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Abstract: Fault-tolerant control has drawn attention in recent years owning to its reliability and
safe flight during missions. In this article, an active fault-tolerant control method is proposed to
control a quadcopter in the presence of actuator faults and disturbances. Firstly, the dynamics of
the quadcopter are presented. Secondly, a robust adaptive sliding mode Thau observer is presented
to estimate the time-varying magnitudes of actuator faults. Thirdly, a fault-tolerant control scheme
based on sliding mode control and reconfiguration technique is designed to maintain the quadcopter
at the desired position despite the presence of faults. Unlike previous studies, the proposed method
aims to integrate the fault diagnosis and a fault-tolerant control scheme into a single unit with total
loss of actuator. Simulation results illustrate the efficiency of the suggested algorithm.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are attracting an increasing amount of attention in research
community, including from the manufacturing industry, academia, and government [1]. This popularity
may provide different applications such as, rescue missions [2,3], machine learning [4,5], mapping [6,7],
and remote sensing [8]. The possibility of avoiding of human intervention from dangerous environments
as well as the cost and physical size of unmanned aircraft are very special but should be compared to the
performances achieved by traditional manned aircraft with reference to flexibility, mission capabilities,
efficiency [6]. Compared with the conventional aircraft, the quadcopter UAVs have many significant
benefits, e.g., mechanical simplicity, stable hovering, small physical size, vertical take-off and landing
(VTOL), and the ability to operate in- and outdoors. This reliability and versatility contributed to
their popularity in comparison to other UAV systems. Because a quadcopter with four control inputs
has strong connection with physical movements, the loss of control effectiveness in an actuator is an
inevitability. Therefore, control strategy is a challenging issue for the quadcopter design. The goal of
this paper is to design a fault-tolerant control (FTC) method to handle the complete loss of an actuator,
which combines the fault diagnosis (FD) scheme and FTC method into a single unit.

1.1. Related Review

There are two different types of controls in FTC systems: passive FTC (PFTC) and active FTC
(AFTC). PFTC is considered a robust controller that can cope with a predefined set of faults. PFTC has
been used in quadcopters for sliding mode control (SMC) [9,10], feedback linearization [11,12], and
adaptive sliding mode control [13,14]. This type of controller is used to compensate disturbances and
allow continued operation under actuator faults. AFTCs use the FD scheme to estimate the system
variables and determine the fault magnitude. Based on this fault diagnosis, they can then actively
reconfigure the controller in real-time [15]. This approach has been used in a variety of contexts to
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allow quadcopters to cope with faults [16–20]. These approaches typically perform an initial estimate
of the fault before adjusting the controller in order to compensate for its effect. However, neither PFTC
nor AFTC are capable of handling faults in an exceptional or emergency situation (e.g., a total loss of
one rotor will always lead to a crash of the quadcopter).

Only a relatively small number of studies have addressed such exceptional situations that result
in a complete actuator failure [11,21]. The first ever study on the FTC of quadcopters with complete
actuator failure suggested a reconfiguration technique in combination with sacrificing yaw control
to recover flight control [11]. Reference [22] used a periodic solution to address this problem. In [23],
a quadcopter was switched to birotor operation to achieve a safe landing, i.e., cutting power to the
motor directly opposite to the failing rotor. Merheb et al. [24] proposed an emergency controller
to control the trajectory using additional mass. However, none of these studies examined the fault
diagnosis scheme [11,21–24], which is what partly motivated the present research.

1.2. Main Contributions

This study examines the effects of a total loss of actuator effectiveness, using a complete AFTC
system and subjecting it to rotor failure. The proposed method thus comprises the FD and the
FTC scheme in a single unit. The suggested FD scheme can estimate the magnitude of actuator
faults over time and in the presence of disturbances of which the upper bound is unknown, which
is modified from [25,26]. The FTC scheme contains two controllers: (1) an adaptive sliding mode
controller is designed from a previous study [27], as long as the fault magnitude remains below a
certain threshold, and (2) a fault-tolerant controller based on the reconfiguration technique, which is
designed to compensate actuator faults above this threshold. Unlike previous studies, the proposed
method aims to integrate FD and FTC scheme into the single unit with the goal to handle total loss of
actuator. The remainder of this article is organized as follows. The quadcopter modelling is presented
in Section 2. The methodology is discussed in Section 3, Section 4 presents the simulation results, and
the conclusions are provided in Section 5.

