
energies

Article

Fast and Accurate Model of Interior Permanent-Magnet
Machine for Dynamic Characterization
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Abstract: A high-fidelity two-axis model of an interior permanent-magnet synchronous machine
(IPM) presents a convenient way for the characterization and validation of motor dynamic
performance during the design stage. In order to consider a nonlinear IPM nature, the model is
parameterized with a standard dataset calculated beforehand by finite-element analysis. From two
possible model implementations, the current model (CM) seems to be preferable to the flux-linkage
model (FLM). A particular reason for this state of affairs is the rather complex and time-demanding
parameterization of FLM in comparison with CM. For this reason, a procedure for the fast and reliable
parameterization of FLM is presented. The proposed procedure is significantly faster than comparable
methods, hence providing considerable improvement in terms of computational time. Additionally,
the execution time of FLM was demonstrated to be up to 20% shorter in comparison to CM. Therefore,
the FLM should be used in computationally intensive simulation scenarios that have a significant
number of iterations, or excessive real-time time span.

Keywords: digital simulation; motor drives; interior permanent-magnet machines; finite-element
analysis; modeling; automotive applications; electric vehicle (EV); hybrid electric vehicle (HEV);
mathematical model; saturation

1. Introduction

Permanent-magnet synchronous machines excel in high torque density and high efficiency,
so they have been widely investigated in recent years [1–3]. From the two permanent-magnet
synchronous-machine topologies, i.e., surface permanent-magnet machines (SPM) and interior
permanent-magnet machines (IPM), the latter are especially suitable for transport applications, where a
wide speed range is a key requirement [4,5]. The specific feature that enables such an operation is their
pronounced flux-weakening capability. This is an immediate consequence of IPM design, where the
magnetic field due to the armature current is considerable with respect to the permanent magnet
field [6]. Hence, IPMs are substantially more saturation-prone than their SPM counterparts, rendering
any assumption of magnetic linearity at high flux levels untenable.

In modern electric-machine design, finite-element analysis (FEA) is widely used and has become
an industry standard [7–9]. By taking into account the specific geometry and material, FEA produces an
accurate magnetic-field model, which is an excellent foundation for the reliable prediction of machine
operational characteristics. In this way, the expensive and time-consuming prototype stage can be
completely left out [10,11]. This fact is especially important for any designer in the predevelopment
design stage, who is daily faced with specific consumer demands that must be promptly served
with fast and reliable design offers. An additional benefit of using FEA is that existent FEA results
can be readily converted in state-space models, which are computationally much more efficient
than FEA [12]. These models can be used as a platform for the verification of various types of
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machine dynamics. An illustrative example is a symmetrical short circuit, which can be simulated
within seconds. Otherwise, dynamic FEA would have to be employed, resulting in about 10 h of
computation time on a typical workstation [7]. Furthermore, the state-space model can be turned
into a black box, which can directly be deployed to consumers for their system simulation. As an
example, the state-space model of an IPM drive can serve as a high-fidelity real-time emulator in
Hardware-in-the-Loop (HIL) tests [13], or as a platform for system-efficiency investigation [14].

Among the family of state-space models, a two-axis (dq) model, defined in synchronous (rotor)
co-ordinates, is by far the most frequently used [15]. Two basic modeling paradigms depending on
chosen state variables ( i.e., currents or flux linkages) are possible, resulting in the current model
(CM) and flux-linkage model (FLM). For linear models with constant parameters, both choices
are equally suitable in terms of simplicity, even though the FLM is computationally slightly less
demanding (one integrator instead of two), but this difference is negligible with today’s computational
power [16]. In spite of that, practitioners in many subfields where a simulation model is essential
(e.g., control design, system design) overwhelmingly prefer the CM over FLM. The reason for this
is that CM-based computations directly yield quantities, some of which can be directly monitored,
e.g., stator currents.

On the other hand, the dq-model can also reproduce various nonlinear phenomena, such as
magnetic saturation, cross-coupling, spatial harmonics, and iron losses [12,17–24]. In this case,
the parameters of the dq-model are estimated with FEA results. The merits of a state-space model
and a magnetic-field model are thus advantageously combined [22,25]. However, a fundamental
distinction arises between CM and FLM in terms of model complexity. In CM, a nonlinear current-flux
relation causes inductance to be split and reintroduced as apparent and incremental inductance [6].
At least three consequences come to light: (a) the physical meaning of inductance is blurred, (b) the
CM structure becomes involved, and (c) in order to preserve accuracy, an additional set of FEA with a
special technique (e.g., the frozen permeability method [26]) should be made to separate the spatial
effect of permanent magnets and the stator current. Nothing of the above applies to FLM, where the
model structure stays the same and existent FEA results suffice [19].

