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Abstract: One of the biggest problems with distribution systems correspond to the load unbalance
created by power demand of customers. This becomes a difficult task to solve with conventional
methods. Therefore, this paper uses integer linear programming and Branch and Bound algorithm
to balance the loads in the three phases of the distribution system, employing stored data of
power demand. Results show that the method helps to decrease the unbalance factor in more
than 10%, by selecting the phase where a load should be connected. The solution may be used as
a planning tool in distribution systems applied to installations with systems for measuring power
consumption in different time intervals. Furthermore, in conjunction with communications and
processing technologies, the solution could be useful to implement with a smart grid.

Keywords: technical power losses; branch and bound; integer linear programming;
phase-load balancing

1. Introduction

Nowadays, modern distribution systems must support the continuous growing and variability of
power demand, because of acquisition of new technologies and consumption habits of electrical
appliances such as air conditioning systems, television sets, and washing machines. Although,
a balanced distribution system is preferable with similar power in phases, these variable consumption
behaviors lead to undesirable unbalance through the distribution system. Therefore, power balance
helps to reduce technical losses and improve the use of resources such as capacitor banks and
transformers load tap changers.

Distribution systems have more users than transmission systems, thus, measuring the
consumption and performing load balancing become complex procedures [1]. Consequently,
phase-load balancing methods for distribution systems employed in utility companies use nominal
loads and diversity factors, assuming power consumption does not change considerably. Hence,
electricity providers use theoretical information on regular operating conditions and contingencies.

According to Quintela et al. [2], load balancing in distribution systems is seldom employed as
technical habit to improve regulation losses. However, there are different proposals to decrease losses
in electrical systems using linear programming techniques. Franco et al. [3] used these tools to solve
the problem of conductor size selection (CSS) in radial distribution systems. Baran and Wu [4] studied
algorithms for reconfiguration in medium voltage (MV) systems, requiring three-phase switches.
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Olamaei et al. also studied feeder reconfiguration in distribution systems, using Particle Swarm
Optimization (PSO) [5]. A different approach uses linear and non-linear programming techniques for
reconfiguration in distribution systems [6].

On the other hand, load balance tries to obtain the same amount of current in each phase.
To achieve this balance, the studies in references [7–10] employed additional components in the
network, such as electric springs, a phase balancer, and reactive power compensating devices.
A different approach, known as phase swapping, assigns loads to every phase in the system, in
order to obtain a similar current in each phase. There are different algorithms proposed to achieve
balance through phase swapping: One example tested two methods: Fuzzy Simulated Annealing
(FSA) and Fuzzy Evolutionary Particle Swarm Optimization (FEPSO), to balance a real low voltage
system from Argentina [11]. Zdraveski et al. [12] presented a dynamic, intelligent load balancing
(DILB) algorithm for selecting the phase where each load should be connected. The paper suggests
employing a rotary switch for load connection. A different study proposed a self-adaptive hybrid
differential evolution (SaHDE) algorithm, tested in modified IEEE 34 and IEEE 123 node systems [13].
Another paper used genetic algorithms to achieve load balance through simulations of a real system
from Iran [14]. Singh et al. investigated particle swarm optimization for load balance. Zhu, Chow, and
Zhang employed mixed integer programming with Branch and Bound (B&B) algorithm [15]. However,
all these studies compute balance for one specific time. For balancing in long-term conditions (that is,
through different intervals), all algorithms must run continuously, possibly modifying load connections
to each phase in every period considered for analysis.

Ballesteros and Souza [16] showed that research to decrease power losses in primary distribution
systems is vast, but not as much in secondary systems. The authors tested five algorithms to balance
secondary networks. All algorithms create different connection matrices showing what phase each
load should be connected to, and the method chose the one with fewer switching operations to perform
instant balancing. Another study used a modified Leapfrog algorithm, in order to maintain the position
of the switches during different periods to achieve load balance. The study simulated 10 loads during
24 h and three different scenarios, reducing network unbalance [17]. A different study used Petri
nets to encompass different algorithms as follows: Fuzzy inference to identify load unbalance and to
perform load transfer between phases or feeders, Markov chains to forecast the load consumption,
and switch selection based on an optimal choice algorithm [18].

This paper presents a load balancing procedure using optimization and linear programming
techniques with B&B for one feeder, and a node or distribution transformer based upon customer
power consumption during different periods. Hence, the algorithm may be used in Smart Grids with
systems for measuring such data. The main contributions of this paper are:

• Unlike other works, this method employs historical data to achieve load balance by swapping each
load to a phase that is fixed throughout the analysis time and no additional switching operations
are required. This fact is important because switching is one cause of transient disturbances [19].