2. Quadcopter Modeling

A quadcopter is subject to torques and forces (Figure 1). Quadcopter dynamics are examined
in an earth-fixed coordinate E and an inertial coordinate B. The quadcopter model consists of two
counterclockwise and two clockwise rotating motors. The arm length is denoted by L. The quadcopter
dynamics can be presented as [15]

..
ϕ =

(
Uϕ + (Iy − Iz)

.
θ

.
ψ− Jm

.
θΩ− K1

.
ϕ
)

/Ix
..
θ =

(
Uθ + (Iz − Ix)

.
ϕ

.
ψ− Jm

.
ϕΩ− K2

.
θ
)

/Iy
..
ψ =

(
Uψ + (Ix − Iy)

.
ϕ

.
θ − K3

.
ψ
)

/Iz
..
x =

{
UT(cos ϕ sin θ cos ψ + sin ϕ sin ψ)− K4

.
x
}

/m
..
y =

{
UT(cos ϕ sin θ sin ψ− sin ϕ sin ψ)− K5

.
y
}

/m
..
z = −g +

{
UT(cos ϕ cos θ)− K6

.
z
}

/m

(1)

where Ix, Iy, Iz are the inertia moments along the x, y, z directions, respectively; Ki is drag term, i = 1..6;
Jm is the inertia moment of an each rotor and Ω = ω3 + ω4 − ω1 − ω2, with ωi being the rotational
speed produced by the ith motor; m is the total mass; ϕ, θ, and ψ are the roll angle, pitch angle, and
yaw angle, respectively; and x, y, and z denote three translational movements. The control inputs are
described as 

UT = F1 + F2 + F3 + F4

Uϕ = (F4 − F2)L
Uθ = (F3 − F1)L
Uψ = τ1 − τ2 + τ3 − τ4

(2)



Energies 2019, 12, 1139 3 of 22

where τi = dω2
i and Fi = bω2

i represent the torque and overall force, respectively, generated by each
motor, i = 1..4 and b and d are thrust coefficient and aerodynamic drag coefficient.
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3. Methodology

This section will present a robust FD and FTC scheme for the quadcopter under actuator fault.
In Section 3.1, the robust FD method is proposed to estimate the magnitude of time-varying actuator
fault, which is improved from the normal Thau observer design. A robust attitude controller based
on adaptive sliding mode technique is presented in Section 3.2 to handle the uncertainties; partial
loss of control effectiveness in actuator (the fault estimation value (Section 3.1), which is is smaller
than the threshold value); and chattering problem. In Section 3.3, the proportional–integral–derivative
(PID) controller is designed to control three translational movements. We choose the PID controller
for translational movements because in a commercial quadcopter the position controller has a lower
response than attitude controller. Moreover, when the attitude controller is robust to uncertainties and
actuator faults, the performance of position controller will be enhanced as well [27]. The fault-tolerant
controller is designed in Section 3.4 to reconfigure the allocation matrix of quadcopter to handle the
complete actuator failure (fault estimation value is larger than threshold value).

3.1. Robust Fault Diagnosis using Nonlinear Observer

3.1.1. Fault Diagnosis using Normal Thau Observer Design

By defining uT =
[

Uϕ Uθ Uψ UT

]
as the control input vector, xT =[

ϕ θ ψ z
.
ϕ

.
θ

.
ψ

.
z
]

as the state vector, and y =
[

ϕ θ ψ z
.
ϕ

.
θ

.
ψ

.
z
]

as
the output vector. Using the linearization technique for the z-direction at the hovering point and
nonlinear model for the attitude system [28], Equation (1) is rewritten as{ .

x(t) = Ax(t) + δ(x, u) + Bu(t) + Edd(t)
y = Cx(t)

, (3)
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where Ed, d(t) are the disturbance matrix and disturbance vector, A =

[
04×4 I4×4

04×4 04×4

]
, B =

0 0 0 0 1/Ix 0 0 0
0 0 0 0 0 1/Iy 0 0
0 0 0 0 0 0 1/Iz 0
0 0 0 0 0 0 0 1/m


T

, C = I8×8, and δ(x, u) =
[

0 0 0 0 hT(x, u) −g
]T

with h(x, u) =
[
(

.
θ

.
ψ(Iy − Iz)− Jm

.
θΩ)/Ix (

.
ϕ

.
ψ(Iz − Ix)− Jm

.
ϕΩ)/Iy

.
ϕ

.
θ(Ix − Iy)/Iz

]T
. Under the

actuator fault, (3) becomes{ .
x(t) = Ax(t) + δ(x, u) + Bu(t) + F f (t) + Edd(t)
y = Cx(t)

, (4)

where F, f (t) are the fault matrix and fault vector, respectively, with f (t) =
[

f1 f2 f3 f4

]T
.

