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Abstract: Due to the nonlinear and non-stationary characteristics of the carbon price, it is difficult
to predict the carbon price accurately. This paper proposes a new novel hybrid model for carbon
price prediction. The proposed model consists of an extreme-point symmetric mode decomposition,
an extreme learning machine, and a grey wolf optimizer algorithm. Firstly, the extreme-point
symmetric mode decomposition is employed to decompose the carbon price into several intrinsic
mode functions and one residue. Then, the partial autocorrelation function is utilized to determine the
input variables of the intrinsic mode functions, and the residue of the extreme learning machine. In the
end, the grey wolf optimizer algorithm is applied to optimize the extreme learning machine, to forecast
the carbon price. To illustrate the superiority of the proposed model, the Hubei, Beijing, Shanghai,
and Guangdong carbon price series are selected for the predictions. The empirical results confirm
that the proposed model is superior to the other benchmark methods. Consequently, the proposed
model can be employed as an effective method for carbon price series analysis and forecasting.

Keywords: extreme-point symmetric mode decomposition; extreme learning machine; grey wolf
optimizer algorithm; carbon price forecasting

1. Introduction

With the growing concern about climate change, many countries and regions have begun to adopt
the carbon emission trading mechanism to effectively control greenhouse gas emissions [1]. The carbon
trading market, playing a significant role in dealing with global climate change, is one of the most
effective tools [2,3]. As one of the largest carbon emitters [4], China officially proposed to implement an
initial carbon emissions trading system in 2010, which was response to the challenge of climate change.
Subsequently, seven pilot provinces and cities were set up, including Beijing, Shanghai, Guangdong,
Shenzhen, Tianjin, Chongqing, and Hubei in 2011. Afterwards, carbon emissions trading platforms
were launched during 2013 and 2014. Furthermore, on December 19, 2017, the national emissions
trading scheme (ETS) was officially implemented [5], which almost doubled the coverage of the
carbon pricing system [6]. To date, the Chinese government has established eight pilot carbon markets
that have valid developments for reducing greenhouse gas emissions [7]. In addition, by the end of
December 2018, the cumulative trading volume pilot exceeded 270 million tons, and the total turnover
exceeded 6 billion yuan. Obviously, China is the world’s largest energy consumer and greenhouse gas
emitter [8]. The ETS has become an extremely significant financial market, and accordingly, it will play
an increasingly important role in reducing emissions in the future accordingly.
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Currently, the carbon price covers about 20% of greenhouse gas emissions [9], and calls for a
global carbon price are intensifying [10,11]. Economists believe that carbon pricing is one of the
most effective ways to reduce global warming emissions [12]. Carbon pricing is greatly relevant
today, and it will be even more so in the future. Hence, it is necessary to predict the carbon price,
to understand the evolutionary process of the carbon price. On the one hand, for policy makers,
forecasting carbon price accurately is conducive to grasping the price fluctuations of carbon market,
which can formulate carbon emission trading market policies and develop a reasonable carbon price
mechanism. Specifically, to stabilize the price, and to promote the rational development of the market,
the policy makers could adjust the price range of the price and the quantity of the market stability
reserve, according to the law of carbon price changes [13]. On the other hand, for investors, predicting
carbon price accurately can provide scientific decision-making tools and guide investors towards to
make reasonable investments. Consequently, it makes sense to integrate carbon price predictions.

According to existing literature, researchers have paid great attention to carbon price analysis:
research for on-the-spot and futures prices of EU ETS [14–18], studies on the relationship between
the carbon price and the energy price [19–23], and research into the market efficiency based on
the carbon price [24–27]. Although some achievements have been made with existing carbon price
analysis, the literature on carbon price prediction is limited [28]. Currently, there are two main
representative theories in carbon price forecasting: factor forecasting and time series forecasting. Factor
forecasting, mainly based on different factors, has a good performance. The coal, oil, natural gas, other
energy prices, and global equity indices are exogenous variables, which are applied to forecast carbon
price [29,30]. However, influencing factors are exogenous variables, which results in errors, and the
failure of carbon price prediction.