Even though there are clear advantages for choosing FLM over CM, the practical application
of FEA-parameterized FLM is still comparatively rare [18]. The main reason probably lies in the
standard static FEA setup. The stator current being an input, FEA produces flux-linkage maps where
the stator current is treated as an independent variable (direct form). As FEA-parameterized FLM
actually requires an inverse relation between current and flux linkage (inverse form), the designer is
typically induced to rather follow CM paradigm [6]. Nevertheless, few authors have recently tackled
the subject of inverting flux-linkage maps [18–21]. Various strategies were employed in order to
find the inverse form, such as the interior-point method [18] and radial-basis function [20], but scarce
implementation details were provided. In Reference [21], the lookup table-inversion process is outlined
but too vaguely for easy third-party implementation. All procedures listed above are significantly
more computationally demanding in comparison with the straightforward parameterization of CM.
However, one should note that the principal objective of the aforementioned papers was to develop a
high-fidelity state-space model per se, regardless of the possible increase in complexity of some sort
(mathematical and/or computational).

This paper intends to fill this gap, and specifically proposes a straightforward parameterization
procedure that adapts FEA results into a form suitable for FLM parameterization. Parameterization
algorithm features are clear implementation, computational efficiency, and high reliability. Only a standard
set of FEA results are considered as an input, ruling out any need for additional precomputation.

In this paper, spatial effects and and iron losses are not considered, because they are negligible
for the studies we are performing, i.e., evaluation of motor performance in a certain drive cycle and
a prediction of short-circuit currents, although they can be readily included by using effective and
proven techniques [18,27–29]. However, readers should be aware that consideration of spatial effects is
an integral part of a true high-fidelity IPM model [30]. Namely, concentrated stator windings, different
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rotor geometries, or any other variation of magnetic permeance along the air gap are a common sight
in modern practices. In this way, the effects of air-gap harmonics on voltages, currents, flux linkages,
and torque can be properly described. This is essential for a user, if he intents to use the IPM model for,
e.g., developing control (including sensorless and field-weakening operations) [22], analyzing torque
ripple [31], and studying acoustic characteristics [19].

2. Two-Axis IPM Models

2.1. General Equations

Restricting the study to the case of perfect field orientation, the voltage equation of IPM is
defined as

vs = Rsis +
dψs
dt

+ Jωrψs, (1)

where vs = [vd vq]T , is = [id iq]T and ψs = [ψd ψq]T are real vectors defined in the rotor reference
frame, Rs is stator resistance (scalar), ωr is rotor electrical speed, and J the matrix equivalent to complex
unit j

J =

[
0 −1
1 0

]
.

Electromagnetic torque Te is defined as a vector product of flux linkage and current

Te =
3
2

pp(ψs × is), (2)

where pp is the number of pole pairs. Dynamic equation links the electromagnetic and
mechanical domains

Te − Tl = Γ
dωM

dt
, (3)

where Tl is the load torque, Γ the moment of inertia, and ωM rotor mechanical speed.
Equations (1)–(3) are globally valid for any working condition. In order to obtain a full set of IPM

equations, the relation between flux linkage and current (flux–current relation, flux map) ψs = f (is)

needs to be defined. Specifically addressing two-axis IPM representation in the rotor reference frame,
the model is linear only if saturation is not present. Therefore, function f : R2 → R2 is affine if the
system is linear, and nonlinear if otherwise.

2.2. Linear Model

2.2.1. CM

If saturation is neglected, the system is linear, and the stator flux linkage may be expressed as
an affine function of is

ψs = f (is) = Lsis + ψR, (4)

where ψR = [ψR 0]T is a constant real vector of the rotor flux linkage defined in the rotor reference
frame, and Ls inductance matrix with constant terms Ld = (ψd − ψR)/id and Lq = ψq/iq

Ls =

[
Ld 0
0 Lq

]
. (5)

Ls is a diagonal matrix that satisfies the fundamental assumption of the decoupled model.
Plugging Equation (4) into Equation (1) and considering dψR/dt = 0 gives voltage equation

vs = (Rs I + JωrLs) is + Ls
dis

dt
+ JωrψR, (6)



Energies 2019, 12, 783 4 of 20

where I is the 2 × 2 identity matrix. In this way, IPM dynamics is fully described by
Equations (6), (2), (3), and (4). As the stator current is state-variable in Equation (6), this particular
model is called CM.