Remark 1. The fault matrix is chosen as F = B and the fault vector f (t) is the estimate of fault offset of vector
u [28]. After the fault vector is achieved, the fault magnitude of each actuator f oi, i = 1..4 is obtained using
Equation (2) as 

f1

f2

f3

f4

 =


1 1 1 1
0 −L 0 L
−L 0 L 0
d/b −d/b d/b −d/b




f o1

f o2

f o3

f o4

 (5)

In the Thau observer design [28,29], the two following conditions must be met:
C1 the pair (C, A) is observable.
C2 the nonlinear function δ(x, u) must be continuously differentiable and Lipschitz locally, with a

constant γ, i.e., ‖δ(x1(t), u(t))− δ(x2(t), u(t))‖ ≤ γ‖x1 − x2‖.
The Thau observer based on Equation (4) is described as{ .

x̂(t) = Ax̂(t) + Bu(t) + K(ŷ(t)− y(t)) + δ(x̂, u)
ŷ = Cx̂(t)

, (6)

where K is the gain matrix determined by

Lemma 1. [29] If the given gain matrix K satisfies

K = Y−1CT , (7)

then matrix Y is achieved from equation

ATY + YA− CTC + κCTY = 0, (8)

where κ is a positive parameter such that Y ≥ 0.

3.1.2. Fault Diagnosis Using Adaptive Sliding Mode Thau Observer

Two conditions and lemmas must be met for observer design
C3 f (t) and

.
f (t) are norm-bounded, i.e., ‖ f (t)‖ ≤ p1, ‖

.
f (t)‖ ≤ p2, with p1, p2 > 0.

C4 The disturbance is bound ‖d(t)‖ ≤ S, S is unknown constant.
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Lemma 2. There exit a matrix Y = YT ≥ 0 and constant ρ > 0, the following inequality holds.

2xT
1 x2 ≤

1
ρ

xT
1 Yx1 + ρxT

2 Y−1x2, (9)

Lemma 3. There exit a matrix Y ≥ 0, the following condition holds.

2eTY(δ(x1, u)− δ(x2, u)) ≤ γ2eTYYe + eTe, (10)

The adaptive sliding mode Thau observer (ASMTO) has the form{ .
x̂(t) = Ax̂(t) + Bu(t) + δ(x̂, u) + Edv(t) + F f̂ (t)− K(ŷ(t)− y(t))− k̂H(ŷ(t)− y(t))/2
ŷ = Cx̂(t)

, (11)

where x̂(t) ∈ Rn is the observer state vector, f̂ (t) ∈ Rl is the estimate of f (t), and ŷ(t) ∈ Rq is the
observer output vector, respectively. H is a matrix to be determined, v(t) and k̂ are given by

.
s(t) = α‖M1ey(t)‖
v(t) = −s(t) M1ey(t)

‖M1ey(t)‖.
k̂ = lk‖H(ŷ(t)− y(t)‖2

, (12)

where α and lk are constants and M1 is discussed below.

3.1.3. Stability Analysis

Define
ex = x̂(t)− x(t)
ñ(t) = s(t)− S
ek = k̂− k
ey = ŷ(t)− y(t)
e f = f̂ (t)− f (t)

, (13)

where k is a constant, then the error dynamics can be obtained from Equations (4), (7), and (11) as

.
ex(t) =

(
A− KC

)
ex + δ(x̂, u)− δ(x, u)

+ Fe f + Ed(v(t)− d(t))− 1
2 k̂HCex

, (14)

Theorem 1. Given observer gain K, if there exist matrices Y = YT > 0, Q = QT > 0, M1 and M2 can be
derived as follows  Y

(
A− KC

)
+
(

A− KC
)TY 0 I

0 1
σ Q 0

I 0 −I

 < 0, (15)

FTY =
1
σ

M1C (16)

ET
d Y =

1
σ

M2C (17)

Y = HC (18)

where σ > 0 is a constant.
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Then the fault estimation law is constructed as
.
f̂ (t) = −ΛM1ey, (19)

where Λ is the learning rate matrix Λ = ΛT > 0.