Time-series forecasting, which includes econometric and statistical prediction models, artificial
intelligence models and ensemble models, is mainly based on the historical data, using price-only to
predict. Econometric and statistical prediction models, as traditional classical prediction methods,
are widely used in the traditional carbon market for carbon price forecasting and fluctuation analysis.
These models mainly include the generalized autoregressive conditional heteroscedasticity model
(GARCH), the autoregressive conditional heteroscedasticity model (ARCH), dynamic model averaging
(DMA), etc. Byun and Cho [31] put forward GARCH-type models to forecast European Climate
Exchange (ECX) carbon futures from December 2008 to December 2011, and concluded that the
GJR-GARCH [32] model performs better than the TGARCH and GARCH models. The AR-GARCH
model was adopted by Chevallier to predict the second-stage carbon price fluctuations of the EU
ETS, which illustrated that the proposed model had a high prediction accuracy [33]. Furthermore,
the nonparametric model was conducted to forecast the Blue Next spot and ECX futures prices
from April 2005 to April 2010. The result illustrated that the error of nonparametric modeling is
lower than the linear autoregressive models [34]. Moreover, Conrad et al. [35] regarded fractionally
integrated asymmetric power GARCH (FIAPGARCH) as a predicted model, to predict the first- and
second-phase carbon prices of EU ETS, and determined that the FIAPGARCH model can describe
the fluctuation of carbon price well. María et al. [36] executed the autoregressive moving average
including exogenous covariates and generalized autoregressive conditional heteroskedasticity model
(ARMAX-GARCH) framework with a time-varying jump probability, to forecast the price of Phase 2
EU price, and concluded that the ARMAX-GARCH framework with a time-varying jump probability
is more accurate than the ARMAX-GARCH model. Also, dynamic model averaging (DMA) was
conducted by Koop et al. to forecast the carbon markets, which confirmed that DMA can perform
forecasting accurately [37]. Although the econometric and statistical prediction models can obtain
higher precisions in carbon market price predictions, they are based on the fact that the carbon market
price changes are highly nonlinear and non-stationary. In addition, it is difficult to effectively deal with
nonlinear modes that are hidden in the prices of non-stationary carbon markets, so that they generally
cannot obtain satisfactory prediction results.
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To overcome the limitations of the econometric and statistical prediction models, the artificial
intelligence algorithms demonstrating excellent nonlinear modeling capabilities, as represented by
artificial neural network (ANN) and least-squares support regression (LSSVR), were selected to
predict the carbon price. Tsai and Kuo [38] constructed an Ant-Based Radial Basis Function Network
(ARBFN) to predict carbon price based on the Radial Basis Function Network (RBFN), and Ant Colony
Optimization (ACO), which provided an accurate and real-time method for the forecasting of carbon
price. Zhu and Wei [39], presented several hybrid models of autoregressive integrated moving average
model (ARIMA) and least square support vector machine (LSSVM) to predict the carbon futures prices
of EU ETS from April 2005 to March 2011, and concluded that the model ARIMALSSVM2 exceeded
the single ARIMA, ANN, and LSSVM models. Also, a novel hybrid neuro-fuzzy controller model,
based on an ANN system and an adaptive neuro-fuzzy inference system (ANFIS), was provided by
Atsalakis to predict the carbon futures price, which was superior to other models such as ARIMA, ANN,
ARIMALSSVM2, etc., in terms of forecasting accuracy [40]. Fan et al. [41] examined the multilayer
perceptron (MLP) neural network for forecasting carbon price. The results indicated that the model
showed good performance in forecasting the carbon price. Zhang et al. [28] employed the grey neural
network (GNN), optimized by the ant colony algorithm (ACA) model to forecast the carbon spot
price of EU ETS. The results indicated that the model performed better than signal ARIMA, ANN,
and LSSVM.

Based on the aforementioned discussion, it is manifest that some models were optimized by
using other algorithms such as the ACO, ACA, and ANN systems. Nevertheless, these methods
have high requirements for the accuracy and smoothness of historical data, which have defects for
non-stationary data with time-varying properties. In addition, the artificial intelligence models neglect
the information of different features in the original carbon price time series, which affects the accuracy
of prediction. Considering that the original carbon price time series characteristics are unstable and
random, the signal decomposing technique was introduced into carbon price forecasting.

Currently, to achieve the goal of eliminating the carbon price stochastic volatility, researchers
generally examine the empirical mode decomposition (EMD) or ensemble empirical mode
decomposition (EEMD) to analyze the time series. Several studies have proven the efficiencies of these
algorithms. Zhu et al. [42] came up with a multiscale ensemble forecasting model that integrated
empirical mode decomposition (EMD), genetic algorithm (GA), and ANN, to predict the carbon price,
which demonstrated that the multiscale ensemble forecasting model outperformed the ANN and
GAANN models. Sun et al. [43] proposed a combined forecasting model based on variational mode
decomposition (VMD) and spiking neural networks (SNNs), and confirmed that the models have
high accuracies and reliabilities. Taking four futures prices of EU ETS as sample, Zhu et al. [44]
successfully introduced an EMD-based evolutionary least squares support vector regression model,
and concluded that the model was suitable for nonlinear and non-stationary carbon price forecasting.
In addition, the EMD model, and the LSSVM model with a kernel function prototype and particle
swarm optimization (PSO), were integrated to forecast the daily carbon future prices for the EU ETS
during December 2015 and 2016. The results confirmed that the proposed model had high levels of
accuracy [3]. Furthermore, Feng et al. [45] applied the EEMD to analyze the carbon price of the EU
ETS, to improve forecasting accuracy and reliability.

