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Abstract: This paper presents insights on flow in porous media from a model tool based on complex
analysis methods (CAM) that is grid-less and therefore can visualize fluid flow through pores
at high resolution. Elementary pore network models were constructed to visualize flow and the
corresponding dynamic bottomhole pressure (BHP) profiles in a well at reservoir outflow points.
The pore networks provide the flow paths in shale for transferring hydrocarbons to the wellbore.
For the base case model, we constructed a single flow path made up of an array of pores and throats
of variable diameter. A passive ganglion (tracer) of an incompressible fluid was introduced to
demonstrate the deformation of such ganglions when moving through the pores. The simplified
micro-flow channel model was then expanded by stacking flow elements vertically and horizontally
to create complex flow paths representing a small section of a porous reservoir. With these model
elements in place, the flow transition from the porous reservoir fluid to the wellbore was modeled
for typical stages in a well life. The dynamic component of the bottomhole pressure (BHP) was
modeled not only during production but also during the drilling of a formation (with either balanced,
underbalanced or overbalanced wellbore pressure). In a final set of simulations, the movement of an
active ganglion (with surface tension) through the pore space was simulated by introducing a dipole
element (which resisted deformation during the movement through the pores). Such movement
is of special interest in shale, because of the possible delay in the onset of bubble point pressure
due to capillarity. Capillary forces may delay the reservoir to reach the bubble point pressure,
which postpones the pressure-drop trigger that would lead to an increase of the gas–oil ratio.
The calculation of the estimated ultimate recovery (EUR) with an erroneous assumption of an
early increase in the gas–oil ratio will result in a lower volume than when the bubble point delay
is considered.
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1. Introduction

Pore sizes in shale basins range from a few nm to several µm [1–4]. Pore size and pore networks
control the porosity of a rock and connectivity between the pores controls the bulk permeability.
Pores in shale are so narrow that the already reduced permeability of shale formations is further
affected by the flow behavior in the reservoir, deviating from Darcy flow. Hydrocarbon reservoir fluids
typically have molecular diameters on the order of 1 Angstrom or 0.1 nm. Various conceptual models
exist to describe and quantify the behavior of fluids in nano-pores [5]. The effects include so-called
molecular size filtration and sievage, which become particularly relevant when the pore diameter
drops from 10 to 5 nm [6,7]. For multi-component hydrocarbon phases (e.g., CO2, CH4, C2–4, C5–6, and
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C7+) the gas–oil ratio will generally increase when the reservoir pressure drops due to the pressure
decline to below the bubble point pressure as a consequence of continued production. The phase
behavior can be modeled, which has an iterative impact on the reservoir pressure and compressibility
needs to be taken into account too. Calculations of the equation of state and vapor-liquid equilibrium
must be linked with the velocity and pressure field solutions to investigate the fundamental nature of
the interaction between the bubble point pressure and the capillary pressure due to interfacial tension
and pore geometry.

Rock–fluid interaction in variably sized pores may cause interfacial tension changes that influence
phase behavior via capillary pressure effects. Such thermodynamic processes result in so-called
non-Darcy flow, which refers to molecular effects that influence the fluid flow behavior other than—or
in addition to—viscous forces. The networks of pores form important flow paths in shale for
transferring hydrocarbons to fractures and finally to the wellbore. Recovery rates of oil and gas
from unconventional source rocks such as shale are still dismal (<10% for oil; <20% for gas). The low
recovery rates are primarily due to the ultra-low permeability of the rocks, which retards the flow
of hydrocarbons toward the hydraulic fractures that are connected to the production well [8,9].
The retarded flow of hydrocarbons via the shale pores is too slow for economic extraction, which can
be partly alleviated by flow stimulation through the hydraulic fracture treatment. Studying the effect
of the hydraulic fractures on the drainage efficiency of the well requires integration of field data with
detailed models, not only of flow in the fractures, but also of the fluid exchange between the matrix
pore space and the transecting fractures. Methods are needed to accelerate the drainage process from
shale wells.

Advanced imaging techniques, such as scanning electron microscopy, and bulk characterization
techniques, such as gas adsorption, mercury intrusion, or small-angle neutron scattering, have
confirmed that shale consists of a complex network of pores, ranging from micro-pores (less than
2 nm diameter; actual nano-pores), via meso-pores (2–50 nm diameter) to macro-pores (larger than
50 nm) [10–12]. The specific nature of pores in porous media may affect fluid motion in several ways.
The porosity is a measure of fluid storage capacity (storativity). A locally higher porosity slows down
the flow, resulting in longer transit times [13]. The porosity distribution does not affect the detailed flow
path in a porous medium with single-phase fluid flow and particle paths exclusively controlled by the
permeability distribution as a measure of resistance to fluid passage. Many producing shale plays in
the US have comparable permeability ranges between microDarcy to nanoDarcy, with corresponding
pore size varying between nm and µm. Examples of the scale variations of pore structures are included
in Figure 1.

When the reservoir fluid migration involves multi-phase flow behavior, particle paths will be
affected not only by the local permeability tensor, but also by the interaction of the fluid phases with
the pore space (molecular size filtration and sieving, capillarity delaying phase changes in narrow
pore spaces). Currently, the flow mechanisms through multi-porosity systems with nm-scale pores
are not well understood. Notwithstanding many open questions, numerous studies have shown that
fundamental properties such as the phase behavior, viscosity, and interfacial tension for multi-phase
flow through confined micro-channels in ultra-low permeability shale deviate from the conventional
behavior due to the capillary walls and fluid interactions [14,15]. In the larger, unconfined pore spaces,
fluid molecule–molecule interactions are the dominant transport mechanism and molecule-pore wall
interactions are negligible [16]. However, in the nano-scale pores, the pore size becomes comparable to
the dimensions of the molecular mean free path, which causes an increase in the mutual interaction of
hydrocarbon molecules and with pore walls, due to Van der Waals forces [17,18]. In gas reservoirs,
examples of nano-pore scale effects include gas slip and adsorption effects [19] and Knudsen diffusion,
which requires correction for apparent gas permeability [7,20].
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Figure 1. Augment scale of things with images of rock porosity diameters covering the same range. 
Adapted from [21]. SEM images from [11]. 
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nano-pores [22]. In nano-pore rocks, bubble point effects are not only regulated by local pressure but 
also by rock–fluid interaction in the variably sized nano-pores, which will cause interfacial tension 
changes that influence phase behavior via capillary pressure dynamics. For example, the bubble 
point pressure may decrease due to capillary effects, resulting in two-phase flow being reached later 
in the well life than in the absence of such effects [23]. This phenomenon is also seen in so-called 
liquid rich shale (LRS) volatile oil reservoirs, where the bubble-point pressure is anomalously 
depressed due to the change in Pressure-Volume-Temperature (PVT) properties associated with 
pore-confinement [24,25]. Prediction of such behavior from simulation models is essential to 
improve the accuracy of EUR estimations for LRS reservoirs. 

This study uses complex analysis methods (CAM) to construct elementary pore flow models. 
Although many pore flow models exist, CAM has never before been used to construct pore-scale 
network-models, until this study. The common aim of pore network models is to (1) improve our 
understanding of molecular flow effects at the pore scale and (2) use the pore flow models to upscale 
such effects for use at reservoir scale and in reservoir simulators. The ultimate aim is to successfully 
translate the theoretical and experimental results into practical insights, which may lead to (1) more 
accurate determination of estimated ultimate recovery (EUR), (2) improved predictions of the impact 
of enhanced oil recovery (EOR) interventions on the EUR, and (3) more accurate forecasts of 
monthly production profiles, which would result in more reliable evaluations of project economics, 
which must underpin reserves classification. Although fulfillment of the stated aims will require 
much more investigation, some early results of our new pore network flow model are presented here 
for the first time. What is particularly unique for CAM-based pore network models is the ability (a) 
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Adapted from [21]. SEM images from [11].

In liquid hydrocarbon maturity windows, non-Darcy flow effects may impact gas to oil ratios
by lowering of the bubble point pressure due to the occurrence of elevated capillary forces in
nano-pores [22]. In nano-pore rocks, bubble point effects are not only regulated by local pressure but
also by rock–fluid interaction in the variably sized nano-pores, which will cause interfacial tension
changes that influence phase behavior via capillary pressure dynamics. For example, the bubble point
pressure may decrease due to capillary effects, resulting in two-phase flow being reached later in the
well life than in the absence of such effects [23]. This phenomenon is also seen in so-called liquid rich
shale (LRS) volatile oil reservoirs, where the bubble-point pressure is anomalously depressed due to the
change in Pressure-Volume-Temperature (PVT) properties associated with pore-confinement [24,25].
Prediction of such behavior from simulation models is essential to improve the accuracy of EUR
estimations for LRS reservoirs.

This study uses complex analysis methods (CAM) to construct elementary pore flow models.
Although many pore flow models exist, CAM has never before been used to construct pore-scale
network-models, until this study. The common aim of pore network models is to (1) improve our
understanding of molecular flow effects at the pore scale and (2) use the pore flow models to upscale
such effects for use at reservoir scale and in reservoir simulators. The ultimate aim is to successfully
translate the theoretical and experimental results into practical insights, which may lead to (1) more
accurate determination of estimated ultimate recovery (EUR), (2) improved predictions of the impact
of enhanced oil recovery (EOR) interventions on the EUR, and (3) more accurate forecasts of monthly
production profiles, which would result in more reliable evaluations of project economics, which
must underpin reserves classification. Although fulfillment of the stated aims will require much more
investigation, some early results of our new pore network flow model are presented here for the first
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time. What is particularly unique for CAM-based pore network models is the ability (a) to visualize
particle paths at the pore scale and (b) to study the flow transition from the porous reservoir space to
the wellbore space.

2. Modeling Approach

Many current investments and regulatory decisions in oil and gas projects are primarily based on
models with constitutive equations and flux function on a continuum scale (i.e., the length scale larger
than the pore scale). With investment focus shifting to shale plays, up-scaling of the pore-scale flow
behavior to the continuum scale needs to properly account for all pore-scale effects, which is why flow
studies at the pore-scale are relevant. This section reviews prior work (Section 2.1) and then introduces
CAM-based pore network models (Sections 2.2 and 2.3). The pore network model of Section 2.3 is
subsequently used to assemble a model of the transition zone between the porous reservoir and the
wellbore (Section 3).