Proof. Choose the Lyapunov function:

V(t) = eT
x Yex +

1
σ

eT
f Λ−1e f +

1
σ

ñTα−1ñ +
1
2

l−1
k e2

k . (20)

Differentiating V(t) is

.
V(t) =

.
eT

x (t)Yex(t) + eT
x (t)Y

.
ex(t) + 2

σ eT
f (t)Λ

−1 .
e f (t) + 2

σ

.
s(t)α−1 s̃(t) + l−1

k ek
.
ek

= eT
x (t)

[
Y(A− KC) + (A− KC)TY

]
ex(t) + 2eT

x (t)YEd(v(t)− d(t)) + 2eT
x (t)YFe f (t)

+2eT
x (t)Y(δ(x̂, u)− δ(x, u))− k̂eT

x YHCex +
2
σ eT

f Λ−1
.
f̂ (t)− 2

σ eT
f Λ−1

.
f (t)

+ 2
σ‖M1ey(t)‖(s(t)− S) + ek‖HCex‖2

, (21)

Using Theorem 1, we achieve

2eT
x (t)YFe f (t) + 2

σ eT
f Λ−1

.
f̂ (t)

= 2eT
x (t)YFe f (t) + 2

σ eT
f Λ−1(−ΛM1ey

)
= 0

(22)

2eT
x (t)YEd(v(t)− d(t))

= 2
σ

(
M2ey(t)

)T
(
−s(t) M1ey(t)

‖M1ey(t)‖ − d(t)
)

< − 2
σ‖M1ey(t)‖(s(t)− S)

(23)

From Lemma 2, it is easy to see that

− 2
σ eT

f (t)Λ
−1

.
f (t) = 2

σ

(
−eT

f (t)
)(

Λ−1
.
f (t)

)
≤ 1

σ (e
T
f (t)Qe f (t) +

.
f

T
(t)Λ−1Q−1Λ−1

.
f (t))

≤ 1
σ eT

f (t)Qe f (t) + 1
σ p2

2λmax(Λ−1Q−1Λ−1)

(24)

where λmax represents the largest eigenvalue of the corresponding matrix.
From Lemma 3, we obtain

eT
x (t)[Y(A− KC) + (A− KC)TY]ex(t) + 2eT

x (t)Y(δ(x̂, u)− δ(x, u))
≤ eT

x (t)[Y(A− KC) + (A− KC)TY + I]ex(t) + γ2eT
x YYex

, (25)

With Equations (22)–(25), and k = γ2 > 0, (21) becomes

.
V(t) ≤ eT

x (t)[Y(A− KC) + (A− KC)TY + I]ex(t)
+keT

x YYex − k̂eT
x YHCex + ek‖HCex‖2

+ 1
σ eT

f (t)Qe f (t) + 1
σ p2

2λmax(Λ−1Q−1Λ−1)

, (26)
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From Equations (18) and (26), we achieve

.
V(t) ≤ eT

x (t)[Y(A− KC) + (A− KC)TY + I]ex(t)
−(k̂− k)‖HCex‖2 + ek‖HCex‖2

+ 1
σ eT

f (t)Qe f (t) + 1
σ p2

2λmax(Λ−1Q−1Λ−1))

≤ eT
x (t)[Y(A− KC) + (A− KC)TY + I]ex(t)
+ 1

σ eT
f Qe f + η

≤ ξT(t)Φξ(t) + η

, (27)

where η =
p2

2λmax(Λ−1Q−1Λ−1)
σ , ξ(t) =

[
eT

x (t) eT
f (t)

]
, and Ξ =

[
Y
(
A−KC

)
+
(
A−KC

)TY + I 0
0 1

σ Q

]
If Ξ < 0, then

.
V(t) < 0 for σ‖ξ(t)‖2 > η, where σ = λmin(−Ξ). This completes the proof

according to Lyapunov theory [25].

Remark 2. To solve Equations (15)–(18) simultaneously, we can modify Equations (16)–(18) as [25][
η1 I FTY− 1

σ M1C

(FTY− 1
σ M1C)

T
η1 I

]
> 0, (28)

[
η2 I ET

d Y− 1
σ M2C

(ET
d Y− 1

σ M2C)
T

η2 I

]
> 0 (29)

[
η3 I Y− HC

(Y− HC)T η3 I

]
> 0 (30)

Four indicators di are defined to recognize the fault-free and faulty (total loss of effectiveness in
one motor) operation through Equations (5) and (19) as

di =

{
0, f oi < dT fault− free operation ⇒ no fault
1, f oi > dT faulty operation ⇒ fault

(31)

where dT is a predefined threshold.

