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Abstract: Hydraulic fracturing is vital in the stimulation of oil and gas reservoirs, whereas the
dynamic process during hydraulic fracturing is still unclear due to the difficulty in capturing the
behavior of both fluid and fracture in the transient process. For the first time, the direct observations
and theoretical analyses of the relationship between the crack tip and the fluid front in a dynamic
hydraulic fracture are presented. A laboratory-scale hydraulic fracturing device is built. The
momentum-balance equation of the fracturing fluid is established and numerically solved. The
theoretical predictions conform well to the directly observed relationship between the crack tip and
the fluid front. The kinetic energy of the fluid occupies over half of the total input energy. Using
dimensionless analyses, the existence of equilibrium state of the driving fluid in this dynamic system
is theoretically established and experimentally verified. The dimensionless separation criterion of
the crack tip and the fluid front in the dynamic situation is established and conforms well to the
experimental data. The dynamic analyses show that the separation of crack tip and fluid front is
dominated by the crack profile and the equilibrium fluid velocity. This study provides a better
understanding of the dynamic hydraulic fracture.

Keywords: dynamic hydraulic-fracturing experiments; dynamic crack tip; fluid front kinetics; energy
conservation analysis

1. Introduction

Hydraulic fracturing is an inherently unstable process. Even the controlled and overall stable
hydraulic fracture propagation is unstable at the small scale [1]. Most previous studies on hydraulic
fracture are based on the quasi-static treatment of the fracturing fluid and the inertial force of the fluid
is neglected [2–4]. The dynamic situation is fundamentally different from the quasi-static simulation.
For example, it has been shown that in the quasi-static fluid-driven crack, the fluid front has a
relationship of x ∼ t1/2 with time t in a quasi-static situation where the inertial force is neglected and
viscosity dominates the fluid behavior [4]. According to the dynamic simulation considered herein,
the velocity of fluid front advancement is approximately constant in a propagating crack traveling
at a constant speed. A recent numerical study [5] on a dynamic hydraulic fracture taking the inertia
effect into account has shown that the hydraulic fracture propagates in a stepwise manner with fluid
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pressure oscillations. The stepwise propagation of the crack and the pressure oscillations indicate that
the fluid inertia plays an important role in the dynamic fracturing, especially within the short time
period right after the crack initiation.

The most widely known phenomenon of the relationship between crack tip and fluid front is
the “lag region (dry zone)”. The lag region is the space between the crack tip and fluid front. Under
some specific conditions [4], the lag region could be considered infinitely small, exerting no influence
on the fracturing behavior. There are also studies [6–9] showing that although the length of lag zone
is indeed very small, its effect on fracture geometry cannot be ignored. For example, Bunger [10]
considered the lag region to be filled by vapor from the fluid at a pressure that is negligibly small
compared to the characteristic pressure in the fracturing process. The existence of the lag region
induces another characteristic length besides the crack length. Previous studies related to the lag
region have all been based on static or quasi-static assumptions of fluid behavior. The present study
provides both experimental and theoretical insights on the lag region in dynamic situation.

Recently, the dynamic hydraulic fracturing was numerically investigated by Khoei et al. [11]
and Kostov et al. [12] using Extended Finite Element Method (XFEM). To the authors’ knowledge, no
previous studies have reported direct observations of the real dynamic process of hydraulic fracture.
In terms of experimental observations, we have limited knowledge on the effect of inertia after the
initiation of the hydraulic fracture. In most previous experimental studies [10,13–22], the time spans
of the experiments were on the scale of seconds and the data acquisition interval was too large to
capture the dynamic response within seconds. Moreover, the data from the oil field [23] were on a
larger time scale making dynamic analysis intractable. In this paper it demonstrates that the inertial
force of the fluid plays an important role in dynamic hydraulic fracture. This is achieved by direct
observations and theoretical analyses of the relationship between the crack tip and the fluid front
in dynamic hydraulic fracture. The dimensionless separation criterion of the crack tip and the fluid
front is also established to provide a guideline of distinguishing dynamic hydraulic fracture from the
quasi-static fluid-driven fracture in numerical simulations.