2.1. Prior Modeling Efforts

The pore structure of rock samples can be imaged at high resolution [26] but capturing the
complex orientations and dimensions of the pores in actual flow models of porous media still remains
a challenge. A crucial aspect of flow in porous media is the interaction between the matrix and
hydraulic (and any natural) fractures near the treatment zone. Modeling flow in fractured porous
media, such as rocks and unconsolidated sands, are among the most challenging problems both in
hydrogeology [27,28] and in reservoir engineering [29,30]. One approach prevalent in simulations of
fractured reservoirs uses the dual-porosity model [31] and its numerous expansions [29]. The reservoir
is modeled by separating domains of connected fractures with 100% porosity and a certain assumed
permeability with matrix pores acting as storage space. Transfer functions and shape factors were
introduced to control the exchange of fluid between matrix and fractures [32–34].

Early mathematical models of flow through rock fractures are mainly limited to cubic law
formulations for fluid flow transport through just a single fracture [35], expanded in later work
with factors accounting for wall roughness [36,37]. The transient effect of stress on flow in a single
fracture due to dilation effects has also been quantified [38–40], with further efforts to account for
inertia effects due to turbulent fluid at high rates of injection [41]. More recent work takes into account
solute transport [42,43] and chemical interaction [44,45].

Modeling advective displacement in fractured porous media is challenging enough for
single-phase flow, but becomes more complicated when a multi-phase flow is considered. Capillary
forces between immiscible wetting phase (e.g., gas) and non-wetting phase (e.g., oil) may cause
entrapment of the oil in certain pores [46,47]. Prior research introduced theoretical concepts on the
role of capillary forces in water-flooding efficiency [48,49], backed up with some experimental data
that show the effect of capillarity on oil transport in pore interstices, including trapping and snapping
of oil droplets [50]. Recent experimental work has also shown that oil–water interaction in porous
media may result in oil-in-water emulsions, which affect the pressure field and thus the oil recovery
speed [51]. When the fluid is miscible, the fluid mixture may be considered to move as a single phase
modeled by Darcy’s law assuming incompressible miscible displacement. However, flow mechanisms
of emulsions through porous media are not well understood. When the multi-phase flow is immiscible,
fluid transport can be described by a fractional flow model, using operator splitting methods [52].

More recently, multi-phase pore-scale simulations have become possible [53–56], which import
the pore geometry obtained from micro-CT (computerized tomography) scans of real rocks. Such
models avoid the simplifications adopted in mathematically generated pore-network models and allow
pore size driven flow accounting for capillary or viscous dominate flow as appropriate. However, such
so-called direct simulation is still very computationally intensive (and thus costly and cumbersome),
which is why the use of simplified pore and pore network models is still merited. Pore models using
single channels and with straight flow streams have been previously used [57]. Pore space network
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models are commonly based on a regular lattice assumption, typically a cubic lattice [58]. An in-depth
review of pre-network models is given in [59].

2.2. Complex Analysis Method (CAM)

We introduce a new, simple two-dimensional approach to model flow paths in the pores and
the pore-throats of the porous network. The method expands our recent research program that
models the flow in porous media with a grid-less simulator based on complex analysis methods
((CAM); [60–65]). The method can handle permeability anisotropy and reservoir heterogeneity due to
the presence of discrete fractures [66,67]. The method also allows for porosity variations to accelerate
or decelerate the transit time along streamlines [13]. A prime motivation to use CAM, as a modeling
method complementary to models based on finite difference methods, is the grid-less and continuously
scalable nature of the code. The high resolution of CAM models may provide complementary insight
to finite volume-based simulators. The capability to model flow in fractured porous media at high
resolution is particularly useful for fracture treatment design optimization [65,67–69], in order to
ultimately improve recovery factors of shale wells and maximize return on investment.

2.2.1. Single Pore Throat Channel Example

For the base case model, we use a single flow path made up of an array with an increasing number
of pores and throats of variable diameter. The fluid flow in the reservoir is assumed to occur by a
natural drive from an aquifer, which can be represented by a far-field flow with a constant velocity
and, if necessary, a particular tilt angle [66]. When the flow in the porous medium is studied at a
macroscopic scale, the streamlines for the far-field flow entering the reservoir space from the left in a
homogeneous system remained completely unperturbed (all streamlines remained perfectly parallel).
For a flow rate of 1.5 m/year (4.8 × 10−8 m/s) the fluid would travel 28.8 × 10−6 m in 600 s, as
outlined by time-of-flight-contours (TOFCs, red) (Figure 2). The streamlines are represented by green
curves and the transit time is marked by TOFCs, spaced for intervals of 60 s.
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represented by streamlines (green) and time-of-flight-contours (TOFC) (red), with spacing of 60 s. 
Total time-of-flight is 600 s, time step Δt = 0.008 s. Height and width for pore-throat(s) is 2 × 10−6 and 5 
× 10−6 m, respectively and for pore-spaces 4 × 10−6 and 5 × 10−6 m, respectively. The far-field flow 
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Figure 2. (a) Flow model space marked with streamlines (green) and the time-of-flight-contours (red).
Flow comes in from the left. (b) Isobars for pressure field (warm colors indicate higher pressure)
calculated by taking the real part of the complex potential for configuration in (a). Algorithms for the
model are given in Appendix A. Length units are scaled in µm (both x-axis and y-axis).

Figure 3 shows an elementary pore flow model, using a constant far-field flow velocity of
1.5 m/year (4.8 × 10−8 m/s). The algorithms to simulate the flow in micro- and nano-pores are
formulated in complex analysis calculus and details are given in Appendix A. A large number of
simplifying assumptions are adopted. The model is 2D and all fluid flow occurs in the plane of study.
We assume all flow tubes (micro-channels) are made up by one or more pores and throats and pore
throat orientations stay horizontally aligned with the flow direction from the negative x-axis to the
positive x-axis. Gravity forces and inertia effects are neglected, justified by the local scale and the slow
motion of the fluid, respectively. Capillary forces due to multi-phase flow are initially neglected and
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heterogeneity due to spatial variations in water-wet and oil-wet rock surfaces are also ignored. So, the
outset is a very simple pore network model, occupied by a Newtonian, incompressible fluid. The flow
rate through the pores may either be steady or time-dependent and is a function of strength υ for the
channel element [66]. The flow strength of the pores/pore-throats can be scaled such that these vary,
depending on the strength of the steady-state far-field flow and the dimensions of the pores.
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Figure 3. (a) Schematic of an elementary pore-model showing a pore and a pore throat. (b): Elementary
pore-flow model comprised of array of various pores and pore-throats. Flow is represented by
streamlines (green) and time-of-flight-contours (TOFC) (red), with spacing of 60 s. Total time-of-flight
is 600 s, time step ∆t = 0.008 s. Height and width for pore-throat(s) is 2 × 10−6 and 5 × 10−6 m,
respectively and for pore-spaces 4 × 10−6 and 5 × 10−6 m, respectively. The far-field flow velocity is
3.2 × 10−6 m/s. The strength of pore-throat and pore space is 10−18 m4/s, about 150 times the velocity
of the far-field flow (after adjusting for unit dimensions). Length units are scaled in µm (both x-axis
and y-axis). (c–e) Same as (b) but with different arrangements of pores and pore throats.

Figure 3a–d shows how fluid flow paths and local velocities are affected by the pores and
pore-throats in different configurations. The effect of the pores on the streamlines is visualized using
different combinations of the pores and pore-throats acting as a single horizontal micro-channel. We
assume that the depth, width, and height of the pore-throats is 1× 10−6 m, 5× 10−6 m, and 2× 10−6 m,
respectively. Similarly, the pore dimensions are 1 × 10−6 m, 5 × 10−6 m, and 4 × 10−6 m, respectively.
For both pores and pore-throats, the assigned strength is 7.2 × 10−7 m4/s, and consequently due
to a constant flux moving through a narrowing space. The highest flow rates occur in the narrower
pore-throats. The total time of simulation is 600 s, using a time-step of 0.008 s. The relatively short
duration of the simulation and time-step captures the movement of fluid across the micro-pores
(Figure 3a–d). Inflow and outflow domains are shown to highlight constriction of streamlines and
acceleration of the flight time in the pore space, as marked by the time-of-flight contours (red).

The pressure for the configurations of Figure 3c is given in Figure 4, which shows that the pressure
differential at the pore-throat entrances is higher as compared to that of the wider pores. The pressure
profile in such micro-pores varies with pore throat size and increases when capillary forces are involved
(multi-phase flow). Local flow rates in the pore throats may be several times faster than in the wider
pores (ignoring multi-phase flow effects).
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same as in Figure 3. Flow is steady and shows (a) initial position of the circular ganglion, with a 

Figure 4. Pressure field (Pa) calculated by taking the real part of the complex potential for configuration
in Figure 3c. The increase in pressure is localized in the pore throats. Narrower pore diameters show
higher pressure gradients, as expected. The macroscopic permeability is 600 nD, viscosity as 1 cP, far
field flow velocity is 1.5 m/year, and pore strengths is 225 m4/year. Length units are scaled in µm
(both x-axis and y-axis).

2.2.2. Movement of a Passive Ganglion through an Elementary Pore-Network

A passive ganglion, made up by tracers of incompressible fluid introduced in the far-field flow at
time zero, was followed as it moved along the particle paths to study the effect of pores on fluid flow
(Figure 5a). For the base case model, we assume that the capillary pressure around the ganglion iss
negligible, hence the ganglion easily deforms when passing through the pores. Figure 5b shows that the
ganglion starts to “feel” the effect of pores towards the flow front at a time as early as 60 s. At around
180 s (Figure 5c), the initially circle-shaped ganglion completely deforms into a dumbbell-shaped body
(due to stretch) when the streamlines maze and converge inside the pore space. After a flow time of
300 s (Figure 5d), the ganglion reverts nearly to its original shape, albeit with some imperfections.
Later in this study, we present a case with a ganglion with interfacial tension, which may resist to
stretch and deform due to surface tension, slowing flow in (or even blocking) the pore space.
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Figure 5. Movement of a passive ganglion (brown body) through elementary micro-pore domain in
central part of the flow model. Dimensions of the pores, strength, and duration of simulation are the
same as in Figure 3. Flow is steady and shows (a) initial position of the circular ganglion, with a radius
of 4 × 10−6 m and (b–d) position and shapes of the ganglion after 60, 180, and 300 s, respectively.
Length units are scaled in µm (both x-axis and y-axis).
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2.3. Multi-Pore Network Model

The simplified micro-flow channel model (Figures 3 and 5) can be expanded with an assumption
that several elementary models are stacked vertically and horizontally to create complex flow paths
that are more representative for a small section of a porous reservoir. The pore-space of a representative
reservoir section can be modeled superposing short channel segments with varying height and width
in an array of pores and throats. The dimensions of the pores and throats in the pore network model
are kept spatially constant, but heterogeneities in pore spaces would affect the flow paths and can be
introduced by spatial variations in pore dimensions.