However, despite of the good performance of multiscale ensemble forecasting models, based on
EMD/VMD/EEMD, there are drawbacks to ameliorate. Consequently, the ensemble empirical mode
decomposition (ESMD) is a further improvement of the EMD, which overcomes the outcomes of EMD.
First, the ESMD method solves the problem of mode mixing for the EMD method, which can enhance
the effectiveness of decomposition. In addition, ESMD uses the direct interpolation (DI) method, which
can accurately reflect the fluctuation characteristics and the trend changes of the time series. Moreover,
ESMD can adaptively time–frequency decomposition, based on time-series local time-varying features,
which are highly suitable for analyzing non-stationary and nonlinear time series.
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Furthermore, it is crucial to note that the extreme learning machine (ELM) has been widely
executed in various forecasting fields successfully, such as in short-term load forecasting [46],
the sub-component load forecasting [47], short term electricity price forecasting [48], and wind speed
forecasting [49]. However, for the ELM model, the input weight matrix and the hidden layer deviation
are randomly determined, so that the nodes of some hidden layers fail or cannot meet the data
requirements. Thus, it becomes crucial to select the optimal number of hidden-layer nodes adaptively.
Therefore, Abdoos [50] applied the Gram–Schmidt orthogonalization (GSO), to optimize the ELM in
order to forecast the wind power of two wind farms. Rocha et al. [51] proposed the PSO to optimize
the ELM to predict the distributed electrical generation system capacity. Sun et al. [52] focused on the
PSO-ELM to predict carbon price, and the results indicated that PSO-ELM performed better. Based
on these, this paper employs the grey wolf optimizer algorithm (GWO) to optimize the ELM. Also,
this paper could prove the applicability of this method in carbon price prediction.

From the above, this paper puts forward a hybrid forecasting approach with ESMD, a partial
autocorrelation function (PACF), ELM, and GWO. Also, the carbon price series of China, such as Hubei,
Beijing, Shanghai, and Guangdong are selected as the samples. Firstly, considering the characteristics
of the carbon price series, the ESMD is employed to decompose the carbon price time series into a
finite and small number of intrinsic mode functions (IMFs) and one residue. Decomposing the original
time series by ESMD can effectively determine the characteristic information of the original data.
Secondly, the PACF is applied to determine the input variables of each subsequence. Also the ELM
optimized by the GWO is utilized to forecast the decomposed components. Furthermore, in order
to verify the effectiveness and the practicability of the proposed method, this paper compares the
forecasting results of the proposed method with other benchmark methods, and demonstrates that the
proposed method can achieve a high prediction accuracy. Hence, it is effective to predict the carbon
price with nonlinearity and non-stationarity.

The contributions of this paper may be concluded as follows:

• The extreme-point symmetric mode decomposition is applied, to decompose the carbon price to
promote the prediction accuracy.

• The extreme learning machine optimized by the grey wolf algorithm could obtain a good
performance with predictions.

• The proposed model ESMD-GWO-ELM significantly improves the forecasting accuracy of the
carbon price, with only the historical carbon price sequence being taken into account.

The remainder of this paper is structured as follows: Section 2 describes the extreme-point
symmetric mode decomposition, the extreme learning machine, the grey wolf optimizer algorithm,
and the partial autocorrelation function. Section 3 introduces the proposed model: ESMD-GWO-ELM.
The empirical analysis and forecasting results are discussed in Section 4. Finally, conclusions are drawn
in Section 5.

2. Methodology

2.1. Extreme-Point Symmetric Mode Decomposition

Extreme-point symmetric mode decomposition (ESMD), a new method for the empirical mode
decomposition method, features an improved and optimized version of EMD [53]. The ESMD method
solves the problems of screening termination and modal aliasing in the EMD method. Moreover,
the ESMD method draws on the idea of EMD, and changes the external envelope interpolation into
internal pole-symmetric interpolation. This borrows from the idea of the least squares, to optimize the
last residual modality to make it become the global adaptive mean of the entire data, and to determine
the optimal number of filters. In addition, considering that all integral transforms, including the
Hilbert transform, have inherent defects in analyzing time-frequency changes, ESMD abandons the
traditional concept of spectrum analysis relying on integral transform, and creatively proposes a direct
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interpolation (DI) method, which intuitively reflects the time-varying amplitude and frequency of
each mode.