3.2. Attitude Controller

3.2.1. Modeling of Quadcopter in Faulty Operation

Under faulty operation, Equation (1) can be rewritten as

..
ϕ =

(
Uϕ + (Iy − Iz)

.
θ

.
ψ− Jm

.
θΩ− K1

.
ϕ
)

/Ix
..
θ =

(
Uθ + (Iz − Ix)

.
ϕ

.
ψ− Jm

.
ϕΩ− K2

.
θ
)

/Iy
..
ψ =

(
Uψ + (Ix − Iy)

.
ϕ

.
θ − K3

.
ψ
)

/Iz
..
x =

{
UT(cos ϕ sin θ cos ψ + sin ϕ sin ψ)− K4

.
x
}

/m
..
y =

{
UT(cos ϕ sin θ sin ψ− sin ϕ sin ψ)− K5

.
y
}

/m
..
z = −g +

{
UT(cos ϕ cos θ)− K6

.
z
}

/m

(32)
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where Uϕ, Uθ , Uψ, UT are the control inputs for faulty operation denoted by

UT = F̃1 + F̃2 + F̃3 + F̃4

Uϕ = L
(

F̃4 − F̃2

)
Uθ = L

(
F̃3 − F̃1

)
Uψ = d

(
F̃1 − F̃2 + F̃3 − F̃4

)
/b

(33)

The actuator fault model can be written as

F̃i = (1− ϑi)Fi (34)

where 0 < ϑi < 1 (i = 1..4) denotes the partial loss of control effectiveness in the ith actuator: a
value of ϑi = 0 implies that no fault is present in the ith actuator, while ϑi = 1 implies a total loss of
effectiveness.

From Equations (32)–(34), we obtain

..
ϕ =

(
Uϕ + (Iy − Iz)

.
θ

.
ψ− Jm

.
θΩ− K1

.
ϕ
)

/Ix + d1
..
θ =

(
Uθ + (Iz − Ix)

.
ϕ

.
ψ− Jm

.
ϕΩ− K2

.
θ
)

/Iy + d2
..
ψ =

(
Uψ + (Ix − Iy)

.
ϕ

.
θ − K3

.
ψ
)

/Iz + d3
..
x =

{
UT(cos ϕ sin θ cos ψ + sin ϕ sin ψ)− K4

.
x
}

/m + d4
..
y =

{
UT(cos ϕ sin θ sin ψ− sin ϕ sin ψ)− K5

.
y
}

/m + d5
..
z = −g +

{
UT(cos ϕ cos θ)− K6

.
z
}

/m + d6

(35)

where the model uncertainties are given by

d1 = −L
(
ϑ4F4 − ϑ2F2

)
/Ix

d2 = −L
(
ϑ3F3 − ϑ1F1

)
/Iy

d3 = −d
(
ϑ1F1 − ϑ2F2 + ϑ3F3 − ϑ4F4

)
/bIz

d4 = −(cos φ sin θ cos ψ + sin φ sin ψ)
(
ϑ1F1 + ϑ2F2 + ϑ3F3 + ϑ4F4

)
/m

d5 = −(cos φ sin θ sin ψ− sin φ sin ψ)
(
ϑ1F1 + ϑ2F2 + ϑ3F3 + ϑ4F4

)
/m

d6 = − cos φ cos θ
(
ϑ1F1 + ϑ2F2 + ϑ3F3 + ϑ4F4

)
/m

(36)

3.2.2. Adaptive Sliding Mode Control for Attitude System

By defining x =
[

ϕ
.
ϕ θ

.
θ ψ

.
ψ
]T

=
[

x1 x2 x3 x4 x5 x6

]T
as the state vector

and U =
[

Uφ Uθ Uψ

]
=
[

u1 u2 u3

]
as the control inputs, the rotational movement

equations of the quadcopter become:
Roll control system: { .

x1 = x2.
x2 = f1(x) + g1u1(t) + ξ1(x, t) + ζ1

(37)

where ξ1(x, t) = (Iy − Iz)/(Ix)(x4x6)− Jmx4Ω; f1(x) = d1; g1 = 1/Ix; ζ1 = −K1x2 is the disturbance;
Pitch control system: { .

x3 = x4.
x4 = f2(x) + g2u2(t) + ξ2(x, t) + ζ2

(38)

where ξ2(x, t) = (Iz − Ix)/(Iy)(x2x6)− Jmx2Ω; f2(x) = d2; g3 = 1/Iy; ζ2 = −K2x4 is the disturbance;
Yaw control system: { .

x5 = x6.
x6 = f3(x) + g3u3(t) + ξ3(x, t) + ζ3

(39)
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where ξ3(x, t) = (Ix − Iy)/(Iz)(x2x4); f3(x) = d3; g3 = 1/Iz; ζ3 = −K3x6 is the disturbance;
Generally, rotational movement equations can be derived as{ .

x2i−1 = x2i.
x2i = fi(x) + giui(t) + ξi(x, t) + ζi

(40)

The function fi(x) is approximated using radius basis function (RBF) neural network as [30]

Dk = exp

(
‖x− bk‖2

2σ2
k

)
, (41)

fi(x) = WT
fi

D fi
(x) + ε fi

, (42)

where x =
[

ei
.
ei

]
is the state input; k the number of hidden nodes; D fi

is the output of Gaussian

function; WT
fi

is the approximation weight; and ε fi
is the approximation error assumed to be bounded

by
∣∣∣ε fi

∣∣∣ ≤ ε∗f i, in which ε∗f i > 0 is a small positive constant.