The motivation for constructing the micro-pore network model is to demonstrate how the pores
interact and affect the overall flow path. Figure 6 shows that flow converges towards the pore network
with each pore and pore-throat, given the same flow strength. The dimensions of the pores, the
strength of the far-field flow and total simulation time are constant and identical to those used in the
base case models of Figures 3 and 5. However, the strength of the pores is reduced to prevent fluid
flow congregating only toward the central row of pores. Some boundary effects cannot be excluded:
Outer pores receive slightly less fluid and remedying that situation would require a much larger pore
network system to reduce outer boundary effects. The micro-pore network model (Figure 6), being
well aware of the boundary effects experienced by the outer pores, provides a practical tool to explore
fundamental questions regarding capillary effects and time-dependent changes in pore pressure due
to PVT effects on fluid miscibility.
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Figure 6. (a) Overview of multi-pore flow space showing streamlines. (b) Central section of the
multi-pore model with the matrix between the pores filled with dark dye. The dimensions of the pores,
the strength of the streamlines, and duration of simulation is the same as in Figures 3 and 5. The
strength of the pores is 30 times the strength of the far-field flow. (c) Flow of passive ganglion (brown
body) through the micro-pore network model. Snapshots of passive ganglion are given for 60, 240,
360, and 480 s. (d) Continuum model with dyed blob to study the movement of fluid particles would
not change shape as in pore network model, and interfacial contact surface or length does not change,
unlike that seen in case (c) due to deformation in the pore space. Length units are scaled in µm.

The explicit boundaries of the pore-spaces (Figure 6a) can be defined by delineating no-flow
boundaries around the pores as shown in Figure 6b. Fluid particles that do not cross the pore space are
grayed out and act as no-flow barriers between individual pore arrays. The path of a passive ganglion
was tracked in the experimental pore-network model as seen in Figure 6c. A ganglion (brown circle)
with a radius of 2.25 × 10−6 m moves for ten minutes through a pore system with a far-field velocity
of 1.5 m/year (4.8 × 10−8 m/s). The strength of the pores is 1.44 × 10−6 m4/s and the total time of
flight is 600 s. The position and shapes of the passive ganglion passing through the pore network are
shown at regular time steps of 60, 240, 300, 360, and 540 s, respectively. Figure 6d shows a continuum
model with dyed blob moving with the flow, where the shape of the blob doesn’t change, as in the
pore network model. Interfacial contact surface or circumferential length does not change, unlike that
seen in Figure 6c, where the interfacial outline of the ganglion shows substantial length increases due
to deformation in the pore space.

The simulation of Figure 6 again neglects any capillary pressure. The mathematical model needs
to be modified to represent the surface tension of a ganglion and to account for the capillary pressure.
Before discussing such a modification with movement of an active ganglion through the pores affected
by capillary pressure effects in a later section (Section 4), we first need to expand the pore network
model to include the intersection of the reservoir space and the wellbore, which can be used to
construct dynamic bottomhole pressure profiles for reservoir fluid entering the wellbore when leaving
the pore space.

3. Dynamic Bottomhole Pressure Profiles

With the basic pore network model in place, we next construct flow models to determine the
dynamic bottomhole pressure (BHP) due to the flow transition between the reservoir space and the
wellbore. For a non-flowing well, the BHP is equal to the hydrostatic pressure due to the dead weight
of the fluid column in the well. When the well is flowing, the BHP may change according to the
pressure gradients associated with the fluid circulation. The below models are presented for the
dynamic pressure gradient due to flow, which adds a dynamic BHP to the static BHP to obtain a total
BHP for the flowing well. The effect of natural gas lift due to dissolution below the bubble pressure was
initially ignored in the dynamic pressure model. While the release of dissolved gas in the production
tube would contribute to increase the dynamic component of the BHP, the lighter gas would lower the
static BHP and therefore tended to suppress the overall BHP for the flowing well.

3.1. Model Design

The model set-up is sketched in Figure 7a. The reservoir section is modeled by the pore network
model of Figure 6. The wellbore section is modeled by an elementary model of the fluid circulation in
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the production tube (Figure 7b). Alternatively, the wellbore section can be modeled by fluid circulation
via the drill string and the annulus (see later). The model design (Figure 7a) includes a mirror image of
the well system to ensure stability in the CAM solution space. However, the mirror image well system
is not necessarily required and we later realized that only a little distortion occurs by leaving out the
mirror well. Nonetheless, the models presented in this study utilized the full system symmetry.
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Figure 7. (a) Schematic of the reservoir–wellbore transition model with flow directions. (b) Production
tube flow model with streamlines (green) for flow from reservoir to the wellbore obtained by solving
the stream function using a particle tracking method based on incremental particle displacement in a
Eulerian reference frame (as opposed to a Lagrangian reference frame). Length units are scaled in cm
(both x-axis and y-axis).

3.2. Producer and Injection Wells

During production, the flowing well generally shows an increased BHP relative to the static BHP,
simply because formation fluid moves into the well, which adds a dynamic pressure gradient to the
static pressure gradient in the production tube. Figure 8a shows the streamlines for the producing well.
The wellbore flow occurs by a natural pressure drive. We emphasize that the model only focuses on
the flow dynamics near the base of the well and gravity is neglected for simplicity. The weight of the
static fluid column in the wellbore adds a static BHP component which increases with depth. The total
BHP equals the static BHP plus the dynamic BHP. The dynamic pressure distribution is contoured in
Figure 8b. The assumed model parameters are given in Table 1. Pore sizes were upscaled by a factor of
10−6 for visualization.
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(BHP) minimum occurs in the wellbore center). Length units are scaled in cm (both x-axis and 
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A model for the injection well case is given in Figure 9a,b. The dynamic component of the BHP 
in the wellbore appears lower than in the directly adjacent reservoir space, which is, again, a purely 
mathematical branch cut effect. The pressure profile in Figure 9c marks the locations (dashed lines) 
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Figure 8. Producer well. (a) Streamlines (green) for flow from reservoir to the wellbore obtained
by solving the stream function for the integrated system. (b) Pressure field obtained by solving the
corresponding potential function scaled in units of cm2 s−1 (Case 4, Table 1). (c) Dynamic bottomhole
pressure profiles (along vertical axis in cm2 s−1) for production well. Central portion of profile (in
wellbore) needs to be folded downward to correct for branch cut effect (i.e., bottomhole pressure (BHP)
minimum occurs in the wellbore center). Length units are scaled in cm (both x-axis and y-axis).

Table 1. Inputs for wellbore models.

Physical Quantity Producer
Case 4

Injector
Case 5

Underbalanced
Case 3

Overbalanced
Case 6

Pore Strength (cm4·s−1) 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6

Pore-throat Strength (cm4·s−1) 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Pore Width (cm) 4 4 4 4
Pore-throat Width (cm) 1 1 1 1

Reservoir Boundary Strength (cm4·s−1) 6 × 10−4 6 × 10−4 6 × 10−4 6 × 10−4

Annulus Strength (cm4·s−1) 6 × 10−4 6 × 10−4 6 × 10−4 1.20 × 10−3

Tubing Strength (cm4·s−1) 6 × 10−4 6 × 10−4 6 × 10−4 6 × 10−4

Reservoir Boundary Width (cm) 23 23 23 23

Several fundamental insights can be gleaned from the base production model of Figure 8a,b. First,
in the reservoir, the pressure dropped toward the well, which led to fluid acceleration or velocity
increase of fluid particles moving toward the well (see Appendix A and [70]). Streamlines initially
converge, but then diverge as fluid moves from the reservoir into the well. The entire velocity field is
governed by the equation of motion, as captured in the complex potential used to model the streamlines
of Figure 8a. In our present study, the pressure plots (such as in Figure 8b) include regions of adverse
pressure gradients, where flow appears to move counter to the pressure gradient. Removal of the
so-called integral branch cuts leads to the local development of these apparent, adverse pressure
gradients. Such regions are artifacts of the computational solution method that assigns a single value
to a multi-valued complex elementary function [71,72]. For example, choosing the positive rather
than the negative root when jumping over a potential branch cut boundary will swap the sign of the
pressure gradient. Adverse pressure gradients occur in the peripheral quadrants of the simulated
reservoir and in the central square space where fluid flowed from the porous reservoir into the wellbore
(Figure 8b). The bottomhole pressure profile in Figure 8c can be corrected for the adverse pressure
gradient by flipping down the central profile region between the branch cuts coinciding with the
wellbore. The flip will result in a continuous V-shaped pressure profile across the wellbore an into the
adjacent reservoir space.

A model for the injection well case is given in Figure 9a,b. The dynamic component of the BHP
in the wellbore appears lower than in the directly adjacent reservoir space, which is, again, a purely
mathematical branch cut effect. The pressure profile in Figure 9c marks the locations (dashed lines)
where the branch cut causes apparent pressure gradient changes. The solution is accurate for the
assumptions and initial conditions used and the dynamic BHP component can be corrected by simply
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folding up the central trough in Figure 9c to obtain a continuous Λ-shaped pressure profile for the
injection well. A continuous Λ-shaped pressure profile appears as fluid leaves the porous reservoir
space and enters the wellbore, detail of which has not been modeled in any prior study. The BHP
gradient in the wellbore should alert production engineers that pressure readings from downhole
pressure gauges will be greatly influenced by their actual lateral position in the bottomhole space.
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Figure 9. Injection well. (a) Blue streamlines are for fluid from the wellbore invading the reservoir
space. Green streamlines are for fluid originally in the reservoir and displaced by the wellbore fluid.
The result is obtained by solving the stream function of the composite flow field. (b) Pressure field
obtained by solving the corresponding potential function scaled in units of cm2 s−1 (Case 5, Table 1). (c)
Dynamic BHP pressure profile (along vertical axis in cm2 s−1) at reservoir–wellbore transition. Length
units are scaled in cm (both x-axis and y-axis).

3.3. Wellbore Pressures during Drilling

When drilling the well, a factor that influences the dynamic component of the BHP for a given
mud weight is the viscous friction of the mud return circulation in the annulus. For a so-called pressure
balanced well, there is no contribution of formation fluid to the circulation of the drilling fluid. All
circulation is by drilling mud alone, which moves to the bottom of the well via the drill string pipe
and then exits via the mud motor (in the bottomhole assembly, BHA) to return to the surface via
the annulus (Figure 10a). Our simple model shows that, for a balanced well, the dynamic pressure
gradient contribution to the BHP, due to the mud circulation directly below the drill pipe, is lower
than for the nearby annulus (Figure 10b).