In order to describe the transient motion of the fluid in the fracture, the momentum balance
equation regarding the fracturing fluid is established. The treatment generally follows the approach
by Bosanquet [24]. A proper treatment of the crack profile is important to the dynamic analyses. The
most well-known crack tip profile is the parabola (Linear Elastic Fracture Mechanics) described as
D ∼ X1/2, where D is the crack opening and X is the distance from the crack tip. Recent studies also
showed that the hydraulic fracture had a profile of D ∼ X3/2 (zero-toughness situation) in the near
tip region [25], and it transitioned to the form of D ∼ X2/3 away from the near-tip region [26–28] and
finally it became D ∼ X1/3 after the crack attained blade-like geometry (Perkins–Kern–Nordgren
model [29,30]). Thus, without loss of generality, the crack profile of D ∼ Xn (0 < n < 2) is assumed
in this study.

In this paper, a laboratory-scale hydraulic fracturing device is built to create dynamic Mode I
hydraulic fracture (HF) in a double-cantilever-beam (DCB) shaped Polymethyl methacrylate (PMMA)
specimens. The analytic solution of the beam deflection and stress intensity factor (SIF) are derived. To
validate the calculated SIF, the analytic SIF is compared with the existing theoretical study. Then, the
relationship between crack tip and fluid front in dynamic HF is investigated. The momentum balance
equation of dynamic flow is established. Numerical results by solving this equation are compared with
the pertinent experimental results. The corresponding energy form of equations are considered. The
existence of equilibrium state is predicted theoretically and experimentally verified. The influence of
crack profile is taken into consideration. A dimensionless factor Π2 is proposed as the dimensionless
separation criterion to study the separation of the crack tip and the fluid front, as well as the existence
of equilibrium state. The validity of Π2 is verified by the experimental results.
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2. Experimental Setup and Verification

The purpose of this section is to provide an overview of the experimental setup, the theoretical
and experimental verification of this device and the tests performed. Two types of tests are performed
in this study. The first focuses on the experimental verification of SIF using a combination of the Digital
Image Correlation (DIC) method and the Williams’ series. An optical microscope is used to obtain the
image. The second type captures the relationship between crack tip and fluid front in the dynamically
propagating crack. A high-speed camera is used for this purpose.

2.1. Experimental Setup

In this study, a laboratory-scale hydraulic fracture device, based on the DCB test, is designed
and built. In order to acquire photographs using both optical microscope and high-speed camera,
two transparent and thick PMMA boards are machined into certain shape and used as the frame
structure. As a result of the difficulty in sealing the top of the specimen against fluid leaks, a relatively
soft silicone ring is used as the sealing material. To seal the specimen surface, two U-shape silicone
strips are placed on both sides of the specimen surface. As shown in Figure 1a, this design creates two
narrow spaces filled with pressurized fracturing fluid on both sides of the specimen. Silicone seals
offer great performance according to our experimental observations. In order to obtain a straight crack
path, a small force parallel to the crack direction is applied to the DCB specimen. This small force not
only ensures a straight crack path, but also makes the specimen squeeze the silicone ring against any
fluid leaks. Care was taken to avoid applying a relatively large force that can lead to fluid leaks. The
fluid is injected into the void between the two beams of the specimen. To capture the fluid front during
the high-speed dynamic crack propagation, distilled water with a small amount of black ink is used as
fracturing fluid. For tests conducted to verify the SIF value using an optical microscope, only distilled
water is used as the fracturing fluid.
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microscope direction is perpendicular to the specimen surface. Both the specimen and frame are 
transparent; (b) Configuration of the hydraulic fracture in double-cantilever-beam (HF-DCB) 
specimen. The to-be-fractured area is pasted with 0.05 mm thin copper foil to avoid side flow; (c) 
HF-DCB with intrinsically sharp crack tip induced by Chevron notch. 

Figure 1. The experimental setup and specimen configuration. (a) Laboratory-scale hydraulic fracturing
device. The high-speed camera direction is parallel to the specimen surface and the optical microscope
direction is perpendicular to the specimen surface. Both the specimen and frame are transparent;
(b) Configuration of the hydraulic fracture in double-cantilever-beam (HF-DCB) specimen. The
to-be-fractured area is pasted with 0.05 mm thin copper foil to avoid side flow; (c) HF-DCB with
intrinsically sharp crack tip induced by Chevron notch.
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The PMMA specimens are commercial products having an elastic modulus of 2.6 GPa and a
Poisson’s ratio of 0.33, evaluating using uniaxial compression test in a RTR-1500 tri-axial machine
manufactured by GCTS. The details of the geometrical parameters are shown in Figure 1b. The
thickness of the specimen is maintained at b = 5.0 mm ± 0.1 mm. Crack notch of different widths is
studied. The width varied from intrinsically sharp to 2.0 mm. The intrinsically sharp crack is induced
by Chevron notch, as shown in Figure 1c, with a length a = 35 mm ± 2 mm. The other notch widths
(0.5 mm and 1.0 mm and 2.0 mm) with length a = 30 mm, are produced by laser cutting.