2.2.2. FLM

Note that Ls in Equation (4) is invertible; hence, inverse relationship f−1 can be readily obtained

is = f−1(ψs) = L−1
s (ψs −ψR), (7)

where L−1
s is an inverse inductance matrix

L−1
s =

[
1/Ld 0

0 1/Lq

]
.

Plugging Equation (7) into Equation (1), we obtain

vs = (RsL−1
s + Jωr)ψs +

dψs
dt
− RsL−1

s ψR. (8)

Now, Equation (8) can be combined with Equations (2), (3), and (7) to form an FLM, with stator
flux linkage as a state-variable. The particular form of Equation (8) clearly indicates that the
parameterization of FLM is exactly the same as for a CM, as only four parameters, i.e., Rs, Ld, Lq, and
ψR, are needed.

Remark 1. Torque Equation (2) for either of linear models can be rewritten in familiar form

Te =
3
2

pp
(
ψRiq + (Ld − Lq)idiq

)
. (9)

2.3. Nonlinear Model

2.3.1. CM

In the presence of saturation, the flux–current relation becomes nonlinear. Nevertheless, we can
still write it in the form of Equation (4), provided that Ls(is) and ψR(is) alter to variables dependent
on the stator current

ψs = f (is) = Ls(is)is + ψR(is). (10)

In this way, the stator current remains a state-space variable. The rotor flux-linkage vector in
Equation (10)

ψR = [ψR(is) 0]T

preserves perfect field orientation ψR = ||ψR|| by definition. On the other hand, its amplitude is
influenced by the stator current, by both current components id and iq in general. The 2× 2 matrix
Ls(is) has four nonzero elements:

Ls(is) =

[
Ldd(is) Ldq(is)

Lqd(is) Lqq(is).

]

Each element is defined as a ratio of appropriate flux linkage and the current component; therefore,
the following form is obtained [6]

Ls(is) =

[
Ldd(is) Ldq(is)

Lqd(is) Lqq(is)

]
=

ψd−ψR
id

ψd−ψR
iq

ψq
id

ψq
iq

 , (11)
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where explicit dependence of flux linkages on stator currents was dropped to avoid clutter. In a
nonlinear context, Ls is called an apparent inductance matrix. Elements of Ls are not constant as they
are all dependent on the stator current. In comparison with Equation (5), the matrix also has two
nondiagonal terms, a clear indication of the cross-saturation phenomena. It is interesting to notice that
coupling between direct and quadrature axes arises due to the effects of main-flux saturation.

Substituting Equation (10) in Equation (1), but leaving the derivative dψs/dis in its original
form yields

vs = (Rs + JωrLs)is + Li
dis

dt
+ JωrψR, (12)

where Li is the incremental inductance matrix, defined as

Li =
dψs
dis

=

 ∂ψd
∂id

∂ψd
∂iq

∂ψq
∂id

∂ψq
∂iq

 =

[
ldd(is) ldq(is)

lqd(is) ldd(is)

]
. (13)

In general, apparent and incremental inductance matrices are not equal (Ls 6= Li) unless the
machine is linear, which can easily be verified by plugging Equation (4) in Equation (13). The full CM
set of equations is defined by Equations (2), (3), (10), and (12).

2.3.2. FLM

Because the model is nonlinear, there is no benefit in rewriting the inverse relation as in
Equation (8). Instead, we simply define current-flux relation

is = g(ψs) = Fs(ψs)ψs, (14)

where Fs is a generalized ”reluctance” matrix obtained in an analogous way to Equation (11)

Fs(ψs) =

 id
ψd

id
ψq

iq
ψd

iq
ψq

 =

[
Fdd(ψs) Fdq(ψs)

Fqd(ψs) Fqq(ψs)

]
. (15)

Matrix Fs is composed of elements that are strictly ratios of the stator-current and stator
flux-linkage components. Note, that rotor flux linkage is explicitly left out.

Inserting Equation (14) in Equation (1), the FLM voltage equation is obtained

vs = RsFsψs +
dψs
dt

+ Jωrψs, (16)

where stator flux linkage is preserved as state-variable. The full FLM set of equations is defined by
Equations (2), (3), (14), and (16).

2.4. Simulation Form

A digital simulation requires the state-space form of state equations ẋ = f (x). Even though rotor
speed ωr is state-variable in both models as well, only the state variables in voltage equations are of
interest. Voltage Equations (12) and (16) can be rearranged into

dis

dt
= L−1

i [vs − (Rs + JωrLs)is − JωrψR] (17)

dψs
dt

= vs − RsFsψs − Jωrψs. (18)

Figures 1 and 2 depict the block diagrams of the CM and FLM, respectively. It is worth noting
that CM diagram is clearly more complex. Comparison between the two diagrams shows that CM
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requires two matrices, Ls and L−1
i , whereas the FLM only matrix Fs. In addition, the simultaneous

presence of two inductance matrices, Ls and L−1
i , obscures the meaning of inductance.