In well control, the primary concern is to keep the BHP close to the formation pressure to avoid
the occurrence of either underbalanced or overbalanced wellbore pressures, essentially to minimize
any dynamic contribution to the BHP due to fluid exchange with the penetrated formations. As long
as the drilling fluid pressure is balanced or only slightly exceeds the local formation pressure at each
depth, the well will not take in undue flow from escaping formation fluid after the drill penetrates
the formation(s). However, when there is fluid exchange with the reservoir during drilling, due to
mismatches in the balance of the mud pressure and the formation fluid pore pressure, two basic cases
may occur: Underbalanced and overbalanced pressures at the wellbore wall.
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Figure 11. Underbalanced pressure while drilling. (a) Green streamlines are for fluid flowing from 
the penetrated formation to the fluid annulus between the drill string and the wellbore. Blue 
streamlines are for circulating drilling mud. Due to drilling mud pressure deficit (underbalance) 
native pore fluid from the formation can move up the annulus. Flow field is solved using a stream 
function describing the composite flow field. (b) Pressure field obtained by solving the 
corresponding potential function scaled in units of cm2s−1 (Case 3, Table 1). Length units are scaled in 
cm (both x-axis and y-axis). 

The final case modeled is for an overbalanced wellbore pressure, which may lead to a dynamic 
increase of the BHP when drilling fluid starts to invade the formation, leading to drilling mud losses 
(Figure 12a,b). Note tha the model for the overbalanced wellbore of Figure 12a,b is akin to the model 
for the injection well case of Figure 9a,b. For underbalanced formation pressure while drilling 
(Figure 11) and overbalanced formation pressure while drilling (Figure 12), dynamic bottomhole 
pressure profiles are given in Figure 13a,b. For the underbalanced pressure profile (Figure 13a), 
formation rock pores that are filled with fluid near the wellbore wall have a pressure lower than the 
fluid in the adjacent wellbore. Remember one must apply a branch cut flip to the central profile 
section in the underbalanced wellbore (Figure 13a) to obtain the correct V-shaped pressure profile. 

Figure 10. (a) Streamlines and stream function solution (color grades) for mud circulating down the
drill string and up the annulus. Minor circulation occurs outside the annulus, which is an artifact of
the model method. (b) Corresponding potential function solution. Length units are scaled in cm (both
x-axis and y-axis).

Underbalanced wellbore pressure may lead to a premature flow of formation fluids into the well,
with a risk of pressure escalation into a blowout. For such cases, the formation pressure adds a dynamic
pressure component to the BHP when formation fluid flows into the well (Figure 11a,b). A dynamic
pressure low developed at the wellbore wall, which establishes a favorable pressure gradient for the
fluid moving into the wellbore from the far-field reservoir space. Pores that are filled with fluid near the
wellbore wall have a higher pressure than the fluid in the adjacent wellbore. The potential occurrence
of negative net pressures on the inner wellbore wall when the formation pressure is underbalanced
was assumed in prior studies [73,74].
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Figure 11. Underbalanced pressure while drilling. (a) Green streamlines are for fluid flowing from the
penetrated formation to the fluid annulus between the drill string and the wellbore. Blue streamlines
are for circulating drilling mud. Due to drilling mud pressure deficit (underbalance) native pore fluid
from the formation can move up the annulus. Flow field is solved using a stream function describing
the composite flow field. (b) Pressure field obtained by solving the corresponding potential function
scaled in units of cm2 s−1 (Case 3, Table 1). Length units are scaled in cm (both x-axis and y-axis).
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The final case modeled is for an overbalanced wellbore pressure, which may lead to a dynamic
increase of the BHP when drilling fluid starts to invade the formation, leading to drilling mud losses
(Figure 12a,b). Note tha the model for the overbalanced wellbore of Figure 12a,b is akin to the model for
the injection well case of Figure 9a,b. For underbalanced formation pressure while drilling (Figure 11)
and overbalanced formation pressure while drilling (Figure 12), dynamic bottomhole pressure profiles
are given in Figure 13a,b. For the underbalanced pressure profile (Figure 13a), formation rock pores
that are filled with fluid near the wellbore wall have a pressure lower than the fluid in the adjacent
wellbore. Remember one must apply a branch cut flip to the central profile section in the underbalanced
wellbore (Figure 13a) to obtain the correct V-shaped pressure profile. Likewise, for the overbalanced
wellbore (Figure 13b), the dynamic BHP profile will have a Λ-shaped pressure profile after correction
for the branch cut flip.
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Formation fluid cannot move into the annulus die to overbalanced drilling, but drilling fluid can invade
the reservoir pore space. Green streamlines are for fluid originally in the penetrated formation, which
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field is solved using a stream function describing the composite flow field. (b) Pressure field obtained
by solving the corresponding potential function scaled in units of cm2 s−1 (Case 6, Table 1). Length
units are scaled in cm (both x-axis and y-axis).
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As noted in earlier in Section 3.2, the dynamic bottomhole pressure component in a horizontal
section across the wellbores (halfway the formation) is not constant but varies laterally. The occurrence
of such local pressure gradients should alert drilling engineers that pressure readings from the
bottomhole assembly will be greatly influenced by the lateral position of the pressure gauge in
the bottomhole space.

4. Multi-Phase Flow Effects

The simulations of Sections 2 and 3 neglected any capillary pressure. The pressure inside and
outside of a passive ganglion passing through the pore models (Figures 5 and 6) remain the same when
no interfacial tension exists between the dyed blob and the ambient fluid. Flow in a reservoir with
pressure above bubble point occurs as single-phase oil displacement (Sections 2 and 3). If native water
is present, it may be assumed to be drained by the piston-like movement of the non-wetting fluid (oil)
as portrayed in Figure 14a. Locally, the flow may be accompanied by imbibition of the capillary space
by the wetting fluid (native water) as in Figure 14b.
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Figure 14. (a) Two-phase fluid contact with surface tension between non-wetting phase (e.g., oil) and
wetting phase (e.g., water). (b) Piston-like movement occurs when non-wetting fluid (oil) sweeps the
wetting fluid.

The oil ganglions must move through the pore space much like a single-phase flow, to leave
behind as little residual oil as possible in the pore space of a reservoir drained by a well (Figures 5
and 6). However, when there is interfacial tension, a ganglion of non-wetting fluid from the bulk of
the reservoir upon entering a narrow cylindrical pore tube (Figure 15a) will experience a capillary
pressure, which will increase when pores become narrower until the pressure reaches the limiting
value given by the Young–Laplace equation. There will be a pressure difference inside and outside the
ganglion equal to the capillary pressure. When the (non-wetting) fluid exits a pore throat as shown in
Figure 15b due to the pressure gradient, the capillary pressure will first increase when the interface
expands. On further flow, the pressure will decrease and the volume of the sphere will increase while
the capillary pressure decreases.
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Figure 15. (a) Conceptual model of the movement of a non-wetting phase from the bulk reservoir
to a narrowing pore throat, displacing a wetting phase. The capillary pressure increases up to the
maximum value Pc given by Young–Laplace equation. (b) Movement of non-wetting phase from a
channel to the bulk of the reservoir and the corresponding pressure profile.

4.1. Capillary Pressure Effects

The contact angle between two immiscible fluids and a wall depends on interfacial tension of the
fluids and the nature of their contact surface. For example, Figure 16 shows the systematic reduction of
interfacial tension by the addition of various surfactants (Surf 1–4) to the water phase, which reduced
the contact angle with Eagle Ford wall rock. The experiment of Figure 16 primarily shows that the
injection of chemical surfactants (in a laboratory test) can be effective in freeing the oil from the rock by
reducing interfacial tension. The contact angles and the interfacial tension, as shown in Figure 16, were
highly dependent on the fluids and the contact surface. For example, the surface tension and contact
angle for mercury and air are 480 mN/m and 140◦, respectively [75]. The experiment of Figure 16 is
under static conditions, but a similar reduction in contact angle will occur when a ganglion moves
through a rock-pore network flow path.

Energies 2019, 12, x FOR PEER REVIEW 16 of 39 

 

the confined pore space, equal to the capillary pressure. The mathematical model needs to be 
modified to represent the effects of the capillary pressure on the movement of a ganglion. 

 
Figure 15. (a) Conceptual model of the movement of a non-wetting phase from the bulk reservoir to a 
narrowing pore throat, displacing a wetting phase. The capillary pressure increases up to the 
maximum value Pc given by Young–Laplace equation. (b) Movement of non-wetting phase from a 
channel to the bulk of the reservoir and the corresponding pressure profile. 

 
Figure 16. Contact angles for oil drop, adhering to oil–wet shale surface, varies with surface tension. 
Addition of various surfactants (Surf 1–4) to the pure interstitial water (left) leads to an increasing 
degree of the surface repelling the oil drop. The most effective surfactant (Surf 4) causes the most 
separation from the surface. Source: Dr. David Schechter, Texas A&M University. 

4.2. Movement of an Active Ganglion through an Elementary Pore-Network 

The various modes of movement of a non-wetting, active ganglion (with surface tension) 
through an elementary pore flow model are schematically shown in Figure 17a,b. The movement of 
a ganglion through the pore models of Figures 3–6 was modeled neglecting any capillary pressure. 
With surface tension effects, the fluid blob would resist deformation and such an active ganglion 
may snap off in the middle as shown by Figure 17b. Below, an attempt is made to adapt our pore 
network flow model to account for certain surface tension effects. 

Pc 

Volume 

Wetting phase 
Non-wetting phase 

(b) 

(a) 

Figure 16. Contact angles for oil drop, adhering to oil–wet shale surface, varies with surface tension.
Addition of various surfactants (Surf 1–4) to the pure interstitial water (left) leads to an increasing
degree of the surface repelling the oil drop. The most effective surfactant (Surf 4) causes the most
separation from the surface. Source: Dr. David Schechter, Texas A&M University.

We now seek to explore further the effects of multi-phase flow. When there is interfacial tension
between two phases, then a pressure difference will occur, inside and outside an active ganglion in the
confined pore space, equal to the capillary pressure. The mathematical model needs to be modified to
represent the effects of the capillary pressure on the movement of a ganglion.
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4.2. Movement of an Active Ganglion through an Elementary Pore-Network

The various modes of movement of a non-wetting, active ganglion (with surface tension) through
an elementary pore flow model are schematically shown in Figure 17a,b. The movement of a ganglion
through the pore models of Figures 3–6 was modeled neglecting any capillary pressure. With surface
tension effects, the fluid blob would resist deformation and such an active ganglion may snap off in
the middle as shown by Figure 17b. Below, an attempt is made to adapt our pore network flow model
to account for certain surface tension effects.
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Figure 17. Principal sketches of non-wetting phase (e.g., oil, red) in interfacial contact with wetting
phase (water or gas). (a) Fracture model shows a fracture space widening downstream (top) and
narrowing (bottom). (b) Pore throat model showing stretching of oil ganglion during flow (top) and
snapping into oil drops due to capillary forces when flow slows (bottom).

