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Abstract: This paper investigates the mixed convection and entropy generation of an Ag-water
nanofluid in an L-shaped channel fixed at an inclination angle of 30◦ to the horizontal axis.
An isothermal heat source was positioned in the middle of the right inclined wall of the channel
while the other walls were kept adiabatic. The finite volume method was used for solving the
problem’s governing equations. The numerical results were obtained for a range of pertinent
parameters: Reynolds number, Richardson number, aspect ratio, and the nanoparticles volume
fraction. These results were Re = 50–200; Ri = 0.1, 1, 10; AR = 0.5–0.8; and ϕ = 0.0–0.06, respectively.
The results showed that both the Reynolds and the Richardson numbers enhanced the mean Nusselt
number and minimized the rate of entropy generation. It was also found that when AR. increased, the
mean Nusselt number was enhanced, and the rate of entropy generation decreased. The nanoparticles
volume fraction was predicted to contribute to increasing both the mean Nusselt number and the rate
of entropy generation.

Keywords: mixed convection; entropy generation; nanofluid; L-shaped channel; FVM

1. Introduction

Despite its active classification, mixed convection flow is still a useful tool of heat transfer
augmentation. It provides efficient cooling (or heating) for many engineering applications, such as for
building ventilation, cooling gas turbine blades, cooling electronic devices, cooling chemical reactors,
emergency cooling systems of nuclear reactors, etc. Many studies have revealed that the mixed
convection flow have different issues based on the geometry of the channel or the duct. However, most
researchers compromise between the heat transfer enhancement and the associated pressure losses.
Shah and London [1] have given an early and very good review of forced convection using regular
duct geometry. In the early designs of a corrugated channel, the pressure drop reaches up to six times
that of a smooth channel, while the heat transfer augmentation was aut 3.5 times [2]. Separation and
reattachment of the flow in backward- and forward-facing steps were proven to give an improvement
to efficient heat transfer [3]. Finned or ribbed wall surfaces are also implemented as a passive strategy
to improve the mixing of flow and increase the area of heat transfer [4–6].

For the ventilation requirements to obtain optimal performance and space limitation, the flow in
a channel can be designed into different shapes. Mezrhab et al. [7] considered the surface radiation
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together with natural convection in a vented T-shaped cavity. They observed that the convective heat
transfer increased with cavity height. Kasaeipoor et al. [8] investigated the mixed convection of a
nanofluid in a vented T-shaped cavity in the presence of a uniform magnetic field. It was assumed that
the flow entered from the bottom (i.e., the vertical leg) and exited from the horizontal leg. They reported
that for the dominant forced convection, the maximum heat transfer occurred when the vertical leg
was very thin in comparison to the horizontal leg. However, for the dominant natural convection, the
maximum heat transfer occurred when the cavity shape was mostly square. Biserni et al. [9] optimized
the geometry of an H-shaped cavity intrusion into a two-dimensional conducting body with uniform
heat generation using Bejan’s constructal theory [10]. They demonstrated that it was necessary to
evolve a complex geometry in order to improve heat transfer performance. Marcondes and Maliska [11]
addressed a numerical method for handling the inlet velocity profile for open-ended channels. Their
calculations were conducted for an L-shaped channel. An L-shaped duct plays a vital role in cooling
the trailing blade of a gas turbine. Shih et al. [12] discussed an L-shaped duct with the presence of
pin fins in sand particles for rotating and non-rotating conditions. Pardeshi [13] investigated the
L-shaped cooling passage for the trailing edge of a gas turbine blade with a combination of ribs and
pin fins under rotating and non-rotating conditions. Although the L-shaped geometry has been widely
investigated, the investigations are limited to closed enclosure [14–16].

When the heat transfer augmentation is a challenging issue, improving the properties of the
working fluid can reinforce the mixed convection. Over the past two decades, nanofluids have
been demonstrated as a powerful and interesting field in heat transfer enhancement. A nanofluid
is the dispersal of solid nanoparticles with superior thermal conductivity into the working base
fluid [17]. A nanofluid is a familiar strategy in enclosures [18], nevertheless, they are used in vented
cavities [8,19–22] and channels [23–25]. In practice, these vented cavities and channels are parts of
an enclosed loop system because the nanofluid is toxic and expensive. Therefore, it is impractical to
discharge a nanofluid into the environment. The common feature among these studies (except in some
situations) was that the mixed heat transfer augments with increasing volume fraction of nanoparticles.
Nanofluids serve in lowering the separation and in turn minimize the secondary flow, which benefits
heat transfer enhancement.