• Additionally, the method finds a way to establish the historical load balance by using an unbalance
factor on each phase for every time. The unbalance factor of the system is the maximum value of
unbalance in all three phases during the analysis time, allowing quantification of the improvement
obtained with the proposed solution.

• Historical load configurations may create unfeasible balance problems; however, the proposed
method uses different load percentages on each phase to minimize the chance of unfeasible
solutions and finds the optimal solution using B&B, which may not be guaranteed with
heuristic methods.

The paper is organized as follows: Section 2 defines the research problem. Section 3 presents
the proposed solution for load balancing using B&B. Section 4 shows simulation results. Section 5
concludes the paper.
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2. Problem Formulation

Customers in an electric distribution system connect to one or more phases of a node, such as
a transformer. The method assumes only single-phase loads connected to the distribution node and
every customer load has a specific value (demand), which depends only upon the customer profile.
For example, Figure 1 shows four customers that may be connected to one of the j phases of the
distribution node.
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Figure 1. Connection diagram for four loads in a distribution node for phases 1, 2, and 3. Xij are
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The total active power consumption B in a distribution node is the summation of all individual
loads connected to the node. If every customer i has total active power Ai, the following equation
shows total power consumption for n customers:

A1 + A2 + A3 + · · ·+ An =
n

∑
i=1

Ai = B. (1)

Additionally, total active power is the summation of the active power of each phase, Bj,
as presented in Equation (2):

B1 + B2 + B3 =
3

∑
j=1

Bj = B. (2)

The proposed solution includes switches for connecting each customer to one specific phase.
Xij is the switch state of load Ai in phase j. Therefore, Equation (3) shows the total active power on
each phase:

A1X11 + A2X21 + A3X31 + · · ·+ AnXn1 = B1,
A1X12 + A2X22 + A3X32 + · · ·+ AnXn2 = B2,
A1X13 + A2X23 + A3X33 + · · ·+ AnXn3 = B3,

(3)

where Ai is the power load demand of each customer i, Bj is total active power per phase,
index j ∈ {1, 2, 3} represents the phase and Xij is the switch state of load Ai in phase j, represented with
a binary variable:

Xij ∈ {0, 1}, (4)

where 1 indicates connection and 0 indicates disconnection of the specific load. Additionally,
each switch connects one load exclusively to one phase, as presented in Equation (5):

3

∑
j=1

Xij = 1. (5)
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Each phase feeds a portion of the total demand at every moment. Equations (6) and (7) present
this situation for a three-phase distribution node:

B1 = λ1B,
B2 = λ2B,
B3 = λ3B,

(6)

3

∑
j=1

λj = 1, (7)

where λj is the fraction of the total demand supplied by phase j. In a perfectly balanced node, λ1 = λ2

= λ3 = 1/3 for each period. However, in practice the real values of λj are different for each time
and phase.

Note the equations apply to only one interval. Long-term load balance requires performing the
computation for different time intervals and obtaining the best switch configuration. Equation (8)
shows the total power of phase 1 represented by Bk1 in each period k (for k = 1 to m periods); herein,
Aki represents the loads in the period k of customer i (for i = 1 to n customers) and Xkij is the connection
of customer i to phase j in period k:

A11X111 + A12X121 + · · ·+ A1nX1n1 = B11,
A21X211 + A22X221 + · · ·+ A2nX2n1 = B21,

...
Am1Xm11 + Am2Xm21 + · · ·+ AmnXmn1 = Bm1.

(8)

In general, the power demanded to phase j in period k can be expressed as:

n
∑

i=1
AkiXkij = Bkj, j, k ∈ N, 1 ≤ j ≤ 3, 1 ≤ k ≤ m. (9)

The general expression allows switching every load to every phase at every time interval, which is
possible in smart grids. However, periodic switching produces transient disturbances that degrade the
quality of the provided energy [19]. The goal of this paper is to develop a method capable of balancing
the loads using the same connections during all the periods. Therefore, the connection vectors are
restricted by Equation (10). Note that the load Aki of customer i will be connected to (or disconnected
from) phase j during all m periods.

X1ij = X2ij = · · · = Xmij = Xij. (10)

The objective function to be maximized is the sum of the binary variables Xij for all the n customers
in phase j. The objective function is restricted by the power balance of each phase. The restrictions
enforce the objective function to converge to a connection vector representing a fraction of the total
demand as close as possible to the fraction defined in Equation (6).