In order to create an ideal two-dimensional flow, a copper foil of 0.05 mm thickness (1% of the
sample thickness) is pasted on each side of the specimen to avoid side flow of fracturing fluid to the
crack tip. This experimental treatment ensures that the fracturing fluid is only supplied by the rear
end of the fracture. According to our observations, the copper foil offers great performance in resisting
the side flow from the specimen surface and it does not exert any influence on the fracturing behavior
of the specimen.

In the tests herein, a RTR-1500 hydraulic system and a SCON controlling system from GCTS are
used as the hydraulic system and the controlling system, respectively. A high-speed camera is used
to capture the dynamic relationship of crack tip and fluid front. A typical data acquisition interval
of 5 microseconds is used. A 2000 watt high-power light source and several high-power flashlights
are used together to provide sufficient light for the camera for capturing images with a very small
exposure time (about 4 microseconds). In this paper, the dynamic relationship between fluid front and
crack tip is directly captured within 1 millisecond using a high-speed camera with a sampling rate of
200,000 Hz (sampling interval: 5 µs).

Tests are performed in a displacement (fluid volume) control mode. The injection rate is kept at
17.4 mL/min. The following data are collected: transient fluid pressure as a function of time (using
the GCTS system), dynamic relationship of crack tip and fluid front (using high-speed camera) and
full-field displacement (using optical microscope (OM)).

2.2. The Theoretical and Experimental Verification of Stress Intensity Factor (SIF)

2.2.1. Theoretical Verification

The deflection and SIF of HF-DCB specimen under hydraulic pressure are derived. Based on
the Euler-Bernoulli beam theory and the Winkler foundation, Kanninen [31] derived the following
closed-form analytic solution of the beam deflection of the DCB specimen under point load.

w(x, a) =
6P

Ebh3λ3

[
−λ3

3
x3 + aλ3x2 + (D + 2aλH)λx + F + aλD

]
(1)

where,
D = sinh2(λc)+sin2(λc)

sinh2(λc)−sin2(λc)

H = sinh(λc) cosh(λc)+sin(λc) cos(λc)
sinh2(λc)−sin2(λc)

F = sinh(λc) cosh(λc)−sin(λc) cos(λc)
sinh2(λc)−sin2(λc)

λ = 1.565/h

All other parameters are shown in Figure 1b. Based on the point load solution shown above, the
solution of the DCB specimen under uniformly distributed load, namely the solution of the HF-DCB
specimen is derived. The analytic solution of beam deflection, the total strain energy stored in the
HF-DCB specimen, the energy release rate and the SIF of the HF-DCB specimen are derived as follows:

wHF(x) =
σ

Eh3λ3 ϕ(x) (2)

U(a) = σ2Φ(a) (3)
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G =
1
b

σ2 dΦ(a)
da

(4)

K =
σ

h3/2

√[
3(1− 1

λ

∂H
∂c

)a4 +
1
λ
(12H − 7

2
1
λ

∂D
∂c

)a3 + (
21
2

1
λ2 D− 1

λ3
∂F
∂c

)a2 +
2

λ3 Fa
]

(5)

where,

ϕ(x) =
1
2

λ3x4 − 2λ3ax3 + 3λ3a2x2 + 6(λ2Ha2 + λDa)x + aF +
1
2

a2λD (6)

Φ(a) =
b

Eh3λ3 (
3
5

λ3a5 + 3λ2Ha4 +
7
2

λDa3 + Fa2) (7)

The details of the derivation are shown in Appendix A. The fluid volume between two beams is
expressed as follows:

VHF(a) = 2σΦ(a) (8)

According to Equations (3) and (8), the total strain energy has the following relationship with
volume: U(a) = 1

2 σVHF(a).
As commonly seen in DCB analyses, Equation (5) is very insensitive to c when c/h > 2, in which

situation it reduces to the following:

K = σ
√

a ·
√

3(
a
h
)