–

–
+

2x2 matrix

2x2 matrix

Ls

J

Ls

Te

R

Li
–1

Li
–1

Figure 1. Block diagram of nonlinear current model (CM).

–

–
+

J
Te

R

Figure 2. Block diagram of nonlinear flux-linkage model (FLM).

3. Model Parameterization

3.1. Static FEA Batch Simulation

Parameterization of a nonlinear model can be established in two distinct ways, by means of FEA
or measurements [32,33]. FEA is preferred when reasonably accurate information about geometry and
magnetic characteristics of materials is close at hand, which is especially true for the predesign stage.
However, if reliable input data are not at one’s disposal, a systematic measurement procedure can
provide fairly accurate parameterization as well [33,34].

Once the designer specifies the magnetostatic finite-element method (FEM) model of IPM, a series
of simulations are performed in order to obtain the fundamental electromagnetic relations of the
machine. Firstly, the d- and q-axis stator-current vectors with N values over a reasonable range
are specified

Iorig
d = [Id1 . . . IdN ]

T Iorig
q =

[
Iq1 . . . IqN

]T . (19)



Energies 2019, 12, 783 7 of 20

Then, the batch process iterates over all possible combinations of the d- and q-axis stator currents
while performing FEA for each combination. Finally, the batch job returns three matrices Ψ

orig
d , Ψ

orig
q

and Te

Ψ
orig
d =

Ψd11 . . . Ψd1N
...

. . .
...

ΨdN1 . . . ΨdNN

 Ψ
orig
q =

Ψq11 . . . Ψq1N
...

. . .
...

ΨqN1 . . . ΨqNN

 (20)

Te =

Te11 . . . Te1N
...

. . .
...

TeN1 . . . TeNN

 (21)

Matrices Ψ
orig
d and Ψ

orig
q are commonly known as flux-linkage maps, while Te is a torque map.

The matrices share the same form with straightforward interpretation: it is a table of numbers that
depend on two indices, i and j, which correspond to entries in vectors Iorig

d and Iorig
q , respectively.

For example, element Ψd24 gives the value of the d-axis stator flux linkage at specific stator current
values Iorig

d (2) and Iorig
q (4).

Figure 3 shows the original flux-linkage maps for an IPM with pronounced nonlinearity than
can be visually checked from figures. For example, in case of the d-axis flux linkage (Figure 3a) the
surface curvature along d-axis indicates the main saturation, whereas the curvature along the q-axis is
indicative of cross-saturation (Figure 3b). Figure 4 shows the electromagnetic torque of the same IPM
featuring a curved surface. As expected, the nonlinear effect is more pronounced with higher stator
currents in the respective axes.

In this paper, an IPM with data in Table 1 was used as a case study. There are two reasons that
all maps are defined for a full (symmetrical) range of currents. The short-circuit test (SCT), which
is an important application of the model, is a specific operating state where stator current are not
under control. Furthermore, our intention was to illustrate a complete treatment of flux-map inversion.
Readers should be aware that, in general, there is no need for a positive id current if only a normal
IPM operation is considered.

Flux and torque maps are built for current values Iorig
d = Iorig

q = [−1860 . . . 1860]T A in
33 equidistant steps, which results in 33 × 33 = 1089 data points. The appropriate range of
stator-current values used for flux- and torque-map calculation depends on the specific IPM. In the
authors’ experience, the limits should be at least 2.2 larger than IPM’s maximal current Imax = 778 A.
However, if it turns out that the range is insufficient, reiteration is needed. We also found that further
increase in grid density is not justified in light of increasing FE computational costs. An equidistant
grid was chosen for convenience.
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Figure 3. Original flux-linkage map for (a) d-axis and (b) q-axis flux linkage.
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Figure 4. Original torque map for electromagnetic torque.