The optimization problem for phase j can be expressed as:

max
→
X j

f
(→

X j

)
=

n

∑
i=1

Xij, (11)

subject to:
n
∑

i=1
AkiXij = Bkj ≤ λjBk, ∀k ∈ N, 1 ≤ k ≤ m, (12)

where:

• Xij: Binary variable showing connection (1) or not (0) of load i to phase j during all periods.
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•
→
X j: Connection vector of phase j, defined as [X1j, X2j, . . . , Xnj]T.

• Aki: Active power from load (customer) i in time k.
• Bk: Available capacity in time k, namely the total power delivered to customers in that

specific period.
• λj: Maximum percentage of the total power supplied by phase j during all periods.

• n: Number of loads in the system.
• m: Number of time periods.

Note that Equation (12) shows the situation in each phase, since λjBk corresponds to the percentage
of total power assigned to one phase. These equations fulfill the power boundaries for each phase
in each given period and during the whole analysis time. Most related studies perform load balance
in one given interval. On the other hand, the objective in this work is to obtain the better balance
during the whole time of analysis. The proposed solution uses customer profiles in different periods to
achieve the best load distribution possible in all available phases.

To determine an objective metric for load balance, the method employs the relation between the
total active power in one period, Bk, and the power of each phase in that period Bkj. Equation (13)
presents the unbalance factor of phase j for period k (UFkj), to compute an error ratio for a
three-phase system:

UFkj =

∣∣∣∣1
3
−

Bkj

Bk

∣∣∣∣ (13)

Equation (13) assumes that 1/3 is the reference value for the ideal balance in a three-phase system,
since the total load should be equally split between all three phases. According to Equation (13),
the unbalance factor changes during each period k and each phase j. Thus, Equation (14) defines
the unbalance factor of the system UFs as the maximum unbalance factor of the distribution system,
obtained as the maximum of all unbalance factor values UFkj of all k periods and j phases. Note that
UFs shows the worst case of load balance for all phases and periods.

UFs = max
k,j

UFkj (14)

3. Proposed Solution

Figure 2 shows a summary of the proposed method that will be explained in each of the
following subsections.
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The proposed method computes an initial value of UFs for the unbalanced distribution system,
to compare it to the final solution. The expected solution is the connection matrix including the position
of all switches Xij, where each load must be connected to a phase, and UFs decreases compared to the
unbalanced distribution system. Since the method computes the initial value of UFs and this value
depends upon the loads and periods, the method should run every time new loads are installed in
the system.

3.1. Definition of λj

Using all demand values, the algorithm computes B and defines λj values to distribute the loads
similarly in each phase. The process has different stages; the first stage defines λ0, which is the sum
of initial λ values for phases 1 and 2 (λ10 and λ20). Ideally, λ0 should be 2/3 and λ20 should be 1/3,
because power in each phase should be one third of the total. However, λ values are not fixed because
customer load values cannot be changed. Therefore, it is not likely that every phase has exactly one
third of the total load. Hence, the method explores different λ values in subsequent stages.

3.2. Use Branch and Bound to Obtain Xij

After defining λj, the method employs the B&B algorithm [20] to determine what phase each
load should be connected to. The resulting solution shows the values of Xij, known as the connection
matrix. The algorithm can be described as a search of the optimum value over the feasible region
by dividing (branching) the region into smaller areas, discarding unfeasible areas and repeating the
process over the remaining areas. The algorithm stops when there are no more nodes in the search
tree to be branched and all the nodes have been bounded. The solution of the problem is the current
best solution at the moment the algorithm stops. If B&B terminates properly (it does not stop early),
it ensures global optimality of the solution found. If B&B terminates properly without finding a
solution, then the original problem itself is unfeasible [21]. Therefore, the proposed method has two
different outcomes: The first one is that problem is unfeasible: No Xij values can fulfill all restrictions
with current λ values; and the second one is that B&B finds Xij values that satisfy the restrictions and
the solution may exhibit a better balance than the original configuration.

The two outcomes depend upon λ values. In the first case, it is mandatory to modify λ values,
in order to find adequate solutions. The second case already presents a balanced system and the
method computes a new UFs to compare the balanced solution to the initial value. If the new UFs in the
solution is smaller than the initial UFs, the solution becomes a candidate for load balance. Otherwise,
a new calculation is required.

3.3. Modification of λ Values

After finding a candidate solution, the method increases the initial λ20 value in steps of ∆λ2, up to
a maximum established value (λ2f ). After this value, if the process finds no solutions, the algorithm
increases λ0 in ∆λ0 up to a maximum value (λ0f ) and λ2 starts in λ20 again. If the procedure finds a
solution, it stores the connection matrix, computes UFs and continues looking for a better solution
by increasing λ1 and λ2 as previously described. This procedure decreases the possibility of finding
unfeasible solutions.