A growing interest in improving the thermodynamic performance of thermal systems has led
to extensive studies of exergy utilization and entropy generation. Fluid friction and irreversible heat
transfer are the main reasons causing entropy generation and hence, attenuate the available work of
the system. Bejan [26–28] published essential studies discovering the reasons that cause the generation
of entropy in applied thermal engineering using the second law of thermodynamics. Following
Bejan’s conclusions from these books, several studies have been published in this topic under different
engineering circumstances. An analysis of entropy generation in enclosures with and without a
nanofluid can be found in several past studies [29–37]. These studies recorded an increase in entropy
generation with an increasing ratio of inertial to viscous forces, while there was conflict between
heat transfer irreversibility and the volume fraction of nanoparticles. In addition, the inclination of
enclosures was found to have a notable effect on entropy generation. In some of these studies, it was
found that the magnetic field could reduce entropy generation. Regarding the regular channel [38–44]
and step channel [45,46], it was found that the Reynolds number increases the rate of the generation
of entropy.

During a continuous literature survey, we did not find a study that concentrated on entropy
generation in a wide variety of irregular ducts. Thus, in this paper, we present an analysis of entropy
generation in a nanofluid in an L-shaped duct with a mixed convective flow. We used this geometry
because it is very important and useful in cooling systems of nuclear and chemical reactors, electronic
components, etc.
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2. Mathematical Modelling

As shown in Figure 1, our problem was a two-dimensional L-shaped duct, where the x-axis was
measured along the bottom (i.e., the horizontal leg) of the channel, while the y-axis was measured
along the vertical leg of the channel. The aspect ratio of the inner side H to the outer side L is AR. The
flow enters in the negative y-direction, turns in 90◦, and exits from the horizontal leg. A heat source of
length L0 was fixed at the bottom of the horizontal channel at a distance X0 from the origin. The channel
was tilted with an angle of λ = 30◦ to the horizontal axis. Two approaches exist for modeling nanofluid
heat transfer: single-phase and two-phase. In the single-phase model, a uniform volume fraction
distribution is assumed for nanofluids. In other words, the viscosity and thermal conductivity of
nanofluids are formulated by a volume fraction and nanoparticle size, then continuity, momentum, and
energy equations are solved for nanofluids. In the two-phase model, the volume fraction distribution
equation is added to other conservation equations [47–53]. However, most comparative studies have
concluded that the two-phase models predict almost identical hydrodynamic fields to the single-phase
ones, but this is not the case for thermal fields. Haghshenas Fard et al. [54] showed that the average
relative error between experimental data and the numerical results based on single- and two-phase
models were 16% and 8%, respectively. The discrepancy between the two models, about 8%, arose for
Reynolds number ranges between 700 and 2050.   
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Figure 1. The physical domain and coordinates system.

This study was carried out for a steady-state case and the flow was assumed laminar,
incompressible, and Newtonian. The buoyancy force is considered based on the Boussinesq’s
approximation. Nanoparticles with a volume fraction ϕ were uniformly dispersed within the base fluid,
where they were in thermodynamic equilibrium. The dimensionless form of the mass, momentum,
and energy equations are as follows:
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with the following boundary conditions:
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At solid walls: U = V = 0;
Inlet port: U = 0, V = 1, and θ = 0;
Outlet port: V = 0, ∂U/∂X = 0, ∂θ/∂X = 0;
At heat source: θ = 1;
At the others solid walls: ∂θ

∂n = 0, where n is a normal vector.

Re =
ρ f uc L

µ f
, Ri =

gLβ f (Th − TC)

uc2 , Pr =
υf
αf

, θ =
(T − Tc)

(Th − Tc)
,

where uc is the velocity of the inlet cold fluid, which is considered as a reference velocity.
The local Nusselt number can be written as:

Nul =
hn f L

k f
,

hn f =
qw

Th−Tc
,

kn f = − qw(
∂T
∂y

)
y=0

,

h = −Kn f (
∂T
∂Y )Y=0

Th−Tc
,

Nul = − kn f
k f

(
∂θ
∂Y

)
Y=0

.