3.2. CM Parameterization

Once Ψ
orig
d , Ψ

orig
q , and Te are known for a specific design, it is possible to define their respective

interpolation functions fd, fq, and fT :

ψd = fd(id, iq), ψq = fq(id, iq), Te = fT(id, iq). (22)

CM parameterization requires the calculation of matrices Ls and L−1
i . Because Li is completely

oblivious (see Equation (17)), L−1
i can be directly calculated using

L−1
i =

(
∂ψd
∂id

∂ψq

∂iq
− ∂ψd

∂iq

∂ψq

∂id

)−1
 ∂ψq

∂iq
− ∂ψd

∂iq

− ∂ψq
∂id

∂ψd
∂id

 , (23)

where an inversion formula for a 2× 2 matrix was applied to Equation (13).
On the other hand, apparent inductance matrix Ls defined in Equation (11) suffers from major

drawback. For example, the first term in Ls

Ldd(id, iq) =
ψd(id, iq)− ψR(id, iq)

id

besides ψd(id, iq) also requires ψR = fR(id, iq), which is not available from the original set of simulation
results. A straightforward solution would be to define ψR as a constant ψR = fd(0, 0), but then
singularity at id = 0 is unavoidable. Namely, the cross-saturation effect of iq onto ψd results in a slight
reduction of ψd. In consequence, numerator ψd(0, iq)− ψR does not evaluate to 0, hence resulting
in a singularity. A similar reasoning can be adopted for second term Ldq(id, iq), where numerator
ψd(id, 0)− ψR 6= 0 for iq = 0.

A practical solution is twofold: neglecting cross-saturation terms in (11)

Ls(is) =

[ψd−ψR
id

0

0 ψq
iq

]
=

[
Ldd(is) 0

0 Lqq(is)

]
, (24)

and defining ψR = fd(0, iq) as an explicit function of q-axis current. Then, Ldd can be calculated for all
current combinations without incurring a singularity

Ldd(id, iq) =
ψd(id, iq)− ψd(0, iq)

id
.
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It is clear from the above argument that parameterization with the original set of FEA data
requires CM simplification. Whether its impact is considerable or marginal depends on the grade
of nonlinearity of the particular machine. Machines with pronounced nonlinearity, as is the case
for IPMs, may therefore require a full inductance matrix. At this point, it should be mentioned
that approaches that can overcome the limits in calculating original Equation (11) were reported,
e.g., frozen-permeances method. However, this technique requires an additional FEA set, effectively
doubling the computational burden.

3.3. FLM Parameterization

In comparison to CM, FLM simulation form Equation (18) is simpler, as only matrix Fs has to be
parameterized. Even though the four terms in Fs are elementary ratios of the stator current and flux
linkage, e.g., a first term in Equation (15)

Fdd(ψd, ψq) =
id(ψd, ψq)

ψd
,

they cannot be readily calculated using previously defined functions fd and fq. The underlying
reason is that the simulation flow of FLM treats flux linkage as the independent variable as far as
current-flux relation is concerned. Therefore, an inverse relation between current and flux linkage must
be determined beforehand. Drawing an analogy between CM and FLM, we define corresponding
interpolating functions

id = gd(ψd, ψq), iq = gq(ψd, ψq). (25)

The relation between two sets of interpolating Functions (22) and (25) can be thought of as
a mathematical inverse of two variate functions

id = gd( fd(id, iq), fq(id, iq)) (26)

iq = gq( fd(id, iq), fq(id, iq)). (27)

An important question to be answered is whether inverse functions gd and gq actually exist.
Consider mapping f : R2 → R2, defined by

f (id, iq) =

[
fd(id, iq)

fq(id, iq)

]
. (28)

If the derivative of a mapping f is invertible at some point (id0, iq0), then mapping f is locally
invertible in some neighborhood of point f (id0, iq0) [35]. The derivative of f is just a Jacobian matrix

J f =

 ∂ fd
∂id

∂ fd
∂iq

∂ fq
∂id

∂ fq
∂iq

 , (29)

which is invertible exactly when its determinant is nonzero:

det(J f ) =
∂ fd
∂id

∂ fq

∂iq
− ∂ fd

∂iq

∂ fq

∂id
6= 0. (30)

Mapping f is invertible over the domain of current vectors Iorig
d and Iorig

q only if the corresponding
det(J f ) is strictly nonzero at every point in the domain. Figure 5 shows the Jacobian determinant for
the IPM in question (see Table 1). For this particular machine, it is clear that the determinant is strictly
positive; therefore, the IPM’s flux maps are invertible over the whole domain.
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It is interesting to inspect Equation (30) more closely in order to gain some insight in its
behavior for a general machine. The first term is always strictly positive, as fd and fq are both
monotone-increasing, which can easily be seen by inspection. This property is also physically
sound because increasing the current always results in increased flux linkage in the respective axis.
The inspection of the second term is more involved, but careful analysis shows that it is also strictly
positive, as can be seen in Figure 6. For this reason, the first term must always be bigger than the
second so as to maintain invertible mapping f . If we associate the two terms with main and cross
magnetization, respectively, we can see that this is an entirely reasonable expectation for a practical
machine. Typically, the level of main magnetization is about one order of magnitude higher than that
of cross-magnetization.
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Figure 5. Jacobian determinant J f over the domain of current vectors Iorig
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Figure 6. (a) Main and (b) cross-magnetization term in equation for Jacobian determinant.
Note the different order of magnitude.