Figure 18a–d shows the progressive movement of an active ganglion through an elementary pore
model representing the reservoir space. Interfacial tension between two phases during a multi-phase
flow, affecting the movement of the active ganglion with a surface tension, is represented by a dipole
(which can be scaled as a surface tension effect) that resisted deformation during the movement
through the pores (without the snapping effect, which requires implementation of Rankine flow
elements). The radius of the point dipole is inversely proportional to the square root of the far-field
flow velocity. The velocity of the far-field flow is accelerated in the micro-channel, which is why the
radius of the active ganglion varied when it moved through the pore network. Variations in the radius
of the ganglion may be mitigated by splitting the original point dipole into a line dipole, allowing the
dipole to stretch and morph into a Rankine body formed by a spaced point source and a point sink.
The procedure proposed for implementing this solution is included in the final section of Appendix B,
which is a potential topic of future study.
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Figure 18. Movement of an active ganglion through a micro-channel. From left to right, top to bottom:
(a) The initial/reference position of the ganglion. (b–d) Position and shapes of the ganglion at 60, 180,
and 300 s, respectively. The radius of the starting ganglion is 4 × 10−6 m. The dimensions of the pores,
strength, and duration of simulation are the same as in Figures 4 and 5. The strength of the dipole is 10
times the strength of the far-field flow. Length units are scaled in µm (both x-axis and y-axis).

4.3. Bubble Point Delay Due to Capillarity

The co-production of gas by the well (even when the reservoir is still above the bubble point
pressure), occurs by dissolution of gas molecules from the single-phase oil when the produced fluid
moves up the production tube and the pressure drops below bubble point at a certain depth (Figure 19).
For such cases, the gas–oil ratio in early well life is mainly due to the dissolution of associated gas in
the wellbore, which then provides a natural gas lift to the produced fluid. The total volume of the gas
bubbles rising in the production tube can be history-matched using the production data and gas to oil
ratio at any one time.
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Although an increase in the gas oil ratio increases fluid buoyancy and lift rates in the wellbore,
the flow of gas–oil emulsions toward the well via the reservoir pore space may be retarded by a higher
degree of multi-phase flow when the gas–oil ratio increases. Changes in the gas–oil ratio of a fluid at
reservoir PVT conditions are partly controlled by pressure depletion due to continued fluid extraction.
An additional factor related to the advent of bubble point pressure conditions occurs in nanoDarcy
rocks due to capillary effects, which may delay an increase in the gas oil ratios by lowering of the
bubble point pressure due to the occurrence of elevated capillary forces in the nano-pores [22].

When the reservoir pressure finally drops below the bubble point, gas dissolution occurs not only
for fluid in the wellbore, but also in the reservoir. Multi-phase flow then occurs in the reservoir and
interfacial tension effects will intensify due to the generation of expanding gas bubbles in the reservoir
before the fluid reaches the well. Two extreme scenarios can be considered: (1) Large pores dominat
the flow in the reservoir, which is when capillarity will not contribute to the production process of the
well, and (2) the pore-space includes nm-scale pores with significant capillarity. For the latter case,
capillarity may delay the bubble point pressure in the reservoir, and by preventing an early rise in the
gas–oil ratio, the effectwill suppress the oil EUR of the well. The history-matched EUR based on early
production data (above bubble point pressure) needs to be corrected for the capillary effect to arrive at
a more accurate EUR forecast.

The capillary effect may delay the actual bubble point pressure as the fluid nears the theoretical
bubble point pressure for the fluid composition of the reservoir. Calculations of the equation of state
and vapor–liquid equilibrium can be linked with the velocity and pressure field solutions of our
simplified model to investigate the fundamental nature of the interaction between the bubble point
pressure and the capillary pressure due to interfacial tension and pore geometry. Once the EUR
correction due to the delay in the bubble point pressure is quantified using the fluid composition of
the reservoir, history-matching of the predicted gas–oil ratio in late well life against the actual gas
ratio will tell us which of the two scenarios considered is closest to reality. We expect the capillary
effect to be likely to remain limited because most reservoir fluid will reach the well via the larger pores
and micro-fractures, in which case, the bubble point pressure delay due to capillarity will not occur
for the bulk of the fluid produced. There would be no delay in the increase of the gas–oil ratio of the
well and the bubble point pressure is reached in a growing portion of the reservoir space, unaffected
by capillarity.

5. Discussion

Several fundamental aspects of flow in a porous medium with single-phase and multi-phase flow
effects have been considered in the elementary CAM pore-network model. The models of Section 2
show that even a passive fluid ganglion will deform in a pore network in a way different from an
up-scaled continuum model (compare Figure 6c,d). Subsequently, the BHP was modeled as a result of
the transition of fluid flow from the porous reservoir to the open wellbore (Section 3). The models of
dynamic bottomhole pressure presented are complementary to nodal analysis production models [76]
which account for the global decline in reservoir pressure and its impact on the flow rate of the well
(and vice versa). Finally, capillarity effects were considered in Section 4, including the movement of
an active ganglion. Changes in the gas–oil ratio were also discussed, associated with changes in the
bubble point pressure. Some additional thoughts are shared in the discussion items below.

5.1. Scaling BHP Models and Flow Velocities

The models in Section 4 of the flow transition between the pore space and the wellbore are
synthetic models, not scaled for any particular prototype well. In case the model is applied to real
well data, scaling of all input parameters is essential to obtain quantitative results with predictive
value on well performance. Such scaling must follow common rules of dimensional analysis,
with particular attention to rheological similarity [77], a dynamic aspect of flow scaling that is often
overlooked. The flow velocities for the streamline models of Figures 8a, 9a, 11a and 12a are captured
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everywhere in the system by the set of superposed complex potentials used to construct the flow
model. The magnitudes of the velocities are contoured in Figure 20a–d (comparing cases of Figures 8a,
9a, 11a and 12a). The models highlight that the fastest flow rates occur in the production tube of the
well. However, flow rates in the pore throats of the pore network model are also quite high and, in the
case of the underbalanced drilling model (Figure 20c), are generally higher than in the production
tube. The high flow rates in narrow pores in the case of a production well (Figure 20a) will lead to
sand production when the formation is poorly consolidated (which is rarely the case in shale).
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The models of Figure 20a–d do not take into account the effects of multi-phase flow. However,
the high velocity locations in the production tube and pore throats are precisely the locations where
steep pressure gradients occur and also where interfacial contact lines between multi-component
and multi-phase fluids will start to affect the flow dynamics. Such processes are rarely considered
in wellbore stability models when planning and during drilling operations, but the gas kick will be
controlled by such multi-phase flow dynamics.

For the production phase, EOR interventions involving huff-n-puff injection of fluids (liquids and
gases), the detailed flow paths during injection and soaking time will be controlled by multi-phase
flow effects, minimum miscibility pressure, bubble point pressure, capillarity, absorption, dissolution,
etc. The injection path will be controlled by fluid PVT properties, but also by pore space geometry
(Section 4.3) and fracture networks (both hydraulic and natural). In particular, the fluid-storage
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capacity and flow-channeling in natural fractures will play an important role in both single-phase and
multi-phase flow through the reservoir space [67,78].

5.2. Upscaling of Capillarity Effects

The model of an active ganglion in Section 4.2 shows that the CAM flow model can account
for certain multi-phase flow effects. However, such model adaptations are elaborate. An alternative
approach is the introduction of domain functions to up-scale the local multi-phase flow effects. For
example, active ganglions with high surface tension will lead to unsteady flow velocities at the pore
scale, which we suggest can be represented by an oscillatory velocity flux profile (Figure 21a–c).
An active ganglion will slow down at the entrance of a narrow pore throat (Figure 21a) and speed
up again when exiting the throat (Figure 21b). In a representative elementary volume (REV) with a
periodic pore structure, the velocity of an active ganglion can be modeled by an oscillation function
(Figure 21c). The up-scaled continuum model would not “see” the local waxing and waning of fluid
velocity due to interaction of the droplet interfacial tension with pore space. Nonetheless, the domainal
oscillation functions can provide the required average velocity in the pore-network model for use in a
continuum model. The oscillation function would need to be scaled on the basis of micro-fluidic pore
network models or other physical models of the natural system.Energies 2019, 12, x FOR PEER REVIEW 21 of 39 
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Some fundamental insights can be gleaned from the simple pore-network models presented in
this study. For single-phase flow of a given fluid, the permeability distribution alone will fix the
streamlines [13]. The path of the streamlines is entirely controlled by the permeability (resistance
of the medium to fluid flow) and the rate of flow along the streamlines is determined by both the
permeability and porosity (fluid storage capacity of the medium) and the viscosity of the fluid (viscous
retardation due to fluid only). For multi-phase flow, the permeability alone does not fix the streamlines.
A combination of interactions of the active fluids with the pore space (capillarity, wettability) will
determine the flow path. We suggest here that up-scaling may be possible using domain functions
that locally scale an oscillatory flux (Figure 21), based on multi-phase flow behavior for a specific fluid
composition and a specific pore network. The CAM model can accommodate such local flux control
points by using so-called "areal doublets" and "areal dipole elements" [66–68].
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5.3. Multi-Phase Flow and Geometry of Pore Space

We emphasize here (again) that, for multi-phase flow, the permeability alone with fluid viscosity
and connected porosity are no longer sufficient to describe the flow, as would be the case for
single-phase Darcy flow where streamlines are fixed by the permeability structure, and time-of-flight
is affected by local storage effects related to porosity variability [13]. In multi-phase flow, the flow
path will be affected by fluid interfacial tension effects and capillarity. The intensity of the interfacial
tension and capillarity effects will be influenced by the geometry and ratio of pore space surface area
to fluid volume, which is different for different pore shapes. Figure 22 shows that the ratio of pore
space surface area to fluid volume decreases for pore space closer to spherical shapes. The graph
shows how the surface area of the pore in contact with a fluid increases when pore network spaces
change from spherical, via polygonal approximations of the sphere, to angular shapes confined by
fewer surfaces (octahedron, pentagon, and finally a pyramid). The surface area of the pyramid (a
very angular pore space with many acute inner angles) for the same fluid volume is substantially
larger than for the spherical pore shapes. Consequently, reservoir fluid moving through pore shapes
being angular (pyramidal) will have a much larger interfacial contact line with the pore space than for
spherical pores. One may conclude that multi-phase flow effects will be more pronounced in angular
pore spaces as compared to cylindrical and spherical pores.
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Figure 22. Curves showing that the ratio of surface area (vertical scale) to volume (horizontal scale)
is smallest for pore spaces closer to spherical shapes and largest for pyramidal pore shapes. For any
particular finite volume of fluid, the surface contact area with the pore wall varies with pore shape and
in a non-linear fashion when pore volume increases.