(5)

The mean Nusselt number can be expressed as:

Num =
1
L0

∫ B

A
Nul dX. (6)

The dimensional relation of entropy generation is given by:
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kn f
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, (7)

and the non-dimensional form of the above equation is:

S∗
l = Sl
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K f (∆T)2

L2Tr
2 ,
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kn f
k f

[(
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(8)

where

Tr =
Th + Tc

2
, Ω =

∆T
Tr

, ∆T = Th − Tc, Br =
µuc

2

k∆T
. (9)

The total entropy generation throughout the whole domain can be defined as:

Sgen,m =
∫ 1

0

∫ 1

0
S∗

l dXdY. (10)

The criterion of thermal performance against the generation of entropy that was proposed in past
papers [36,37] is defined here in an inverse form as:

ε =
Num

Sgen,m
. (11)

In this form, we get a better display to this criterion, where its maximum values correspond to the
best thermal performance.
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Nanofluid Relations

Table 1 presents the individual thermo-physical properties of Ag-nanoparticles and water. In this
study, we considered the Ag-water nanofluid with the following thermo-physical properties.

Table 1. Thermo-physical properties of the used nanoparticles and the base fluid.

Thermo-Physical Properties Ag-Nanoparticle Water (Base Fluid)

ρ (kg·m−3) 10,500 997.1
Cp (J·kg−1·K−1) 235 4179
k (W·m−1·K−1) 430 0.613
B × 10−5 (K−1) 5.1 21

µ × 10−4 (kg·m−1·s−1) - 8.9
α × 10−6 (m−1·s−1) 149 0.14

Assuming spherical Ag-nanoparticles and following Brinkman’s and Maxwell-Garnetts’ [55]
formula for dynamic viscosity and thermal conductivity, respectively, the relations of the
thermo-physical properties of a nanofluid can be written as [56]:

µn f = µ f (1 − ϕ)−2.5, (12)

kn f = k f


(

ks + 2k f

)
− 2ϕ

(
k f − ks

)
(

ks + 2k f

)
+ ϕ

(
k f − ks

)
, (13)

(
ρ cp

)
n f = (1 − ϕ)

(
ρcp
)

f + ϕ
(
ρcp
)

s, (14)

(ρβ)n f = (1 − ϕ)(ρβ) f + ϕ(ρβ)s. (15)

3. Numerical Solutions

3.1. Methodology

We used the collected grid finite volume method for the numerical solution of the governing
Equations (1)–(4). The computational domain was uniformly discretized (Figure 2) using a displaced
network method with the central difference scheme to discretize diffusive terms and the up-wind
scheme for convective terms. The SIMPLE algorithm [57] was used for pressure–velocity linkage. The
numerical efforts were achieved by an in-house-built FORTRAN computer code (FORTRAN 90). An
iterative procedure was invoked with the following convergence criterion:

∑
j

∑
i

√√√√[ δn+1 − δn

δn+1

∣∣∣∣
i,j

]2

≤ 10−8, (16)

where δ is U, V or θ. Once the variables U, V, and θ were computed, the Nusselt number, entropy
generation, and the performance criterion were calculated.

3.2. Validations

To test grid independency, we calculated the mean Nusselt number for a wide variety of grid
sizes for a Richardson number Ri = 1, AR = 0.5, nanoparticles volume fraction ϕ = 0.04, and λ = 30◦ for
two different Reynolds numbers (Re = 50 and 200). As presented in Table 2, the grid size of 120 × 120
was found to be the most suitable from the accuracy and time-consumption points oview, and thus we
used it in this study.
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Table 2. Grid independency test for a Richardson number Ri = 1, aspect ratio AR = 0.5, nanoparticles
volume fraction ϕ = 0.04, and angle λ = 30◦ for two different Reynolds numbers (Re = 50 and 200).

Number
of Grids 40 × 40 60 × 60 80 × 80 100 × 100 120 × 120 140 × 140 160 × 160

Re = 50 10.953 11.134 11.228 11.285 11.331 11.331 11.331
Re = 200 14.847 13.372 12.760 12.475 12.324 12.324 12.324

This validation was further supported by making a comparison with a vented T-shaped cavity
addressed by Kasaieepoor et al. [8] for a T-shaped enclosure at Re = 100 for various Ri and AR values.
The results of the comparison are presented in Figure 3, which implied a very strong agreement.
This improved the confidence in our built-in code.

Figure 2. A uniform grid distribution of the physical domain.
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4. Results and Discussion

The current study was achieved by varying four pertinent parameters. These were the Reynolds
number Re, Richardson number Ri, aspect ratio AR, and the nanoparticles volume fraction ϕ. Pure
water (Pr = 6.26) was considered as the base fluid and the inclination of the channel was λ = 30◦,
where these two values were fixed throughout the current study. The effects of the first three pertinent
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parameters were categorized into three subsections, while the effect of the nanoparticles volume
fraction was examined inclusively within these three subsections.