If interpolation functions gd and gq exist, they can be found in various ways. In accordance
to Equation (19), we generate d- and q-axis stator flux-linkage vectors with N-equidistant,
monotone-increasing entries

Ψnew
d = [Ψd1 . . . ΨdN ]

T Ψnew
q =

[
Ψq1 . . . ΨqN

]T ,

where their range is specified by the minimal and maximal value of original maps Ψ
orig
d and

Ψ
orig
d , respectively.
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3.3.1. Inversion via Minimization

One way to find inverse maps Inew
d and Inew

q is to minimize the residual between interpolation
points and the value of interpolating function over whole set i, j = 1 . . . N. This translates to
a multiobjective nonlinear least-squares problem with two objectives, one for each component

Jd,ij(id, iq) = ||Ψnew
d (i)− fd(id, iq)||2

Jq,ij(id, iq) = ||Ψnew
q (j)− fq(id, iq)||2.

For each iteration, a unique solution (isol
d , isol

q ) exists, which is interpreted as an entry in inverse
maps Inew

d (i, j) = isol
d and Inew

q (i, j) = isol
q . Formally, we can express the idea as

minimize ||rij(id, iq)||2, (31)

where the residual is defined as rij(id, iq) = Jd,ij(id, iq) + Jq,ij(id, iq). Once inverse maps Inew
d and Inew

q
are obtained, one can easily define interpolation functions gd and gd.

3.3.2. Inversion via Intersections

An equivalent solution for determining inverse maps Inew
d and Inew

q is via intersections. Original

maps Ψ
orig
d and Ψ

orig
q are first interpolated (functions fd and fq) and then sliced into predefined number

of contour isolines at flux-linkage levels Ψnew
d (i) or Ψnew

d (j). These lines can be interpreted as curves
in the current co-ordinates, where each of these curves encodes all possible combinations (id, iq) for
a particular flux-linkage level. Algorithm 1 then proceeds to find an intersection between curves at
Ψnew

d (i) and Ψnew
q (j) for all combinations of the stator flux-linkage. If Condition (30) holds, then a

unique intersection exists for each pair of Ψnew
d (i) and Ψnew

q (j). These solutions are not only more
intuitive due to a clear geometrical interpretation, but also significantly faster.

Algorithm 1 Inverse flux map via intersection.

1: Define number of flux isolines n (levels)
2: Slice flux map ψd = fd(id, iq) (3D) into n isolines (2D)
3: Slice flux map ψq = fq(id, iq) (3D) into n isolines (2D)
4: Obtain 2n isolines ψd,i and ψq,j

5: Initialize empty n× n matrices Ψnew
d , Ψnew

q , Inew
d , and Inew

q

6: for i← 1 . . . n do
7: for j← 1 . . . n do
8: Find intersection (xd, xq) between ψd,i and ψq,j

9: Update Ψnew
d (i, j) = ψd,i and Ψnew

q (i, j) = ψq,j

10: Update Inew
d (i, j) = xd and Inew

d (i, j) = xq

11: end for
12: end for
13: Extrapolate Inew

d and Inew
q at corners

14: return Ψnew
d , Ψnew

q , Inew
d , and Inew

q

Figure 7 shows the resulting inverse flux maps using the intersection algorithm. In order to
validate inversion accuracy, flux-linkage errors

∆d = fd(gd(ψd, ψq), gq(ψd, ψq))− ψd (32)

∆q = fq(gd(ψd, ψq), gq(ψd, ψq))− ψq (33)
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are checked for the whole range of flux-linkage values. For each flux-linkage pair (ψd, ψq), their
respective currents (id, iq) are calculated using interpolating functions gd and gq. Then, these currents
are plugged into fd and fq, resulting in a new flux-linkage pair that should be as close as possible to
the original. Figure 8 confirms that the maximum error did not exceed 0.1% in either axis.
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Figure 7. Inverse flux map for (a) d-axis and (b) q-axis current.

Figure 8. Flux-linkage error for (Left) d-axis and (Right) q-axis.