The ESMD method consists of two parts: the first part is the mode decomposition, which
can generate several intrinsic mode functions (IMFs) and one optimal adaptive global averaging.
The second part is the time–frequency analysis, using the direct interpolation method to calculate the
instantaneous frequency of the natural mode, which analyzes frequency changes on each time scale,
and determines when mutations will occur at each time scale. The specific steps of ESMD are shown
as follows:

Step 1: Find all of the extreme points (maximum and minimum) of the whole data series X, and record
as Ei(1 ≤ i ≤ n).

Step 2: Connect all of the adjacent poles with line segments, and record the midpoints of the line as
Fi(1 ≤ i ≤ n− 1).

Step 3: The boundary points F0 and Fn are added to the left and right ends, respectively, using
certain methods.

Step 4: Construct p interpolation curves L1, · · · , Lp(p ≥ 1) by using the obtained n + 1 midpoints, and
calculate the mean curve L∗ = (L1 + · · ·+ LP)/p.

Step 5: Repeat the above steps for the series X− L∗ until the number of screenings reaches the preset
maximum value K, and the first decomposed empirical mode is obtained and named as M1.

Step 6: Repeat the above five steps for the remaining sequence X−M1 until the remaining sequence R
has only a certain number of poles left, and the decomposed empirical modes M2, M3 · · · can
be obtained, respectively.

Step 7: Change the number of screening times K within the limited interval [Kmin, Kmax], repeat the
above six steps, and then calculate the variance ratio σ/σ0 and plot the variance ratio graph
with K.

Step 8: Select the number of transformations K0 as the optimal number of screenings when the variance
ratio σ/σ0 is the smallest, and repeat the previous six steps until all of the decomposed empirical
modes are outputs.

After decomposition, the original time series X can be expressed as X = ∑ Mi + R; that is, the time
series X is decomposed into a series of empirical modes and one residual variable.

2.2. Extreme Learning Machine

The extreme learning machine (ELM), proposed by Huang et al, is a new type of single hidden
layer feedforward neural network (SLFN) learning algorithm [54]. The ELM algorithm is comprised of
an input layer, a hidden layer, and an output layer, which randomly generates the connection weights
of the input layer, the hidden layer, and the threshold of the hidden layer neurons. Moreover, there is
no need to adjust during the training process, and a unique optimal solution can be obtained once
the number of neurons is set in the hidden layer requirements. Compared with the traditional neural
network method, the algorithm has the advantages of a fast learning speed, less human intervention,
and a strong generalization ability.

The output of an ELM is as follows:

f (x) =
N

∑
i=1

βiG(ai, bi, x) = β·h(x) (1)

where h(x) = [G(a1, b1, x1), · · · , G(aN , bN , xN)] is the output vector for the hidden layer relative to the
input x, βi is the output weight of the ith hidden layer node and the output neuron; ai is the input
weight for the input neurons and ith hidden layer node; bi is the threshold of the ith hidden layer node.

Then, the output weight can be obtained by solving the least-squares solution of the linear
Equation (2).
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min
N

∑
i=1
‖β·h(xi)− yi‖ (2)

The least squares solution of Equation (2) is:

β = H+Y (3)

where H+ is the Moore–Penrose-generalized inverse of the hidden layer output matrix H [55], which
is used to calculate the matrices of the hidden layer. ELM aims to minimize the training errors and the
norm of the output weights.

2.3. Grey Wolf optimizer Algorithm

The grey wolf algorithm (GWO) is a new group of intelligence algorithms recently proposed
by Mirjalili et al. [56], which simulate the hierarchy and hunting behavior of grey wolves in nature,
and finds the optimal value. The GWO algorithm exhibits more advantages in terms of fast convergence
and less adjustment parameters in solving function optimization problems.

The social ranks of the grey wolves are divided into four parts: alpha (α), beta (β), delta (δ),
and omega (ω) as in Figure 1. The hunting behaviors of the wolves mainly involve tracking and
approaching the prey, tracking the prey, and attacking the prey.
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α stands for the head wolf, which leads the grey wolf group, followed by β, which assists the
head wolf in making decisions; δ are the ordinary wolves commanded by α and β, and the underlying
wolf is ω is commanded by α, β, and δ. Under the leadership of α, the group of grey wolves captures
the prey, and the wolves gradually approach and track the prey by scent and other information.
The wolves surround the prey once the location of the prey is determined.