4.1. Effect of the Reynolds Number

To study the effect of the Reynolds number, we fixed the Richardson number value at Ri = 1 and
the aspect ratio AR at 0.5. Figure 4 presents the contours of streamlines, isotherms, and isentropic
lines for different values of the Reynolds number Re = 50–200 with an interval of 50. The streamlines
tended to be narrower with increasing values of Re and turned violently through the horizontal leg of
the channel. The effect of the nanoparticles on the streamlines (dashed lines) became prominent at
higher values of the Reynolds number, where the density of the nanofluid, which governs the inertial
force, already increased with the addition of nanoparticles. Increasing the Reynolds number led to
increasing the mass flow rate, hence increasing heat transfer. As such, the thermal boundary layer
close to the heat source looked thinner with increasing Re and resulted in an isothermal region away
from the lower inner corner. This was an indication of a larger heat transfer. Again, the isotherms of
the nanofluid were noticeably distinguished with high Re values. In accordance to the isentropic lines,
the source of the entropy generation was mainly due to the heat transfer irreversibility that was close
to the heat source, even with higher Re values where the friction of the fluid contributed to generating
entropy as shown with Re = 150 and 200.

Figure 5 presents variations of the mean Nusselt number with the nanofluid volume fraction ϕ

for Re = 50–200. The convective heat transfer increased with the Reynolds number and this was due
to increasing the mass flow rate of the fluid/nanofluid, which augmented the overall heat transfer.
Increasing the value of ϕ enhanced the thermal conductivity and the heat capacity of the nanofluid.
Thus, we observed that the mean Nusselt number Num increased gradually with ϕ. However, the
increment of Num with ϕ at Re = 50 was faster than the other higher Re values. This refers to the
relatively low effect of the inertial force against the enhancement raised by the thermal conductivity
and heat capacity.

Figure 6 shows a drastic reduction of entropy generation when the Reynolds number increased
from 50 to 100. By increasing Re greater than 100, the decrease of the entropy generation became
slight. This reduction of entropy generation can be attributed to the decrease of the fluid friction
irreversibility because of the inverse proportionality between the nanofluid friction factor and the
Reynolds number. Increasing the volume fraction of nanoparticles caused an increase in entropy
generation, particularly at low Re values as shown in Figure 6. We attributed this increase to the
increase in the exchange of energy and to viscous forces, as a result of the irreversibility of the heat
transfer and fluid friction augment.

The criterion that quantifies convective heat transfer to generated entropy (ε), which was discussed
well in Ismael et al. and Chamkha et al. [36,37], is shown in Figure 7. Referring to the variations
of Num and Sgen,m with Re and ϕ, one can understand the behavior of the ε criterion which is
portrayed in Figure 7, where this figure shows the improvement of the utilized thermal energy
with an increasing Reynolds number where the minimum irreversibility losses could be obtained
with Re = 200. The volume fraction of the nanoparticles could slightly reduce this criterion. To gain a
closer view into the effect of the nanofluid, we normalized the mean Nusselt number Num, the total
entropy generation Sgen,m, and the ε by the their corresponding values for a pure base fluid (ϕ = 0).
The results are gathered in Figures 8–10. These figures demonstrate the reduction of the ε criterion
with the nanoparticles volume fraction in low Reynolds numbers.
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depicts inconsiderable variations in the streamline and isotherm maps when the convection mode
changed from forced (Ri = 0.1) to natural (Ri = 10), except for the isentropic lines, where a high
concentration of isentropic lines was predicted close to the heat source at Ri = 10. The nanofluid
(dashed) lines also demonstrated inconsiderable variations with Ri.

Figure 12 presents the variation of the mean Nusselt number for Ri = 0.1, 1, and 10 at Re = 100
and AR = 0.5. For Ri = 1, the natural and forced convections were equivalent, hence forcing the
nanofluid through the horizontal leg of the channel, which can destroy the natural convective currents
and hence minimize the mean Nusselt number. For the forced convection dominance condition, Ri
= 0.1, the forced nanofluid would reinforce the convection and increase the mean Nusselt number.
However, with the natural convection dominance condition, Ri = 10, the mean Nusselt number was
at its maximum. Similarly, the total entropy generation behaved with the Richardson number as
shown in Figure 13 by giving an indication of the dominance of the heat transfer irreversibility along
with a high effect of the viscous force. Figure 14 demonstrates mostly constant improvement and
linear drawbacks of thermal performance with increasing values of the Richardson number and the
nanoparticles volume fraction, respectively. The effect of the nanoparticles volume fraction was studied
in a normalized fashion as in Figures 15–17. These figures show rapid heat transfer augmentation, and
mostly linear entropy generation increased with ϕ at high Richardson numbers whereas, in general,
the nanoparticles increased the thermodynamic irreversibility as shown in Figure 17.
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4.3. Effect of the Aspect Ratio