The desired attitude is defined as xd
i . The main goal is to choose a control law, ui, such that

x2i−1(t)→ xd
i as t→ ∞ , with i = 1..3. If the control error is defined as

ei = x2i−1 − xd
i (43)

the sliding surface is chosen as

si =
.
ei + ciei + vi

∫
ei (44)

where ci, vi are the positive constants.
From Equations (43) and (44),

.
si is written as

.
si = fi(x) + giui(t) + ζi + ξi(x, t)−

..
x

d
i + ci

.
ei + vi

∫
ei (45)

The control law is chosen as

ui =
(−ξi(x, t)− ci

.
ei − vi

∫
ei +

..
x

d
i − Ŵ

T
fi

D fi
(x)− Γ̂isign(si))

gi
(46)

and updated by
.
Γ̂i = αi1|si| (47)

.

Ŵ fi
= αi2siD fi

(48)

where sign(.) is the sign function and αi1 and αi2 are positive constants.

Theorem 2. If the sliding surface is designed as Equation (44) and the control law is chosen as Equation (46),
then the system in Equation (32) is stable and control errors are forced to zero.

Proof. The Lyapunov function is chosen as

V =
1
2

s2
i +

1
2

Γ̃
2
i

αi1
+

1
2

W̃T
fi

W̃ fi

αi2
(49)

where W̃ fi
= W fi

− Ŵ fi
, Γ̃i = Γi − Γ̂i; Γ̂i, Ŵ fi

are the estimates of Γi and W fi
, respectively.
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Differentiating V yields

.
V = si

.
si − Γ̃i

.
Γ̂i

αi1
−

W̃T
fi

.

Ŵ fi
αi2

= si( fi(x)−WT
fi

Vfi
(x))− |si|Γi + siζi

= siε fi
+ siζi − |si|Γi

≤ |si|(|εi + ζi| − Γi)

(50)

Assumption 1. The disturbance ζi is bounded by |ζi| ≤ ζd, where ζd > 0 is unknown parameter. There exists
the positive parameter Γi, such that |ζi(x, t) + εi| ≤ |ζi(x, t)|+ |εi| ≤ ζd + ε∗f i = Γi.

It is clear from the Assumption 1 that
.

V ≤ 0. If si = 0, from Equation (44), one can achieve

lim
t→∞

si = lim
t→∞

(
.
ei + ciei + vi

∫
ei)

= lim
t→∞

{
(

.
x2i−1 −

.
x

d
i ) + ci(x2i−1 − xd

i ) + vi
∫
(x2i−1 − xd

i )

} (51)

Because ci and vi are positive constants, Equation (51) can be expressed as

lim
t→∞

(
.
x2i−1 −

.
x

d
i ) = 0, lim

t→∞
(x2i−1 − xd

i ) = 0 (52)

Remark 3. To avoid the chattering issue, the sign function is replaced by a saturation function as

sat(si) =

{
si if |si| ≤ 1
sign(si) if |si| > 1

, i = 1, 2, 3 (53)

3.3. Position Controller

A PID controller was used to control the position of the quadcopter UAVs as follows

..
R =

..
Rd + Kd(

.
R−

.
Rd) + Kp(R− Rd) + Ki

∫
(R− Rd)dt (54)

where Rd = [Xd, Yd, Zd]
T is the desired position,R = [X, Y, Z]T is the actual position, and Kp, Ki, and

Kd are the positive diagonal matrices.
The total thrust, desired roll angle, and desired pitch angle are described as

UT = −m
√

..
X

2
+

..
Y

2
+ (

..
Z− g)

2

ϕd = sin−1
(

m
..
X sin(ψ)−m

..
Y cos(ψ)

)
/UT

θd = cos−1
(

m
..
Z−mg

)
/(UT cos(ϕ))

(55)