Figure 23 shows two extreme cases of rock pore shapes. The angular pore space of Figure 23a
will have an oscillation function showing greater variation in the velocity of the multi-phase fluid
passage than would be the case for the cylindrical pore space of Figure 23b. Further work is needed to
develop the envisioned oscillatory domain functions for up-scaling of multi-phase flow based on the
preliminary insights reported here.



Energies 2019, 12, 1243 23 of 39

Energies 2019, 12, x FOR PEER REVIEW 22 of 39 

 

Figure 23 shows two extreme cases of rock pore shapes. The angular pore space of Figure 23a 
will have an oscillation function showing greater variation in the velocity of the multi-phase fluid 
passage than would be the case for the cylindrical pore space of Figure 23b. Further work is needed 
to develop the envisioned oscillatory domain functions for up-scaling of multi-phase flow based on 
the preliminary insights reported here. 

 
Figure 22. Curves showing that the ratio of surface area (vertical scale) to volume (horizontal scale) is 
smallest for pore spaces closer to spherical shapes and largest for pyramidal pore shapes. For any 
particular finite volume of fluid, the surface contact area with the pore wall varies with pore shape 
and in a non-linear fashion when pore volume increases. 

  
(a) (b) 

Figure 23. (a) Angular pores (close to pyramidal shape in Figure 22) and (b) spherical–cylindrical 
pores (close to spherical shapes in Figure 22) [79]. 

5.4. Future of Pore Network Models 

Pore network models are needed to establish the dynamic relationship between pore 
morphology and connectivity to compute the up-scaled permeability tensor, with anisotropy 
controlled by the local porosity structure. When pores are stable and we neglect molecular sieving 
and interaction of molecules with pore walls and the parameters k and n are up-scaled for the 
continuum scale, then the flow in the porous structure can be modeled using the spatial gradients 
of k and n and we can assume flow is governed by Darcy’s law. The permeability is the flow path 
controller as it determines the spatial resistance to flow and fluid composition can be taken into 
account by using relative permeabilities. The porosity is the scalar of the storage capacity of the 
porous medium and solely acts as time-of-flight controller [13]. 

When flow processes are more complex and variability in pore structure affects multi-phase 
flow behavior (immiscible), involving changes in interfacial energy due to phase changes and 
capillarity, pore network models can provide fundamental insight of the non-linear and 
time-dependent thermodynamics that control the flow processes. Direct pore scale simulators take 
real-pore-scale topology to model multi-phase flow and account for relative permeability, 
wettability, and capillarity for the specific system modeled. We may still use indirect or generic pore 
network models to improve our understanding of the impact of key processes on the flow behavior 

Figure 23. (a) Angular pores (close to pyramidal shape in Figure 22) and (b) spherical–cylindrical pores
(close to spherical shapes in Figure 22) [79].

5.4. Future of Pore Network Models

Pore network models are needed to establish the dynamic relationship between pore morphology
and connectivity to compute the up-scaled permeability tensor, with anisotropy controlled by the
local porosity structure. When pores are stable and we neglect molecular sieving and interaction of
molecules with pore walls and the parameters k and n are up-scaled for the continuum scale, then the
flow in the porous structure can be modeled using the spatial gradients of k and n and we can assume
flow is governed by Darcy’s law. The permeability is the flow path controller as it determines the spatial
resistance to flow and fluid composition can be taken into account by using relative permeabilities.
The porosity is the scalar of the storage capacity of the porous medium and solely acts as time-of-flight
controller [13].

When flow processes are more complex and variability in pore structure affects multi-phase
flow behavior (immiscible), involving changes in interfacial energy due to phase changes and
capillarity, pore network models can provide fundamental insight of the non-linear and time-dependent
thermodynamics that control the flow processes. Direct pore scale simulators take real-pore-scale
topology to model multi-phase flow and account for relative permeability, wettability, and capillarity
for the specific system modeled. We may still use indirect or generic pore network models to improve
our understanding of the impact of key processes on the flow behavior of multi-phase fluids in the
porous reservoir. Poro-elasticity and pore failure, when local pressure breaks pore structures, may
complicate continuum flow models due to time-dependency and micro-mechanical interaction with
flow involving pressure differentials in the pore space and induced stress gradients in the elastic
pore material.

Economic incentives to better understand, and thereby engineer or control flow in multi-phase
fluids in porous media, are particularly strong when EOR interventions need to be scaled based on
models of the detailed EOR process. For such applications, understanding highly heterogeneous,
anisotropic, and fractured porous media remains an important and a challenging research task,
computationally intensive and thus costly and time-consuming. Calculation of the equation of
state, bubble point pressures, and vapor–liquid equilibrium as reservoir pressures decline over
time must be linked with local velocity and pressure field solutions, capillarity and gas adsorption,
slippage, Knudsen diffusion, and Klinkenberg corrections. The dynamic nature of these processes, all
non-continuum effects, makes it difficult to work with simple up-scaled Darcy flow (k, n) parameters.

Pore space and throat morphology and angularity, tortuosity, and connectivity will affect
immiscible multi-phase fluid flow, with a dynamic process such as adsorption, dissolution and
wormhole formation, and salt/calcite precipitation with variable saturation concentrations, biomass
growth, micro-fracturing, solute transport, and spatial wettability changes. Pore-scale models can
provide physics-based constitutive relationships to support empirical relationships of permeability
and flow in continuum models. Inevitably, simple continuum models need be modified to account for
dynamic pore modifications due to micro-fracturing, dissolution, precipitation, and biomass growth,
which are likely to occur over the longer time-scales involved in hydrocarbon field production.
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Capillary pressure due to the co-existence of multiple phases is usually calculated by experimental
means, such as the mercury injection, porous diagram method, centrifugal method, and dynamic
capillary method [80]. These techniques require significant time and resources, which are not available
for every project. The vast majority of EOR interventions depend on accurate representation of
the complexity and heterogeneity of the reservoir. Numerical compositional reservoir simulation
is required to capture the exact mechanisms, such as mass transfer between the several fluid
phases [53–56]. Recently, several authors have used mathematical models to study various aspects in
EOR applications, such as an optimal water alternating gas (WAG) ratio to prevent viscous fingering,
partially miscible 2-phase/3-phase flow, and minimum miscibility pressure [81–85]. The present work
aims to open up a new avenue to develop mathematical tools for fast reservoir models to help improve
predictions of well performance, including multi-phase flow and EOR methods.

6. Conclusions

The purpose of this study is to apply recently developed algorithms based on CAM to model the
particle paths of fluid flowing through a network of pores. The algorithms are also implemented to
model the flow from a porous reservoir section into the wellbore. Although complex analysis methods
(CAM) are limited to 2D flows, several advantages include infinite resolution and computational
efficiency. A simple pore network model based on CAM resolves for the local increase and decrease
of displacement rates as reservoir fluid moves in and out of narrow pore throats. Tracing passive
ganglions in upscaled flow models would not deform (Figure 6d), but the same ganglions will be
subjected to periodic stretching when moving through a regularly varying pore structure (Figure 6c).
Previous studies have shown [13] that, for a flow in a porous medium, the streamlines are not affected
by any spatial porosity changes and only vary based on spatial permeability changes, assuming
single-phase flow and all other conditions are constant. However, this is not true for reservoirs with
multi-phase flow, where interfacial, capillary, and inertial forces interact with the porosity structure of
the formation, which all affect the fluid flow path. A preliminary model where the capillary pressure
is simulated by a dipole analytical element (Figure 18) shows that the streamline patterns are deviated
and different from the case without capillary pressure (Figure 5). Fluid-phase ratios and vapor–liquid
equilibrium in the pore space may both be affected by the local pressure changes and interact with the
capillary pressure, which will be investigated in future studies. What is unique about the CAM-based
pore models presented in our study is the capability to exploit the high spatial resolution and the
potential to link the model to phase-change computations.

Phase changes leading to gas bubble formation can be modeled in the pore network model by the
insertion of minute dipoles in the flow description, triggered by local pressure changes. The nucleation
of gas bubbles in nano-pores can be modeled using dipole nuclei, which nucleate into gas bubbles when
the local pressure in a pore drops below the bubble point pressure. The gas oil ratio in well models
accounting for capillary pressure in calculations of the vapor–liquid equilibrium will rise slower
than without consideration of the capillary forces. Quantifying such delays in the onset of bubble
point pressure due to capillarity is important because a delay in the intensification of two-phase flow
may increase the volume of estimated ultimate resources (EUR), based on valid physical principles.
Capillary pressure calculated from the pore-models may be used to predict the gas oil ratio (GOR)
of fluids in liquid-rich shale reservoirs. This may have a significant impact on accurate estimation
of bubble point pressure suppression and onset of the multi-phase flow, leading to more reliable
reserve estimations.

With the basic pore network model in place, the pressure field at the transition zone between
the porous reservoir and the open wellbore was modeled. In particular, the dynamic BHP profile
across the wellbore is quantified for several fundamental cases. The flowing BHP profile can be
estimated for underbalanced and overbalanced well sections at the level of the reservoir, after applying
so-called branch-cut corrections. Several practical insights on BHP development for a flowing well can
be formulated:
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1. For a reservoir pressure that is underbalanced by the mud weight in the well, estimation of lateral
pressure gradients in the BHP may help the operators to adjust any deficit in the density of the
drilling fluids to prevent reservoir fluid reaching the surface via the annulus. The pressure of
the fluid flowing in a wellbore can be effectively modeled by using a combination of a pore
network model with a wellbore flow model. If the well models are properly scaled, the time for
reservoir fluid to reach the surface can be predicted using time-of-flight contours. Ultra-fast rise
of reservoir fluid is accompanied by a pressure kick, which may lead to the loss of well control
(and is termed a blow-out when catastrophic).