The effect of the channel size was studied by varying the aspect ratio AR from 0.5 to 0.8 for
Re = 100 and Ri = 1. Figure 18 shows that at AR = 0.5, when the streamlines turned 90◦ through
the horizontal leg, they arched far away from the lower wall of the horizontal channel. When AR
increased, the space available for the fluid flow decreased and thus, the streamlines became narrower
and occupied most of the entire channel. Following the streamline tendency, the isotherms were
intensified close to the heater element at the lower wall of the horizontal channel. The isentropic lines
also concentrated violently close to the heater element.

Figure 19 shows that the mean Nusselt number was directly proportional to the aspect ratio. This
was due to the augmentation of the forced convection gained by the decreasing flow area when AR
increased. Hence, increasing AR reinforced the flow intensity and the transferred heat transfer; as such,
the heat transfer and the fluid friction irreversibility increased accordingly. This effect is clearly visible
in Figure 20, where the rate of entropy generation increased with an increase of AR. In Figures 19
and 20, the nanofluid increased both the mean Nusselt number and the entropy generation at any
aspect ratio. Figure 21 suggests that there was competition between the effects of AR and ϕ, where
reducing the channel passages (i.e., increasing AR) enhanced the utility of the thermal energy with
respect to the thermodynamic irreversibility—this was true up to ϕ ∼= 0.045. Beyond this value, the
effect of increasing ϕ overcame the effect of AR. This can be drawn from the conversion of curves
shown in Figure 21.

The normalized parameters Num, Sgen,m, and ε, which are plotted in Figures 22–24, respectively,
show that the nanoparticles addition increased the mean Nusselt number and the rate of entropy
generation and weakened the optimum utility of the mixed convection.
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5. Conclusions

Mixed convection of an Ag-water nanofluid in an inclined L-shaped channel was numerically
studied using the finite volume method. By keeping the inclination of the channel fixed, the Reynolds
number, Richardson number, aspect ratio, and the nanoparticles volume fraction were varied, giving
the following conclusions:

The Nusselt number increased with an increase of the Reynolds number Re, while entropy
generation decreased drastically when Re increased from Re = 50 to 100. However, this decrease slowed
down when Re increased beyond 100. When Re = 100, the convective heat transfer and the entropy
generation rate were at their maxima at higher values of the Richardson number and at their minima
when the value of the Richardson number equal to unity. The narrower L-shaped channel (i.e., higher
aspect ratio) augmented the convective heat transfer and the rate of entropy generation. According to
the ε criterion, which was defined in this study as the ratio of the mean Nusselt number to the total
entropy generation rate, the best utilization of the convective heat transfer could be attained at higher
values of the Reynolds and Richardson numbers. High aspect ratios also gave the best ε values, but up
to a certain limit of the nanoparticles volume fraction (ϕ = 0.045). Beyond this limit, the lower aspect
ratio gave the best ε value.

Generally, the mean Nusselt number and the rate of entropy generation increased with increasing
values of the nanoparticles volume fraction while, conversely, the utility of the convective heat transfer
(ε criterion) decreased with the increase of the nanoparticles volume fraction.
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Nomenclature

AR aspect ratio (H/L)
g gravitational field (m s−2)
H inner side of the channel (m)
k thermal conductivity (W m−1 K−1)
L outer side of the channel (m)
Nu average Nusselt number
Ri Richardson number
Re Reynolds number
Sl entropy generation rate (WK−1·m−3)
Sgen,m total entropy generation rate
T temperature (K)
P pressure (Nm−2)
u, U velocity component in x-axis (m·s−1, dimensionless)
v, V velocity component in y-axis (m·s−1, dimensionless)
x, y Cartesian coordinates (m)
X, Y Cartesian coordinates (dimensionless)
Greek symbols
α thermal diffusivity (m2·s−1)
β coefficient of thermal expansion t (K−1)
ε performance criterion (Num/Sgen,m)
ϕ volume fraction
λ inclination of the channel (30◦)
µ dynamic viscosity (N·s·m−2)
θ temperature (dimensionless)
ρ density (kg·m−3)
Ψ stream function (dimensionless)
Subscripts
c cold
f fluid
h hot
l local
m mean
nf nanofluid
s solid nanoparticles
Superscripts
* dimensionless
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