During surrounding of the prey, the distance between the grey wolf and the prey are shown in
Equations (4) and (5):

→
D =

∣∣∣∣→C ·→XP(t) −
→
X(t)

∣∣∣∣ (4)

→
X(t + 1) =

→
XP(t) −

→
A·
→
D (5)

where t represents the iterations,
→
XP(t) stands for the prey position after the t-th iteration, and

→
X(t)

indicates the position of a wolf.
→
D refers to the distance between the grey wolf and the prey, and

→
A

and
→
C are the convergence factor and the swing factor, respectively. The calculation formula is shown

in Equations (6) and (7):
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→
A = 2

→
a
→
r 1 −

→
a (6)

→
C = 2

→
r 2 (7)

where
→
r1 and

→
r2 are random variables between [0, 1]; with the number of iterations increases,

the convergence factor
→
a decreases linearly from 2 to 0. The optimization process of the GWO

algorithm is to locate the prey position based on the positions of α, β, and δ. The ω wolves pursue the
prey under the guidance of the α, β, and δ wolves, and they re-determine the prey position according
to the best positions of the α, β and δ wolves. The positions of the grey wolf group are in accordance
with Equation (8) to Equation (14):

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣ (8)

→
Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣ (9)

→
Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣ (10)

→
X1 =

→
Xα −

→
A1·
→
Dα (11)

→
X2 =

→
Xβ −

→
A2·
→
Dβ (12)

→
X3 =

→
Xδ −

→
A3·
→
Dδ (13)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(14)

where
→
Xα,

→
Xβ, and

→
Xδ are the positions of α, β, and δ, respectively;

→
C1,

→
C2 and

→
C3 are the random

swing factors;
→
X1,

→
X2, and

→
X3 indicate the directions and distances of ω wolf towards α, β, and δ.

The steps of the GWO algorithm are briefly shown in Algorithm 1.

Algorithm 1: The GWO algorithm

Step 1: randomly initialize the population to be within the specified range;
Step 2: calculate the fitness of each individual;
Step 3: select, in order of fitness α, β, and δ;
Step 4: update the other wolves using formulas (4) to (14)

Step 5: update the parameters
→
α ,
→
A, and

→
C ;

Step 6: if the end condition is not met, go to step 2;
Step 7: output the location of the αwolf.

2.4. The Partial Autocorrelation Function

The partial autocorrelation function (PACF), as a common statistical tool, gives the relation that
exists between the time series and their lags, which are used to determine the input variables of the
neural network [57].

Give a time series xt, with Φkj representing the j regression coefficient with the k-order
autoregressive equation, then the k-order autoregressive model is expressed as:

xt = Φk1xt−1 + Φk2xt−2 + · · ·+ Φkkxt−k + µt (15)

where Φkk is the last coefficient and the partial autocorrelation function.
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3. The Proposed Model

Figure 2 illustrates the process of the extreme learning machine optimized by the grey wolf
optimizer algorithm (GWO-ELM) model. The left part is the GWO algorithm, and the right part is
the prediction process of the ELM algorithm. It is apparent that the GWO algorithm is employed to
optimize the parameters in ELM, which benefit in obtaining the optimal network.Energies 2019, 12, x FOR PEER REVIEW 8 of 22 
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Figure 3 is the forecasting framework for carbon price, with the ESMD-GWO-ELM model. As can
be seen, the original carbon price series is decomposed into several IMFs, and one residue by EMD,
EEMD and ESMD at first. Then, the partial autocorrelation function (PACF) is utilized to determine
the input variables of each subsequence, so that the series are divided into the training set and test set.
Thirdly, the GWO-ELM is employed to predict each series. Finally, the prediction results are compared
with the real carbon price.
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4. Empirical Analysis

4.1. Data

At present, China has established eight regional carbon trading markets, including Beijing,
Shanghai, Guangdong, Shenzhen, Hubei, Fujian, Chongqing, and Tianjin. Among them, Hubei is
the world’s third-largest emissions trading system [58]. In addition, Hubei’s carbon emission trading
market has the highest degree of liquidity, and the volume is first-ranked [59]. Furthermore, the Hubei
pilot emission trading market has been a pioneer among all of pilots, as it owns sufficient transaction
data [60]. Hence, Hubei was selected as a sample to forecast the carbon price. In addition, considering
the rich volume, the value of carbon trading, and the long transaction time, Beijing, Shanghai, and
Guangdong were also selected as examples in this paper [60,61]. The daily data are collected in China’s
carbon emissions trading website [62]. The Hubei sample covers the period from 2 April 2014 until
14 August 2018, with 1228 total data points, excluding public holidays. The carbon prices in the
Shanghai and Guangdong markets, both from 19 December 2013 until 14 August 2018, and the carbon
prices of Beijing from 28 November 2013 until 14 August 2018. The price fluctuations of original carbon
price series are shown in Figure 4. From it, it is evident that carbon price series of the four markets
were non-stationary and nonlinear.

The data series were divided into two parts: the training sample and the test sample. There are
several methods of segmenting the data to train and test the whole data. Generally, most studies
classify data for training and assessment based on convenience. In this paper, data is split using a ratio
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equal to 70:30. Consequently, taking Hubei as an example, my 860 data points are selected as training
sets, and the remaining 368 data points are applied, to evaluate the established models. The samples
of carbon price are shown in Table 1.Energies 2019, 12, x FOR PEER REVIEW 10 of 22 
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Table 1. Samples of carbon price.