2. For reservoir pressure that is overbalanced by the mud weight in the well, the estimation of lateral
pressure gradients in the BHP may assist the operators to select the appropriate combination of
mud weight and circulation rate that will prevent an unwarranted invasion of the reservoir space
by drilling fluid, which may lead to the loss of costly drilling mud. The mud not only provides
pressure balance in the well, but is also a lubricant for the cutter which may wear, break, and get
stuck when lost circulation occurs.

3. Traditional wellbore stability models focus on the prevention of failure of the wellbore rock
using geo-mechanical properties (elastic moduli and brittle failure criteria for certain stress
concentrations). The simple models presented here show that mud circulation during drilling
and pressure gradients at the transition of the reservoir to the wellbore may cause fluid flow
which poses a drilling hazard if incompletely captured in concurrent geo-mechanical wellbore
stability models, which focus on the elastic limit and brittle failure of the wellbore.
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Appendix A. Branch Cuts in Pressure Plot

For wellbore and pore models in this study, simply taking the real part of the complex potential
may lead to inconveniently placed branch cuts, which cause discontinuity in the pressure plots. Thus,
the real and complex potential need to be manually separated in order to facilitate choices about
branch cut placement. Examples for branch cut solutions are presented below.

Appendix A.1. Background

The real part of the complex potential yields the potential function, which can be used to calculate
the pressure field in a reservoir (as detailed in Section 4.1). Several of our prior studies include
pressure field solutions for several analytical elements (such as point sources and sinks representing
vertical injectors and producers, as well as line sinks, representing hydraulic fractures) and obtained
excellent matches with independent pressure field solutions generated using a numerical reservoir
simulator [63].

The superposed complex potential (Ωsup(z)) for any two analytical elements ΩFF(z) and ΩAD(z), is:

Ωsup(z) = ΩAD(z) + ΩFF(z) [m2·s−1]. (A1)

The pressure change at any point z in the complex plane is calculated by selecting the real part of
the superposed complex potential, <Ωsup(z), and subsequently applying Equation (A3) below. The
complex potential for a pore element is given in Equation (A4).
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Appendix A.2. Demonstration of Branch Cut for a Simple Case

A brief discussion of branch points and branch cuts is warranted at this point. Assume a function
ω = f (z), which maps points from the z plane to another domain in the ω plane. If the function
f (z) is single-valued, for each value of z we can obtain single value of ω. However, if the function
f (z) is multi-valued, a value of z results in several values of ω. For example, consider a circular path,
represented by the equation z = z0 + reiθ , around a point z0, where r is a constant greater than zero
and θ varies in a counterclockwise direction around z0. The function f (z) results in different values
for ω as we move around the circle. Here, z0 is defined as the branch point of the function f (z) and
multiple ω are different branches of the function. There are two branch points for a function, one at
infinity and the other at z, such that f (z) = 0. Finally, a branch cut is a line connecting two branch
points at f (z) = 0 and infinity, which separates the discontinuity present in a complex plane.

Next, we calculate the pressure field for a synthetic reservoir with properties as summarized in
Table A1 to show the branch cuts for a pore element. We assume initial pressure (P0) is zero, which is
an acceptable assumption for a simple synthetic case. The corresponding pressure changes (delta P)
can be solved using Equation (A2) and Equation (A3):

φsup(z) = <Ωsup(z) [m2·s−1], (A2)

∆P(z) = −φ(z)µ
k

[Pa]. (A3)

Figure A1 shows the pressure profile for a steady-state case, where a horizontal areal doublet with
finite width (represented by black dashed lines) is superposed by a far-field flow (from left to right).
The fracture affects the pressure field in its vicinity, as can be inferred from the deflected isobars close
to the fracture. However, an undesirable computational effect occurs beyond the right-end termination
of the fracture (represented by solid white lines), where the pressure jump continues for an infinite
distance in the horizontal direction toward the right. This effect is due to the occurrence of so-called
branch cuts in the solution of the potential function (Equation (A2)), which becomes undefined at the
vertices of the fracture. The simple model in Figure A1 has four branch points at the vertices of the
fracture, which renders the complex potential undefined at those points (Equation (A4)). This results
in the pressure profile becoming discontinuous at the branch cuts and the pressure change inside and
outside of the fracture shows a big jump.
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Figure A1. Pressure field for a far-field flow near a fracture. Length scale in m and pressure (rainbow
colors) in Pa.

The branch in Figure A1 can be better understood if we consider a function log(z), mapped in
a complex plane as shown in Figure A2. The value of log(z) at A, which is infinitesimally close to
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and above the positive x-axis, differs from that at B, which is infinitesimally close to A but is below
the positive x-axis. The function log(z) is discontinuous across the branch cut represented by line
connecting zero to infinity. A Riemann surface can be used to represent the multiple values of ω by
splitting the z plane into n parallel planes.
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Figure A2. Representation of branch cut at positive x-axis showing discontinuity across two points A
and B.

The discontinuity in Figure A1 can be analyzed by taking two arbitrary points 5 + 10i and 5 − 10i
and plotting the pressure profile across the vertical cross-section between those points. This is the
region with the branch cuts which extends to infinity from each vertex. The cross-section of Figure A3a
demonstrates the acute jump of pressure across the branch cut and, as we move infinitesimally close
to the branch cut, either from above or below it (−0.5i or 0.5i), as shown in Figure A2, the pressure
gradient (∆P) jumps from −0.5 × 104 Pa to 1.25 × 104 Pa. In effect, each pressure plane lies in two
different planes of a Riemann surface as mentioned before. However, Figure A3b shows a pressure
profile along −5 + 10i and −5 − 10i (Figure A1); the change in pressure is smooth and no discontinuity
occurs as the branch cuts do not extend to negative infinity.
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Due to the symmetrical nature of the Equation (A4), only one of the four vertices (among, za1, za2, 
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The real and imaginary parts of Equation (A7) can be separated as follows: 

Figure A3. (a) Pressure profile along 5 + 5i and 5 − 5i in Figure A1. Horizontal scale shows distance
in meters and the vertical scale is pressure in Pa. (b) Pressure profile along −5 + 5i and −5 − 5i in
Figure A1. Horizontal scale shows distance in meters and the vertical scale is pressure in Pa.

Appendix A.3. Proposed Solution to the Branch Cut Placement

The method adopted here to overcome branch cut effects is to separate the real and imaginary
parts manually and calculate the phase angles by using tangent function as shown in Equation (A6)
below for all the logarithmic terms in Equation (A4). This results in a smooth pressure profile without
any unrealistic pressure jumps as shown in Figure A3a.
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The following template is used to manually separate the real and imaginary terms in Equation
(A4) and generate the potential plot solution of Figure 15b:

Ω(z) = −i·υ(t)
2πhn·L·W ·e

−iγ·[(z + za2)(log(−e−iγ(z− za2))− (z + za1)(log(−e−iγ(z− za1))+

(z + zb1)(log(−e−iγ(z− zb1))− (z + zb2)(log(−e−iγ(z− zb2))]
[m2·s−1], (A4)

Ω(z, t) =
υ(t)

2πhn · L ·W [<[A− B + C− D] + i·=[A− B + C− D]] [m2·s−1]. (A5)

Due to the symmetrical nature of the Equation (A4), only one of the four vertices (among, za1, za2,
zb1, and zb2) comprised in the terms A, B, C, and D (Equation (A5)) needs to be simplified, for which
we use:

A = −i · e−iγ[(z + za2)(log(−e−iγ(z− za2))]. (A6)

Term A defined in Equation (A6) can be expanded as follows:

A = i· log R1· cos γ·(x− xa2)− cos γ·(x− xa2)·arctan b1
a1
− log R1· cos γ·(y− ya2)− i· cos γ·(y− ya2)·arctan b1

a1
+

log R1· sin γ·(x− xa2) + i· sin γ·(x− xa2)·arctan b1
a1
+ i· log R1· sin γ·(y− ya2)− sin γ·(y− ya2)·arctan b1

a1

. (A7)

The real and imaginary parts of Equation (A7) can be separated as follows:

<[A] = log R1·[sin γ·(x− xa2)− cos γ·(y− ya2)]− arctan
b1

a1
[sin γ·(y− ya2) + cos γ·(x− xa2)], (A8)

=[A] = log R1·[cos γ·(x− xa2)− sin γ·(y− ya2)]− arctan
b1

a1
[cos γ·(y− ya2)− sin γ·(x− xa2)], (A9)

where,
z = x + i·y
za2 = xa2 + i·ya2

a1 = − sin γ·(y− ya2)− cos γ·(x− xa2)

b1 = + sin γ·(x− xa2)− cos γ·(y− ya2)

R1 =
√

a2
1 + b2

1

. (A10)

Other termss in Equation (A5) related to vertices za1 (B), zb1 (C), and zb2 (D) can be formulated
similar to Equation (A6) and Equation (A7) to separate the real and imaginary terms as follows.

<[B] = log R2·[sin γ·(x− xa1)− cos γ·(y− ya1)]− arctan
b2

a2
[sin γ·(y− ya1) + cos γ·(x− xa1)] (A11)

=[B] = log R2·[cos γ·(x− xa1)− sin γ·(y− ya1)]− arctan
b2

a2
[cos γ·(y− ya1)− sin γ·(x− xa1)] (A12)

<[C] = log R3·[sin γ·(x− xb1)− cos γ·(y− yb1)]− arctan
b3

a3
[sin γ·(y− yb1) + cos γ·(x− xb1)] (A13)

=[C] = log R3·[cos γ·(x− xb1)− sin γ·(y− yb1)]− arctan
b3

a3
[cos γ·(y− yb1)− sin γ·(x− xb1)] (A14)

<[D] = log R4·[sin γ·(x− xb2)− cos γ·(y− yb2)]− arctan
b4

a4
[sin γ·(y− yb2) + cos γ·(x− xb2)] (A15)

=[D] = log R4·[cos γ·(x− xb2)− sin γ·(y− yb2)]− arctan
b4

a4
[cos γ·(y− yb2)− sin γ·(x− xb2)] (A16)

Equation (A5) with terms A, B, C, and D, as defined in Equations (A8)–(A16), results in a
continuous potential function plots (isobars, Figure A4) for the reservoir defined in Table A1.
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Figure A4. Pressure profile for fracture superposed with far field flow by separating the real and
imaginary terms individually. The branch cut seen in Figure A1 has been removed by the applied
procedure. Length scale in meters and pressure (rainbow colors) in Pa.

Table A1. Properties for pressure field generation.