The algorithm ends when all λj reach the maximum established values. The final solution includes
Xij values and the final UFs that can be compared to the initial UFs to determine balance improvement
in the network.

Note all calculations depend upon load and period values, therefore, the solution may vary if
historical data includes different analysis periods. However, the method always computes UFs, the
worst case of load balance for all phases and periods, finding a solution to improve this metric.
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4. Results

4.1. Test Case

This section presents one application of the method to visualize the performance of the algorithm.
The method was tested with data for hourly demands in 72 periods of time and 10 single-phase loads
connected to a three-phase system, as in reference [19]. Thus, Table 1 presents the initial connection
matrix, where the number “1” means connection and the number “0” means disconnection.

Table 1. Connection matrix for the three-phase distribution system with 10 single-phase loads [19].

Phase
Load

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 1 0 0 0 0 0
2 1 0 0 1 0 0 1 1 0 1
3 0 0 1 0 0 1 0 0 1 0

Figure 3 shows the behavior in time for the different phases for the example demands from
reference [19]. The power demanded during the day is used to simulate the scenarios from the
initial connection.
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Figure 3. Example hour demands for 10 single-phase loads in 72 h [19].

The first step in our method is computing the initial value of UFs. Figure 4 shows all values of
UFij for all phases in the system. According to the figure, the maximum values obtained are 0.172,
0.183, and 0.043 for phases 1, 2, and 3, respectively. Therefore, the maximum value for the system with
the initial configuration (UFs0) is 0.183.

The next steps are to assign λj values and to use B&B to find a candidate load balance solution
and to compute UFs for this solution. Table 2 shows different options with maximum UFij values
computed for each phase.
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Table 2. Unbalance factors computed per phase for the example in Figure 3, with different λ values
using the proposed method.

λj Maximum Unbalance Factor Per Phase
UFs

0 2 Phase 1 Phase 2 Phase 3

0.71 0.46 0.120 0.085 0.115 0.120
0.71 0.49 0.108 0.147 0.115 0.147
0.72 0.43 0.076 0.092 0.051 0.092
0.72 0.50 0.061 0.085 0.051 0.085
0.72 0.51 0.048 0.052 0.051 0.052

The last column in Table 2 shows the maximum value for the system, UFs. Then, the proposed
method selects the last option in Table 2 as the best load balance configuration, since the combination
of λ values (0.72 and 0.51) and the application of B&B generate 0.052 as the minimum of all UFs values.
Therefore, the selected solution achieves a maximum unbalance of 5.2% in all phases during the whole
analysis time.

Table 3 shows the connection matrix for the best balance solution, yielding results in Figure 5.
Note all connections remain the same during the 72 periods.

Table 3. Final three-phase connection matrix Xij for load balance with proposed algorithm,
corresponding to Figure 4.

PHASE
Load

1 2 3 4 5 6 7 8 9 10

1 0 0 0 1 0 1 0 0 1 0
2 1 0 0 0 1 0 1 1 0 1
3 0 1 1 0 0 0 0 0 0 0

Comparing the final UFs (0.052) with the initial UFs (0.183), improvement is 13.1%. Network
operators may use this value to determine if they should implement the proposed load balance or not.

To verify UF conditions at all times, Figure 6 shows UFij values for every phase and each one
of the periods using the connections proposed in Table 3. Note that UFij values are consistent with
Table 2, where UFs is 0.052. Additionally, most of the time UFij values are below 0.03, showing a better
balance. However, UFs is a metric of the worst case of balance during the analysis time. Furthermore,
Figure 6 also corresponds to Figure 5, since power of each phase is similar to each other, therefore,
the unbalance factor is expected to be small.
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Figure 5. Demand curves for the example in Figure 3 after load balance employing the
proposed method.
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4.2. Test on a Real Distribution System

The last test shows the effectiveness of the method by balancing the loads of a real low voltage
(LV) system in the city of Bariloche, Argentina. The system corresponds to one of the six outputs
of a medium and low voltage substation [10]. The original system has 10 feeders with 115 loads.
To adapt the system to only one feeder, we reduced all feeders except the main one to a single-phase
load, corresponding to the sum of the balanced loads of the feeder. The reduced system has 51 loads.
Figure 7 shows the reduced feeder with each load connected the same way as in the actual system [10].