3
+ 7.7(

a
h
)

2
+ 4.3

a
h
+0.52 (9)

The SIF is compared with the results by Fett [32] who derived the SIF under a distributed load
using the boundary collocation method and the weight functions. According to his study, K can be
expressed as follows:

K =
∫ a

0
χ(x) · σ(x)dx (10)

where σ(x) is a constant and the weight function χ(x) is given by

χ =

√
12
h
(

a
h
+ 0.68)−

√
12
h

x
h
+

√
2

Π(a− x)
exp(−

√
12(a− x)

h
) (11)

Thus, K can be written as follows

K = σ
√

a

[√
12a
h

(
1
2

a
h
+ 0.68) +

2√
6Π

√
h
a

(
1− exp(−

√
12a
h

)

)]
(12)

A comparison between the Fett’s results (Equation (12)) and the analytic solution derived in this
study (Equation (5)) is shown in Figure 2. It can be seen that the analytic results are in good agreement
with the Fett’s results. It should be noted that the Fett’s results present a numerical fitting and are only
applicable in the condition of c/h > 2. The analytic solution in Equation (5) provides a generalized
analytic solution without this constraint of c/h.
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Figure 2. Comparison between stress intensity factor (SIF) between the analytic solution (Equation (9))
using beam theory and the Fett’s result (Equation (12)) using boundary collocation method and the
weight functions. for c/h = 3. The two results show good agreement with each other in a wide range.
The variables on the horizontal and the vertical coordinates are dimensionless numbers.

2.2.2. Experimental Verification

The theoretical SIF expressed in Equation (9) is experimentally verified using a combined method
of DIC full-field displacement extraction and the fitting of Williams’ series. The crack tip position,
Mode I and Mode II SIFs are unknown parameters in the fitting. This non-linear fitting is performed in
the least square sense using a derivative-free Levenberg-Marquardt algorithm [33,34]. A comparison
between theoretical SIFs and experimental SIFs results under different values of a is shown in Figure 3.
The images for DIC analyses are taken by an Olympus optical microscope with a resolution of
1624 × 1236 pixels, and a pixel length of 8.09 µm. For better DIC identification, the specimen surface
around crack tip is abraded by 800 grit sandpaper. All the fitting process generally follows the method
by Yates [35]. The details of the fitting process are not shown here.
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Figure 3. Comparison between theoretical SIF results and experimental SIF results. The theoretical SIFs
are derived using Equation (9). The experimental SIFs are derived using a combined method of Digital
Image Correlation (DIC) full-field displacement extraction and the fitting of DIC full-field displacement
extraction and the fitting of Williams’ series. Williams’ series. The specimens are loaded to the SIF that
is slightly lower than the fracture toughness.
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3. The Relationship Between the Crack Tip and the Fluid Front in Dynamic Hydraulic
Fracture (HF)

3.1. Governing Equations

The two-dimensional dynamic flow in hydraulic fracture studied here can be approximated as
dynamic flow along slowly-varying channels. The momentum-balance equation of the fracturing fluid
between the slowly-varying plates under constant fracturing pressure is as follows [36,37]:

d(M(x, t))
dt

+ FV(x, t) + FC(x, t) = FP f (t) (13)

In this equation, the coordinate system is established as show in Figure 4. x is the position of the
fluid front (not the same x in beam deflection analyses), the first term d(M(x, t))/dt on the left side
of the equation is the inertial resistance, M(x, t) is the total momentum of the fluid, the second term
FV(x, t) stands for the drag force induced by viscosity, the third term FC(x, t) is the resistance induced
by the slowly-varying flanks of the crack, and FP f (t) is the total driving force. It may be worth noting
that x is also a function of t. This momentum balance equation has the following expanded form:

d
dt

(
ρbD(x, t)x dx

dt

)
+ 12bηD(x, t) dx

dt

∫ x
0

1
D(x0,t)2 dx0 +

∫ x
0 bP(x0, t)(− ∂D(x0,t)

∂x0
)dx0 = Pf bD(0, t) (14)

where D(x, t) is the crack opening width as a function of time t and fluid front position x.
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Figure 4. Illustration of dynamic fluid analyses in the crack. The coordinate origin is where the crack
starts to propagate. The crack profile is assumed to stay the same while propagating. x is the position
of the fluid front. x0 is the point for the integral analyses in the fluid. D is the crack opening width. The
upper part of the figure is the illustration of the analyses of the crack flank resistance.