3.4. Fault-Tolerant Controller

Once the fault diagnosis unit realizes that one of the rotors is experiencing a fault, it needs to
modify the control scheme to reduce its effect. This control strategy aims to enable the quadcopter to
land safely. In a faulty operation (complete loss of effectiveness in one rotor) Equation (2) is modified
to change the rotor’s thrust force Fi. This is achieved through an algorithm to reconfigure the controller
in the presence of a fault (Figure 2). When a fault occurs, the goal of this FTC approach is to land
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horizontally (ϕ = 0 and θ = 0) and to sacrifice the yaw control. The difference between the faulty and
fault-free operations is that in the faulty operation the faulty rotor no longer contributes to the control
of roll and pitch angles but only of elevation. Assuming rotor 2, the control allocation is obtained from
Equation (2) as  UT

Uϕ

Uθ

 =

 1 1 1
0 0 L
−L L 0


 F1

F3

F4

 (56)
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4. Simulation Results

4.1. Fault Diagnosis Results

For simplicity, the altitude and attitude control are tested in this section. The quadcopter
parameters in paper [27] are used for this paper. The conditions C1 and C2 are easy to obtain.
The learning rate and sampling time are chosen as Γ = diag(4, 4, 4, 4) and T = 0.001s, respectively. The
matrices are designed for ASMTO as

F = B, Q = 100× I8×8, Ed =
[

1 1 1 1 1 1 1 1
]T

,

M1 =
[

127.62 127.62 127.62 127.62 −0.87 −0.87 −0.87 −0.87
]
,

M2 =


−117 0 0 0 17008 0 0 0

0 −117 0 0 0 17014 0 0
0 0 −67 0 0 0 9817 0
0 0 0 −4 0 0 0 555

, K =



200 0 0 1 0 0
0 200 0 0 1 0
0 0 200 0 0 1
1 0 0 200 0 0
0 1 0 0 200 0
0 0 1 0 0 200


,

Y =



127.62 0 0 0 −0.87 0 0 0
0 127.62 0 0 0 −0.87 0 0
0 0 127.62 0 0 0 −0.87 0
0 0 0 127.62 0 0 0 −0.87
−0.87 0 0 0 127.62 0 0 0

0 −0.87 0 0 0 127.62 0 0
0 0 −0.87 0 0 0 127.62 0
0 0 0 −0.87 0 0 0 127.62


.

The performance of the altitude and attitude control is shown in Figure 3, while the relationship
between inputs and motor outputs is given by Equation (2).
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Figure 3. Trajectory performance in fault-free case: (a) Roll angle, (b) Pitch angle, (c) Yaw angle, (d)
and z-direction.

To test the performance of fault estimation shown in Equation (19), a fault is created in motors 1
and 2 as follows

ω2
1 =

{
0, t < 14
1502, t ≥ 14

(57)

ω2
2 =

{
0, t < 14
(170 sin(2πt/25))2, t ≥ 14

(58)

The results indicate that the estimation value converges almost immediately to the fault offset
value (Figure 4). Figures 5–7 show the interplay between the attitude angles, control inputs, and forces.
Attitude angles are capable of maintaining their states while the altitude and control inputs change
once a fault occurs at t = 14 s (Figures 5 and 6).
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(d) z-direction.

Energies 2019, 12, x FOR PEER REVIEW 14 of 22 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 6. Controller inputs: (a) Thrust, (b) Roll moment, (c) Pitch moment, and (d) Yaw moment. 

 

(a) (b) 

 

(c) (d) 

Figure 7. Forces for each of the four motors: (a) motor 1′s force, (b) motor 2′s force, (c) motor 3′s force, 

and (d) motor 4′s force. 

4.2. Fault-Tolerant Control Results 

Figure 6. Controller inputs: (a) Thrust, (b) Roll moment, (c) Pitch moment, and (d) Yaw moment.



Energies 2019, 12, 1139 14 of 22

Energies 2019, 12, x FOR PEER REVIEW 14 of 22 

 

(a) (b) 

  
(c) (d) 

Figure 6. Controller inputs: (a) Thrust, (b) Roll moment, (c) Pitch moment, and (d) Yaw moment. 

 
(a) (b) 

 
(c) (d) 

Figure 7. Forces for each of the four motors: (a) motor 1′s force, (b) motor 2′s force, (c) motor 3′s force, 
and (d) motor 4′s force. 