4. CM and FLM Performance Comparison

4.1. Model Verification

First, we compare the performance of CM and FLM in a dynamic simulation. A three-phase
short-circuit test (SCT), a well-established IPM test procedure in the industry [36], was chosen because
high transient currents were expected to push the IPM deep into saturation. In this way, both models
could conveniently be assessed in terms of nonlinearity. The chosen IPM (Table 1) is intended for small
urban electric vehicles. As the IPM nominal voltage level was low (Vdc = 48 V), the maximal current
was rather large Imax = 778 A. Both inductances were valid for a nominal operation point.
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Table 1. Motor data.

Nominal data

Power Pn 25 kW
Dc-link voltage Vdc 48 V
Maximal phase current Imax 778 A
Characteristic current Ich 550 A
Number of pole pairs pp 4
Moment of inertia Γ 0.003 kgm2

Parameters

Stator resistance Rs 3.3 mΩ
d-axis inductance Ld 0.013 mH
q-axis inductance Lq 0.029 mH
Rotor flux-linkage ψR 12.1 mWb

During the SCT, the IPM rotor is driven by an external machine at a constant speed, when stator
windings (at first open) are suddenly short-circuited. Figure 9 depicts the stator currents in dq
co-ordinates for CM and FLM. There was practically a perfect match between currents, the sole
difference being a slightly higher oscillation frequency for CM. One can conclude that CM and FLM
are equivalent in terms of performance.
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Figure 9. Comparison of FLM and CM for a three-phase symmetric short circuit at (top) 3000 min−1

and (bottom) 15,000 min−1.

Then, FLM simulation results of a three-phase SCT were compared to measurements on a
prototype machine (Figure 10). The time-domain response of the phase currents to the sudden
short circuit depends on the starting position of the rotor. In order to compare measurements with
simulations, the time traces of phase currents must be synchronized. Unfortunately, the measurement
setup did not allow to choose the exact instant of the short-circuit maneuver. Therefore, the
measurement was performed first and the appropriate time instant of the short circuit in simulation
was determined afterwards. It is noteworthy to observe that FLM is capable or forecasting true
maximal phase current (in this case red signal at t = 0.013 s).

Nevertheless, a direct comparison of individual phase currents (Figure 11) reveals discrepancies
between measurement and simulation. All three measured phase currents had smaller peak-to-peak
values, which can be attributed to nonzero contact resistance. The DC component in measurements
died out slower than predicted by the simulations.
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Figure 10. Three-phase short circuit at 3000 min−1: (top) simulations and (bottom) measurements.
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Figure 11. Three-phase short circuit at 3000 min−1: a direct comparison of simulated and measured
phase currents (top) ia, (middle) ib, and (bottom) ic.



Energies 2019, 12, 783 15 of 20

4.2. Parameterization Time

CM and FLM were implemented in Matlab/Simulink and run on a typical workstation with
3.40 GHz and 16 GB RAM. Even though both models were parameterized with the same input data,
the process itself differed. CM parameterization includes the calculation of interpolation functions for
the inverse of incremental inductance, apparent inductance, and rotor flux linkage. On the other hand,
the FLM requires an inversion of flux maps and subsequent determination of interpolation functions.
Parameterization time denotes the computational time required for full-model parameterization
before the simulation can be actually run. Table 2 shows that, in the case of FLM parameterization,
the proposed intersection method is superior to the minimization method by an order of magnitude.
The FLM parameterization time is thus comparable to CM, even though the latter still performs twice
faster. However, the said differences fade completely, as execution time of simulation is nearly always
significantly longer.

Table 2. Comparison of parameterization times.

Model Type Parameterization Time

CM 0.24 s
FLM via intersections 0.49 s
FLM via minimization 58.0 s

4.3. Execution Time

Next, we compared the performance of the CM and FLM in terms of their execution time.
Two rather basic simulation tasks were chosen as examples: three-phase short-circuit and full
acceleration from standstill to deep field weakening, where the motor model is part of the speed
control loop. The real-time time frame of the latter task was set at 10 s. The results in Table 3 clearly
show that the FLM was faster than CM in both cases. It is interesting to note that, in terms of the
control loop simulation, the FLM has a considerable margin of almost 20% over CM.

Table 3. Comparison of execution times.

Simulation Task FLM CM Improvement

Three-phase short circuit 12.5 s 13.8 s 9.4%
Control with field weakening 34.6 s 42.4 s 18.4%

Demagnetization risk assessment 375 min 414 min 9.4%
WLTC driving cycle 104 min 127 min 18.1%

As there are numerous possible situations for which dynamical simulations are typically
performed, we particularly focused on scenarios where significant computational effort is inevitable.
We were interested in the question of whether time-consuming tasks could be significantly reduced by
using the FLM instead of CM. Two computationally intensive simulation tasks with high practical value
were chosen as representative scenarios: (a) assessment of demagnetization risk during a three-phase
short circuit and (b) WLTC driving cycle. The computational effort of the former scenario stems from an
excessive number of iterations. In contrast, the latter scenario demands comparatively a long real-time
time frame of 30 min. It should be added that both scenarios require only one parameterization at
the beginning.

