is based on identifying the transfer function
for wind turbine model which gives an actual yaw angle as the output and wake center estimation
model which determines the nominal wake center position. The transfer functions are obtained
using system identification toolbox available in MATLAB/Simulink. The estimated wake center is
computed at a distance of 1D0 and an Adaptive PI controller is applied in order to track a desired
reference wake center. The yaw angle correction thus applied is then reflected on the wind farm power
improvement by an increase of 7.552%. Furthermore, the effective air turbulence due to wake effect is
studied and its was found that yaw angle adjustment reduces the turbulence on downwind turbine
WT2, with maximum turbulence occurring at γ = 0◦. The study is further extended for multi-model
approach where the different models pertaining to different LiDAR scanning distances are used and
wake center is controlled using adaptive-PI controllers. Wake center is estimated and controlled further
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for a wind farm layout with 5 turbines based on transfer function model for effective velocity deficit to
effective wake center. In future, the study can be extended for a wind farm operating in Ekman layer
where the Coriolis force is dominant in turbulent wakes.
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