4.2. Fault-Tolerant Control Results 

Two scenarios are illustrated to show the response of our fault-tolerant controller with the 
complete loss actuator. In the first scenario (Scenario 1), the quadcopter, once the fault has occurred, 
is only supposed to reach a desired altitude of 1m  with all other variables set to zero. In the second 
scenario (Scenario 2), the quadcopter is required to track a specific trajectory after a fault has occurred. 
For both scenarios, the fault (total loss of effectiveness) occurs in rotor 2. The attitude angles and 
position angles in Scenario 1 start to deviate from the command after the fault occurs at t=14s (Figure 
8). While the quadcopter recovers the desired altitude after ~ 1s , the yaw angle, ψ , increases 
gradually as control over ψ  has been sacrificed in the fault-tolerant controller. Because the FD 
method can estimate fault magnitude quickly, the fault-tolerant controller is started quickly for fault 
compensation, which can reduce the oscillation for rotation and translation movement (Figure 8). 
Angular rates and linear velocities stabilize within a few seconds (Figure 9). Interestingly, the yaw 

U
 [N

m
]

U
 [N

m
]

Time [s]
0 20 40 60 80 100

F 1 [N
]

0

0.2

0.4

0.6

0.8

Time [s]
0 20 40 60 80 100

F 2 [N
]

0

0.2

0.4

0.6

0.8

Time [s]
0 20 40 60 80 100

F 3 [N
]

0

0.2

0.4

0.6

0.8

Time [s]
0 20 40 60 80 100

F 4 [N
]

0

0.2

0.4

0.6

0.8

Figure 7. Forces for each of the four motors: (a) motor 1′s force, (b) motor 2′s force, (c) motor 3′s force,
and (d) motor 4′s force.

4.2. Fault-Tolerant Control Results

Two scenarios are illustrated to show the response of our fault-tolerant controller with the
complete loss actuator. In the first scenario (Scenario 1), the quadcopter, once the fault has occurred,
is only supposed to reach a desired altitude of 1m with all other variables set to zero. In the second
scenario (Scenario 2), the quadcopter is required to track a specific trajectory after a fault has occurred.
For both scenarios, the fault (total loss of effectiveness) occurs in rotor 2. The attitude angles and
position angles in Scenario 1 start to deviate from the command after the fault occurs at t = 14 s
(Figure 8). While the quadcopter recovers the desired altitude after ~1s, the yaw angle, ψ, increases
gradually as control over ψ has been sacrificed in the fault-tolerant controller. Because the FD
method can estimate fault magnitude quickly, the fault-tolerant controller is started quickly for fault
compensation, which can reduce the oscillation for rotation and translation movement (Figure 8).
Angular rates and linear velocities stabilize within a few seconds (Figure 9). Interestingly, the yaw rate
converges to a constant value. Once the fault in rotor 2 is detected, the force in rotor 4 is decreased to
balance the moment of roll, while the forces in rotors 1 and 3 are increased to compensate the loss in
thrust (Figure 10a). It should be noted that when fault magnitude exceeds a certain threshold (dT = 0.7)
shown in (30), the fault-tolerant controller is activated (Figure 10b).
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Figure 10. Forces and detection units for scenario 1: (a) motor 1′s force, (b) motor 2′s force, (c) motor 3′s
force, (d) motor 4′s force, (e) fault detection of motor 1, (f) fault detection of motor 2, (g) fault detection
of motor 3, and (h) fault detection of motor 4.

In Scenario 2, the fault-tolerant controller is capable of delivering a good tracking response, both
in the horizontal and vertical directions and despite the actuator fault (Figure 11). Once again, the
yaw rate converges to a steady state (Figure 12) and control over the yaw angle is sacrificed once
the fault-tolerant controller has been activated (Figure 13a). The corresponding torques (Figure 13b)
indicate that once the fault occurs, the force in rotor 4 is decreased to compensate the moment of roll,
while the forces in rotors 1 and 3 are increased to compensate for the loss in thrust.
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force, (g) motor 3′s force, and (h) motor 4′s force.

Remark 4. In the total loss effectiveness of the actuator, the convergence rate of attitude system
(roll and pitch) depends on the fault diagnosis scheme and adaptive sliding mode control method
presented in Section 3. This mean that if the fault estimation algorithm or parameter gains of adaptive
sliding mode control is slow, the system will oscillate more, which will affect the energy of system.
Therefore, we need to consider this problem to save the energy of battery in real flight tests.

5. Conclusions

This paper presented an active FTC scheme for a quadcopter UAV in the presence of a fault
leading to the complete loss of the actuator. Robust FD has been used to estimate the time-varying and
constant fault under disturbances. We propose a FTC method based on an adaptive SMC scheme both
for fault-free and faulty operation. The fault-tolerant controller is activated once the fault magnitude
exceeds a certain threshold. Using simulations, we examined two scenarios to verify the fault-tolerant
controller. The simulation results showed that the quadcopter can hover a certain altitude and deliver a
good tracking performance despite a complete loss of actuator effectiveness. In future works, we plan
to validate the model of quadcopter before implementing fault-tolerant control method on onboard
controller for experimental tests, which will help us to validate the algorithm and determine how the
method can handle multiple faults.
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