Carbon Price Sample Size Data

Hubei
Sample set 1228 2014/4/02–2018/8/14
Training set 860 2014/4/02–2017/2/15
Testing set 368 2017/2/15–2018/8/14

Beijing
Sample set 1356 2013/11/28–2018/8/14
Training set 950 2013/12/19–2016/12/13
Testing set 406 2016/12/14–2018/8/14

Guangdong
Sample set 1338 2013/12/19–2018/8/14
Training set 937 2013/12/19–2016/12/26
Testing set 401 2016/12/27–2018/8/14

Shanghai
Sample set 1336 2013/12/19–2018/8/14
Training set 935 2013/12/19–2016/12/21
Testing set 401 2016/12/22–2018/8/14

The data statistical descriptions of the carbon price series are stated in Table 2. From this,
the carbon price of Beijing had the highest average price, which reached 51.33 RMB. The average prices
of Shanghai and Guangdong were lower, at 27.91 and 25.57 RMB, respectively. Also, the average price
of Hubei was the lowest, at 20.31 RMB. These four carbon price series were not subject to strict normal
distribution. Compared with the normal distribution, the skewnesses of all the four carbon price series
are bigger than 0, indicating that the series exhibits positive skewness, which implies that the carbon
price series are flatter to the right. The kurtoses of Hubei and Shanghai were both lower than 3, which
indicates that these two carbon price series have thin tails, compared to a normal distribution, while
the other two cities have fat tails. The Jarque–Bera test, rejecting the null hypothesis that obeys the
standard normal distribution at any significant level, further confirms these results, given that this
paper tests the non-stationary and nonlinear aspects of the carbon price series.
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Table 2. Statistical descriptions of the carbon price.

Carbon Price Means Median Standard Deviation Skewness Kurtosis Jarque-Bera

Hubei 20.31 22.13 4.48 0.22 1.59 111.24
Beijing 51.33 51.48 7.05 0.33 5.13 282.07

Guangdong 25.57 15.99 18.21 1.34 3.26 406.02
Shanghai 27.91 31.91 12.11 0.46 1.99 103.05

4.2. Non-Stationary and Nonlinear Tests of Carbon Price

The ADF (Augmented Dicky–Fuller) test is an effective method to test the stability of time series,
and the BDS (Brock–Decher–Scheikman) test can effectively detect the nonlinear characteristics of the
time series. The size of the embedding dimension m of the phase space reconstruction in the BDS test
generally m ∈ [2, 5]. This paper selects Eviews 8.0 software (Quantitative Micro Software, Irvine, CA,
USA) to check the stability and nonlinearity of the carbon price. The test results are shown in Tables 3
and 4. Apparently, all of the four carbon price series are non-stationary and nonlinear. Taking Hubei
carbon price as an example, the ADF test implies that the p-value of Hubei’s carbon market price is
greater than 10%, which means that the carbon price is non-stationary at the 10% significance level.
The BDS test displays that the carbon price has a p-value of lower than 0.01, indicating that Hubei’s
carbon market price is non-linear at the 1% significance level.

Table 3. ADF test results.

Carbon Price Stat Prob. Stationarity

Hubei −0.5880 0.9791 ×
Beijing −2.6140 0.2741 ×

Guangdong −2.3184 0.4230 ×
Shanghai −1.5097 0.8262 ×

Note: The Stat means statistics. The Prob. indicates that the probability. × indicates that the ADF test of the carbon
market price is non-stationary at the 10% significance level.

Table 4. BDS test results.

Carbon Price

M-Dimensional Space
Linearity2 3 4 5

Stat Prob. Stat Prob. Stat Prob. Stat Prob.

Hubei 0.1790 0.0012 0.3084 0.0019 0.3985 0.0022 0.4604 0.0023 ×
Beijing 0.1686 0.0031 0.2844 0.0049 0.3612 0.0059 0.4101 0.0061 ×

Guangdong 0.2042 0.0028 0.3486 0.0045 0.4500 0.0053 0.5212 0.0056 ×
Shanghai 0.1986 0.0015 0.3375 0.0024 0.4333 0.0029 0.4996 0.0030 ×
Note: The Stat means statistics. The Prob. indicates that the probability. × shows that the carbon price is nonlinear
at a significance level of 1%.

4.3. Data Processing

From above, the results illustrated that the original carbon price fluctuation is severe. In order to
reduce the interference of noise, the ESMD was utilized to decompose the carbon price into IMFs and
residue. To reduce repetition, this paper only gives a detailed description of the carbon price forecast
of the Hubei carbon market. The decomposition results after ESMD are illustrated in Figure 5, where
the original carbon price series are decomposed into seven IMFs and one residue. These decomposed
IMFs exhibited simpler structures, more stable fluctuations, and greater regularity, all of which led to
better fitting and forecasting accuracies, as compared with an original carbon price.