The assessment of demagnetization risk during a three-phase short circuit requires many iterations
of the basic three-phase short-circuit for different operating points (T, n) in the torque-speed diagram.
Every steady-state operating point (T, n) is associated with the specific value of Id (Figure 12) and Iq

(not shown). Here, the torque-speed diagram contains 30× 60 = 1800 operating points. Each current
pair (Id, Iq) is fed as an initial value (Iinit

d , Iinit
q ) = (Id, Iq) into the space-state model, which calculates

respective transient short-circuit currents id(t) and iq(t). For example, Figure 13 depicts transient for 9
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operation point (56 Nm, 5000 min−1). The critical time instant tcrit, where d-axis current reaches its
global negative peak, is determined by

tcrit = arg min
t

id(t).

The negative peak value of d-axis current Icrit
d = id(tcrit) and the coincidental q-axis current

Itrans
q = iq(tcrit) are then identified and stored (Figure 13). In this way, a complete prediction of
(Icrit

d , Icrit
q ) for the whole torque-speed diagram is obtained.

The d-axis current Icrit
d is the worst-case instantaneous value for specific operating point (T, n)

and is directly associated with demagnetization risk. Figure 14 depicts the predicted Icrit
d for the

torque-speed diagram. We can observe that the highest negative values of Icrit
d are expected when the

IPM is delivering peak power (big iq). It is interesting to note that there is less of a demagnetization
risk when the machine operates in deep flux weakening. Moreover, the Icrit

d in generating mode is
larger than its counterpart in motoring mode.

Operating points, where values of Icrit
d are critically low, are identified as candidates for

demagnetization. Therefore, precise re-evaluation of this operating point with FEA was performed.
The corresponding current pair (Icrit

d , Icrit
q ) is fed into the magnetostatic simulation. Precise calculation

of the magnetic field inside magnets enables reliable demagnetization risk assessment.
As this particular scenario is a simple iteration of the basic simulation task described above,

we could estimate the execution time for both models. The FLM enabled 9.4% faster execution in
comparison to CM, which can be considered a significant improvement (Table 3).

The torque-speed diagram in Figures 12 and 14 requires comment. The envelope of the diagram
is not symmetrical for motoring (top) and generating (bottom), as the transition speed between a
constant torque operation and flux-weakening operation differs for motoring and generating mode,
which is mainly due to the 48 V car battery being used as a DC source. A significant relative difference
in bus voltage for motoring (48 V) and generating (52 V) mode is further aggravated by the effect of
losses and stator resistance, which explains the difference in the torque-speed envelope.
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Figure 12. Initial current Iinit
d for a three-phase short circuit.

Analogously, the WLTC driving cycle scenario is very similar to another basic simulation task
described above, namely, control with field weakening. WLTC prescribes speed values for each second
in the 30 min time frame. Consequently, the time series of speed values is treated as a reference for the
control loop drive. As we can observe from Table 3, the FLM-based simulation model was 18.1% faster
than its counterpart.
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Figure 13. Three-phase short circuit for worst-case operation point (56 Nm, 5000 min−1), where
Iinit
d = −405 A and Iinit

q = −599 A.
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Figure 14. Peak transient current Icrit
d for three-phase short circuit.

5. Conclusions

In this paper, an FEM-parameterized two-axis model of IPM was thoroughly analyzed, and
its two implementations (i.e., CM and FLM) were compared from the point of view of accuracy
and computational demand. Since parameterization of FLM involves the inversion of flux maps,
it is mathematically more complex than analog CM tasks, thus resulting in significantly higher
computational and, by extension, time demand. For this reason, a procedure for fast and reliable
parameterization FLM was presented. The proposed procedure is one order of magnitude faster
than the comparable methods, hence providing considerable improvement in terms of computational
time. In this way, the major drawback of using FLM were overcome. It was established that the error
of the inversion process was under 0.02%.

Additionally, we showed that the execution time of FLM was up to 20% shorter in comparison
to CM. As the parameterization time of FLM is now comparable to CM, we strongly advocate the
use of FLM in computationally intensive simulation scenarios, which include a significant number of
iterations or have an excessive time span. This is why FLM should be used in the Hardware-in-the-Loop
experiment platform as well, since the real-time computational burden should be as low as possible.
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