Physical Quantity Symbol Value Units

Depth h 1 m
Porosity n 20 %

Permeability k 9.87 × 10−16 m2

Viscosity µ 0.01 Pa·s
Far-field velocity ux 9.5 × 10−9 m·s−1

Angle of far-field flow α 0 ◦

Fracture center zc 0 m
Fracture length L 5 m
Fracture width W 1 m

Angle γ 0 ◦

Angle between the
corner points β 90 ◦

Strength of fracture ν 9.5 × 10−9 m4·s−1

The velocity component obtained by differentiating the expression in Equation (A4) is used
to generate the streamlines and TOFC for the pore models in this study. Equations (A10)–(A15),
detailed later, obtained by splitting Equation (A4), is used to calculate the pressure plots along with
Equation (A3).

Appendix B. Dipole Strength and Relationship Radius with Far-Field Flow Rate

Appendix B.1. Velocity Potential

Consider a local dynamic system occupying a certain bounded domain, <, represented by a
singularity doublet (or dipole) (Figure A5) of a certain strength Dm(t) that may or may not vary with
time, t, and has dimension [m3/s].
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Figure A5. Flow paths tracked for far-field fluid (blue particles) and injection fluid (red particles). The
doublet singularity has non-dimensional strength Dm = 1 and the far-field flow-rate V∞ = 1. Upstream
and downstream stagnation points are marked (yellow dots). Local domain radius is controlled by the
relative strength of the dipole and far-field flow rate in the external domain [61].

The velocity potential for a single singularity doublet of strength, Dm, with dimension [m3/s],
and in antipolar alignment with a superposed, uniform far-field flow of velocity, V∞, with dimension
[m/s], is [61]:

V(z) = V∞e−αi + [
−Dme+θi

(z− zd)
2 ] [m/s]. (A17)

The angle α gives the counter-clockwise inclination of the far-field flow V∞ with respect to the
x-axis; angle θ is the clockwise inclination of the polarity axis of the doublet, also with respect to the
x-axis. In case α = θ = 0, and the doublet is located in the origin, as in Figure A5, Equation (A17)
simplifies to:

V(z) = V∞ +

(
−Dm

z2

)
[m/s]. (A18)

Appendix B.2. Dipole Radius and Revolution Time

The singularity doublet ensures a circular cylindrical space is maintained (Figure A5). Outside the
boundary of< occurs an external flow domain, ℵ, itself a dynamic system whose physical manifestation
of existence is comprised of a uni-directional far field flow V∞(t) with dimension [m/s]. The external
flow and the local dipole are oriented anti-polar (Figure A5). Due to the interaction between the local
and external dynamic system, the radius, a(t), of the circular cylindrical space occupied by the dipole
at any time, t, depends on the relative strength of the dipole and the far-field flow:

a(t) =

√
Dm(t)
V∞(t)

[m]. (A19)

Equation (A19) becomes non-dimensional when all lengths are normalized by a typical length
scale, in our case such that the initial radius ai = 1, irrespective of the dimension of unit time ti = 1 [s].

Any initial unit radius and the subsequent decrease in the radius of domain < at three other times
in that same time dimension [s] depend solely on the relative strength of the dipole and the far-field
flow at each time instant (Equation (A20)) and are shown in Figure A6a–c. We have thus defined the
nature of the local dynamic system and its length scale is set by the circular boundary with the external
domain space for each moment in time.

If the far-field flow increases while the dipole strength remains unchanged, the radius of the local
domain will shrink over time (Figure A6). The local revolution time of the dipole is:

tω = πa3(t)/Dm(t) [s]. (A20)
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The smaller the dipole radius, the faster the local clock. Reversely, expansion of the dipole slows
down revolution time.Energies 2019, 12, x FOR PEER REVIEW 31 of 39 
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Figure A6. Local revolution time shortens as the radius of the local domain shrinks. The far-field
velocity increases as (a) Ux* = 1; (b) Ux* = 2; (c) Ux* = 10 [61].

Appendix B.3. Complex Potential and Velocities in Polar Coordinates

Now we can adopt a complex potential for the singularity doublet and a superposed uniform
far-field flow (Figure 1) and drop the time dependency:

W(z) = V∞
(

z +
a2

z

)
[m2/s]. (A21)

Converting to polar coordinates, using W(z) = φ+ iψ and z = x + iy = r cos θ + ir sin θ = re−iθ, gives:

ψ(r, θ) = V∞r
(

1− a2

r2

)
sin θ [m2/s], (A22)

φ(r, θ) = −V∞r
(

1 +
a2

r2

)
cos θ [m2/s]. (A23)

Recall the radial and tangential velocity components that can be obtained from:

vr =
1
r

(
∂ψ

∂θ

)
=

∂φ

∂r
[m/s], (A24)
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vθ = −∂ψ

∂r
=

1
r

(
∂φ

∂θ

)
[m/s]. (A25)

Applying the differentiation of Equations (A24) and (A25) to Equations (A22) and (A23)
respectively and reintroducing time dependency gives:

vr(t) = V∞(t)[1−
(

a2(t)
r

)
] cos θ [m/s], (A26)

vθ(t) = V∞(t)[1 +
(

a2(t)
r

)
] sin θ [m/s]. (A27)

For a certain adopted time unit, the radial and tangential velocity vectors anywhere in the external
(r,θ) space of the local dynamic system, made up of a dipole oriented anti-polar to a far-field flow, can
be found from Equations (A26) and (A27).

Appendix B.4. Velocities of Internal and External Domains

What is relevant for the present discourse is how velocities in the local (internal) and external
domains are constrained and connected. The boundary between < and ℵ comprises two points where
the flow velocity remains invariant and zero at all times, the so-called stagnation points (Figure A5).
The velocities of fluid particles in the local system are, at any time, mostly faster than those of
the external dynamic system. There is one streamline that physically limits the velocities in each
domain, namely the travel path of particles moving along the periphery of the dipole with velocity
vθ(t) = 2V∞(t) sin θ. For a given radius and certain dipole strength, the corresponding far-field flow
is known and fixed:

V∞(t) = Dm(t)/a2(t) [m/s]. (A28)

Velocities in the external domain are nowhere faster than near the apex points of the dipole rim
2V∞. Particles in the local dynamic system reach higher, infinitely fast velocities at the center of the
dipole; elsewhere, in the local domain, particles are fastest when they cross the imaginary vertical line
x = 0.

Appendix B.5. Volume Conservation in Local Domain

If the local domain, <, is occupied by an incompressible fluid volume, a change in volume
(or radius) occurring when the relative strength of the dipole and far-field flow changes (Equation
(A19); Figure A6) is mathematically plausible but physically unrealistic. The change in volume of the
dipole area can be mitigated by allowing the singularity doublet to split up into a spaced doublet. A
spaced doublet that stays aligned with the far-field flow ensures a Rankine flow space is maintained
(Figure A7). The Rankine body is actually made up of a point source and a point sink, the source
positioned upstream and the sink downstream. Superposing far-field flow with velocity V∞

x and angle
α onto the vector field for a point source and point sink with strengths m1 and m2, respectively, yields
the following vector field:

V(z) = Vxe−αi +
m1

z− z1
+

m2

z− z2
[m/s]. (A29)
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Figure A7. Rankine body outlines effective sweep region for injection fluid (red curves). Well strengths
of the doublet are constant and equal for all cases (m*injector = +1 and m*producer = −1). Rankine body
region is flattened by faster far-field flow-rates: (a) Ux* = 1; (b) Ux* = 2; (c) Ux* = 5, and (d) Ux* = 10 [61].

Before deriving the algorithm to transform a singularity doublet to a Rankine object, an
assumption is made such that the new radius of the point doublet, which is calculated from the
square root of the ratio of strength of the dipole and local far-field velocity at a certain time, is taken as
the half width (h) of the evolved Rankine object. The height (radius) of the point dipole at initial time
(t0), represented by h0 [m] is a constant and is calculated from:

h0 =

√
Dm

V∞
0

(constant) [m], (A30)

where Dm [m3/s] is the strength of the dipole and V∞
0 [m/s] is the initial local far-field flow velocity.

The area occupied by the point dipole at time (t0) is a constant calculated from the following Equation:

Are f = πh2
0 (constant) [m2]. (A31)

We assume that the center of the active object is moving under the influence of the pores and the
far-field flow. Based on the particle tracking procedure, Za [m] is calculated for the center of the dipole
at a certain time tj from initial time t0:

za(tj) = zj−1(tj−1) + v(zj−1(tj−1))∆t [m]. (A32)

The local far-field velocity at time t is calculated by superposing the far-field velocity with the
velocity potential of singularity doublet (Equation (A18)). The condensed superposed velocity is:

V∞(z, t) = vx − ivy [m/s]. (A33)
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At a certain time ∆t from initial time t0, the height (radius) of the dipole shrinks as the magnitude
of the far-field velocity increases. The new height at time ‘t’ is calculated as follows.

h(t) =

√
Dm

V∞(t)
(A34)

We assume that the h(t) at time t calculated from Equation (A34) becomes the height h(t) of the
Rankine oval at a certain time. If we next assume the Rankine oval approximates an ellipse shape, its
surface area can be approximated by πh(t)Zsp, where Zsp is the line segment between the center of the
Rankine oval (Za) and the stagnation points. The figure of reference Rankine oval is given in Figure A8.
Based on the earlier constraint, this area of the ellipse (A) should be equal to the area of the dipole
calculated initially:

A = πh(t)Zsp,Are f = πh2
0 = πh(t)Zsp,Zsp(t) =

h2
0

h(t)
. (A35)

If we assume two-point objects, a source and a sink, each with a strength m1 [m2/s] and −m1

[m2/s] at points z1 [m] and z2 [m], respectively, and a center at za [m]. If we assume the object is in a
complex plane, b = za − z1, then z2 = 2za − z1. The stagnation point can also be calculated from the
equation given by Weijermars and Van Harmelen [61], in their appendix B3):
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Finally, the half width, h(t), of the Rankine oval is given by the following Equation [87]: 
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Figure A8. Rankine oval and definition of half width h and source-sink spacing 2b. [86].

Zsp(t) = za ±

√√√√(z1 − za −
m1

Vx

)2
+

m2
1

(Vx)
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Finally, the half width, h(t), of the Rankine oval is given by the following Equation [87]:

h(t) = (za − z1) cot
(

V∞h
m1

)
[m],z1 =

h

cot
(

V∞h
m1

) − za. (A38)

The cotangent term in Equation (A38) includes strength m (here scaled with 2π included), which
is why 2π does not appear in the expression. Expression (A38) can be used to dynamically scale the
strengths of the doublet source/sink pair of the Rankine oval, such that its area πh(t)(Zsp(t)) stays
the same as that of the initial dipole, which was scaled by Equation (A30). The calculation uses an
iterative process as shown in Figure A9.
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