The average power demand per user of each load is presented in Table 4. These demands were
calculated by taking the apparent power of the loads, given in reference [10], and assuming a power
factor of 0.85. Data presented in [10] does not include customer load variation with time, thus a more
realistic load profile of the customer was generated by classifying the loads into three categories:
Residential, industrial, and atypical. Each load profile includes 24 h with steps of 1 h using a base
load curve depending on the load category. The average of the load profile is the same as the value of
the original static load in reference [10]. Most of the loads in the system are residential, because the
substation is located in a suburban area.
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Figure 7. Reduced low voltage (LV) feeder system, adapted from reference [10].

Table 4. Test system average demand per load, per user (p.u.) [10].

Load # Av. Demand
(p.u.) Load # Av. Demand

(p.u.) Load # Av. Demand
(p.u.)

1 1.530 18 0.978 35 0.978
2 0.978 19 0.978 36 0.995
3 0.978 20 0.978 37 0.978
4 1.658 21 0.978 38 1.003
5 0.978 22 0.995 39 1.156
6 0.978 23 0.986 40 1.156
7 0.961 24 0.978 41 1.156
8 0.969 25 0.961 42 1.156
9 0.978 26 0.961 43 5.763
10 0.978 27 0.952 44 6.713
11 0.969 28 0.961 45 9.442
12 0.978 29 0.978 46 5.597
13 2.491 30 0.978 47 10.287
14 0.952 31 0.978 48 10.506
15 0.961 32 1.003 49 3.737
16 0.850 33 0.986 50 10.838
17 0.978 34 0.978 51 6.205

Figure 8 shows the initial demand profiles for each phase. Note that the initial load profile is
obtained from the load connections shown in Figure 7, which correspond to the physical connections
of the actual system.
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Figure 8. Initial demand curves for Bariloche, Argentina.

Figure 9 shows the unbalance factor in each period for all three phases. Maximum values are 0.17
in Phase 1, 0.154 in Phase 2, and 0.056 in Phase 3. Therefore, UFs is 0.17.
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With this information, we applied the proposed method to obtain a better balance solution. Table 5
shows the connections obtained with the proposed method. Recall, every load connects to only one
phase during the whole analysis time.

Table 5. Connections for the Bariloche feeder, using the proposed method.

Load # Phase Load # Phase Load # Phase

1 1 18 2 35 3
2 2 19 2 36 2
3 2 20 2 37 2
4 2 21 2 38 3
5 2 22 3 39 2
6 3 23 2 40 3
7 2 24 3 41 3
8 2 25 3 42 3
9 2 26 3 43 1

10 2 27 1 44 2
11 3 28 2 45 3
12 2 29 3 46 1
13 2 30 2 47 2
14 3 31 1 48 3
15 2 32 2 49 1
16 3 33 1 50 2
17 3 34 3 51 3

Figure 10 shows the resulting demands for each phase using the proposed method and the
connections from Table 5. Comparing the initial situation in Figure 8 with the proposed solution,
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Figure 10 shows a better balance between the loads. However, it is important to quantify the amount
of balance achieved with the method.
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Figure 10. Balanced demand curves for Bariloche, Argentina.

Figure 11 shows the unbalance factor during all analysis time. Maximum value for Phase 1 is
0.043, Phase 2 is 0.076, and Phase 3 is 0.062, therefore, UFs after load balance is 0.076, a reduction of
9.4% from the original system. Additionally, Figure 11 shows UF values decreased in Phases 1 and 2,
making these values similar for all phases and supporting the benefits of the proposed system.
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5. Conclusions

The research presented in this paper provides a tool for historical load balance by suggesting
appropriate connections to each one of the phases, employing data of customer power demand in
different periods. The proposed method does not require switching during the analysis time and
creates a solution for a total given time; therefore, the algorithm does not affect power quality of
the distribution system. Additionally, the method uses different load percentages on each phase to
minimize the chance of unfeasible solutions and finds optimal load balance with Branch and Bound.
The method was tested with example data and with information from a real LV system, decreasing the
unbalance factor of the system by 10%, as confirmed by the maximum unbalance value in all three
phases during the analysis time. The solution may be used as a planning tool in distribution systems
applied to installations with systems for measuring power consumption in different time intervals.
The method may be implemented locally in each node, either with manual actions or automatically
with Smart Grid functionality.

Future research should test the proposed method in the field using distribution transformers
located in urban neighborhoods to identify advantages and disadvantages of the implementation and
suggest possible adjustments. Extended research should be performed for several nodes in a circuit
and include additional electrical metrics.
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