Moreover, to demonstrate the excellence of ESMD, EMD and EEMD were employed to decompose
the original carbon price series as well. Figures 6 and 7 illustrate the results, respectively. Both EMD
and EEMD decomposed the carbon prices into eight IMFs and one residue.
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4.4. Determination of the Input Variables by PACF

To overcome the limitations of ignoring the relationship between the inputs and outputs of the
model, it is vital to know the relations between the series and their lags. The statistical tool, namely the
partial autocorrelation function (PACF), is effective for describing the characteristics of the series [63,64],
which are applied toward determining the input variables.

The results of the Hubei carbon prices, decomposed by ESMD, EMD, and EEMD are illustrated
in Figures 8–10 respectively. Specifically, assuming that xt is the output variable, xt−k is one of the
input variables if the partial autocorrelation at lag k exceeds the approximate 95% confidence interval.
Table 5 presents the PACF results of the Hubei carbon price after ESMD, EMD, and EEMD.
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4.5. Accuracy Assessment

In order to evaluate the multi-frequency combined prediction performance proposed in this paper,
the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the coefficient of
determination (R2) were applied, to measure the prediction accuracies of the proposed models. Among
them, apart from the R2, the lower the value was, the better the forecasting accuracy of the model was.
The R2 value ranged from [0, 1] the closer to 1, the better the model.

The calculation formula for these indicators is shown in Table 6. yt is the real value at time t; ŷt is
the prediction for the same period t, and n is the number of the training sample.
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Table 6. The calculation formula.

Name The Calculation Formula

RMSE RMSE =

√
1
n

n
∑

t=1
(yt − ŷt)

2

MAPE MAPE = 1
n

n
∑

t=1

(
yt−ŷt

yt

)
× 100%

R2 R2 = (n ∑ ŷtyt−∑ ŷt ∑ yt)
2

(n ∑ ŷt2−(∑ ŷt)
2)(n ∑ yt2−(∑ yt)

2)

4.6. Forecasting Results and Discussion

In this study, the ESMD-GWO-ELM model was employed to forecast the carbon price. In order
to prove the performance forecasting of this model, the benchmark models, including Original-ELM,
EMD-ELM, EEMD-ELM, ESMD-ELM, Original-GWO-ELM, EMD-GWO-ELM, and EEMD-GWO-ELM
were also provided for predicting the carbon price. All of the models were established in Matlab
software (2018, MathWorks, Natick, MA, USA).

The forecasting results are shown in Figure 11; the comparisons of between RMSE, MAE, MAPE,
and R2 between the eight models are shown in Table 7 and Figures 12–14. From this, this paper can
draw the following conclusions.

(a) The proposed model ESMD-GWO-ELM has the lowest RMSE (0.1438) and MAPE (0.31), and
highest R2 (0.9918), which illustrates that the model performs significantly better than all of the
considered benchmark models in the carbon price forecasting of Hubei.

(b) Compared with the eight models, the Original-ELM model is the worst-performing, as it has
the biggest RMSE (6.0734), MAPE (38.42), and lowest R2 (0.6304). This is primarily due to the
fact that the original carbon price is unstable and nonlinear, so that the single model is not fit for
direct forecasting without decomposition processing.

(c) In the Original-ELM, EMD-ELM, EEMD-ELM, ESMD-ELM prediction models, the decomposed
prediction models are obviously superior to the direct-prediction models. The main reason is that
the structure and fluctuation of the decomposed IMF sequence become simpler and more stable,
which enhances the forecast precision.

(d) Compare with individual models (Original-ELM, EMD-ELM, EEMD-ELM, and ESMD-ELM)
with optimized models (Original-GWO-ELM, EMD-GWO-ELM, EEMD-GWO-ELM, and
ESMD-GWO-ELM), it is apparent that the GWO-ELM is significantly superior to the ELM model.
This result demonstrates that the optimizing ELM parameter is necessary and meaningful.

(e) It is evident that the ESMD decomposition method performs better than the EMD and
EEMD methods, whatever the ESMD-ELM or ESMD-GWO-ELM, when compared to the
decomposed models (EMD, EEMD, and ESMD). The result proves the superiority of the ESMD
decomposition model.

(f) However, compared with the EMD and EEMD methods, it is hard to decide which one is better.
As shown in Table 7, the RMSE (1.7352) and MAPE (3.51) values of EMD-ELM are lower than those
of EEMD-ELM (2.3936 and 9.92 respectively), which leads to the conclusion that the EMD-ELM
performs better. However, when we compare the EMD-GWO-ELM and EEMD-GWO-ELM,
the RMSE value of EEMD-GWO-ELM is 0.1917, which is lower than the value of 0.2559 of
EMD-GWO-ELM; the R2 value is higher, but the MAPE value is bigger than the EMD-GWO-ELM.
Therefore, the EEMD decomposes the model performances better than the EMD. Above all, there
is not enough evidence on which to judge which one is better. Thus, this conclusion will be
demonstrated in the following section.
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4.7. Additional Forecasting Case

In order to further prove the prediction accuracy of the proposed method, the carbon price
series of Beijing, Guangdong, and Shanghai are predicted in this paper. Figures 15–17 indicate the
forecasting results. Also, the comparisons of the RMSE, MAPE, and R2 between the models are shown
in Table 8. As Table 8 shows, the RMSE and MAPE are the lowest, and the R2 is the highest in the
ESMD-GWO-ELM model between the models of the three markets, which further proved the prediction
accuracy of the proposed model. Notice that the prediction accuracies of the EEMD-GWO-ELM model
for Beijing and Shanghai are better than EMD-GWO-ELM. However, the forecasting performance of
EMD-GWO-ELM is better than for EEMD-GWO-ELM in the Guangdong market. Consequently, it is
hard to judge which one is better, for the reason that the results are not exactly matched. Nonetheless,
it is evident that the ESMD-GWO-ELM model obtains the best prediction accuracies for the three
markets. Both the RMSE and MAPE are the lowest, and the R2 is the highest, between these models.

Undoubtedly, this study can draw the conclusion that the proposed model, the ESMD-GWO-ELM
model, achieves the highest level of accuracy according to the results, which indicate that the proposed
model is suitable for effective forecasting of the carbon price, when only considering historical carbon
price series.
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Table 8. Analysis of the Beijing, Guangdong, and Shanghai forecasting results.

Model
Beijing Guangdong Shanghai

RMSE MAPE (%) R2 RMSE MAPE (%) R2 RMSE MAPE (%) R2

Original-GWO-ELM 2.8518 0.16 0.7982 0.6847 0.67 0.7419 1.1340 0.03 0.9316
EMD-GWO-ELM 2.0934 0.34 0.8925 0.4168 0.35 0.9064 0.8362 0.10 0.9622

EEMD-GWO-ELM 1.8768 0.13 0.8957 0.6338 0.59 0.7875 0.7311 0.07 0.9700
ESMD-GWO-ELM 1.8069 0.03 0.9192 0.3835 0.11 0.9213 0.6948 0.05 0.9739
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5. Conclusions

This paper proposes a new novel hybrid model for carbon price prediction, including
extreme-point symmetric mode decomposition, extreme learning machine, and the grey wolf optimizer
algorithm, which are applied to forecast the four carbon price series of China’s carbon trading pilot
markets. Accordingly, three main steps are involved: firstly, owing to the nonlinear and non-stationary
nature of carbon price, this study carried out decomposition models to decompose the carbon price
into several IMFs and one residue. Then, the PACF is utilized to determine the input variables of each
subsequence for the resulting forecasting models. Thirdly, this paper cultivates the GWO-ELM model
to predict each decomposition component, and to add them. Moreover, the decomposition method
and the prediction method constitute the comparative mixed model. The decomposition models
include EMD, EEMD, and ESMD. Also, the prediction methods are ELM and GWO-ELM. To verify
the practicability and effectiveness further, the carbon price series of Hubei, Beijing, Shanghai, and
Guangdong are selected for the predictions. The results illustrate that the proposed model performs
significantly better than all of the considered benchmark models. To conclude, the proposed model
is suitable for forecasting the non-stationary and nonlinear carbon price. Several conclusions can
be obtained from this paper: (a) The decomposed prediction models (EMD, EEMD, and ESMD) are
obviously superior to the direct prediction models, based on the forecasting results, which indicates
that it is necessary to decompose the non-stationary and nonlinear carbon price. (b) During the
processing of carbon price forecasting, the models with ESMD perform better than those with EMD
and EEMD. However, there is not enough evidence between the EMD and EEMD models to prove
which one is better. (c) The proposed model, ESMD-GWO-ELM, performs better than the other
methods for China carbon price prediction, when only the historical carbon price sequences are taken
into account.

To conclude, this study provides a new approach for forecasting the carbon prices of China’s
regional carbon emissions trading market. The conclusions obtained can provide guidance for carbon
price predictions. In addition, this paper can obtain future carbon price changes for carbon trading
markets, according to the above-described technical route in practical application, which is conductive
to policy makers and inventors. Policy makers could adjust the price range of the price and the
quantity of the market stability reserve, to guarantee the positive operation of the carbon trading
market. Accordingly, the forecasting model could guide investors to obtain a clear understanding of
the carbon trading market, and make reasonable investments.
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