The first term on the left side of Equation (14) is the time derivative of the total momentum of the
fluid in the propagating crack:

d(M(x, t))
dt

=
d(
∫

V(x0, t)dm)

dt
(15)

where dm = ρbD(x0, t)dx0 and V(x0, t) = D(x, t)/D(x0, t) dx
dt (volume conservation) as shown in

Figure 4. The second term on the left side of Equation (14) is the viscous force:

FV(x, t) =
∫

dFV = 2
∫ x0

0
τ(x0, t)bdx0 (16)

where τ(x0, t) = 6ηV(x0, t)/D(x0, t) = 6ηD(x, t)/D(x0, t)2 dx
dt .
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The third term is the horizontal component of the resistance applied by the crack flanks:

FC(x, t) =
∫

bP(x0, t)dy0 =
∫ x

0
bP(x0, t)(−∂D(x0, t)

∂x0
)dx0 (17)

Strictly speaking, the derivation of the third term requires an explicit P(x0, t), which can only be
obtained by solving Equation (14). This makes Equation (14) implicit. Here the pressure distribution
for the calculation of the third term is assumed to have the following linear form:

P(x0, t) = −
Pf

x
(x0 − x) (18)

This first order assumption ensures the pressure at the fluid front is zero and is P f at the injection
point. The influence of the crack-flank resistance term is discussed later in this paper.

The derivation of Equation (14) contains the following assumptions. Firstly, the fluid is assumed
to fully fill the crack in the rear of fluid front. Secondly, the fluid front is assumed to have a flat
profile. The velocity of the fluid at point x0 is considered as the mean velocity V(x0, t) = dx0

dt at any
cross section.

It can be inferred that the theoretical fluid front as a function of time is strongly influenced by
the time-dependent crack profile, D(x, t). The determination of D(x, t) is also where the difficulty
resides in. According to our experimental results of crack tip velocity, for some of the tests, before first
arrest of the crack, the hydraulic crack in DCB specimen roughly propagates at a constant velocity.
Thus, the constant-velocity approximations are made in sample #15 and sample #16. As for sample
#12 and sample #14, nine-order polynomial fitting is used to fit the crack tip position as a function of
time. It should be noted that if the details of the curve are not omitted, five-order polynomial fitting
is suggested as the fitting becomes sensitive to the error when the order increases. In the case we
investigate here, the crack profile in the DCB specimen is approximated by linear approximation. The
comparison between approximation of the crack profile and the theoretical quasi-static crack profile
derived by Equation (A7) is shown in Figure 5. As shown, the linear crack profile provides a good
approximation in the range of crack length we investigated here.
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profile. The quasi-static beam deflection is derived using beam theory. The linear crack profile provides
a good approximation of the crack profile in the considered area.
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According to the approximations of linear crack profile, the D(x, t) can be expressed as:

D(x, t) = a1[C(t)− x] (19)

a1 is a constant in all the tests and has a non-dimensional value of 1.43 × 10−2. a1 means the slope
of the linear crack profile and is derived by fitting the theoretical quasi-static crack profile as shown
in Figure 5. The theoretical quasi-static crack profile is obtained by substituting Equation (5) into
Equation (A7) and eliminating σ. And the value of K is set as the arrest toughness Ka (1.0 MPa

√
m,

regular dry DCB tests). In this way a1 is obtained.
C(t) has the following form under the approximation of constant-velocity crack.

C(t) = a1VCt (20)

In the nine-order polynomial fitting of the crack tip position, C(t) is expressed as:

C(t) =
9

∑
n=0

Antn (21)

Substituting Equation (19) into Equation (14) we have the following differential equation:

x′′ −
Pf C(t)

ρx(C(t)− x)
+

Pf

2ρ(C(t)− x)
+

x′2

x
+ x′

C′(t)− x′

C(t)− x
+

12ηx′

a2
1ρ(C(t)− x)C(t)

= 0 (22)

Equation (22) is a general equation for linear-profile crack. After substituting Equations (20) and
(21) into Equation (22) separately, Equation (22) is numerically solved on MATLAB using “ode45”. The
initial values of t, and x and are assigned a small positive value (typically 10−9) because Equation (22)
is singular at x = 0 and t = 0. All the experimental and numerical results are shown in Figures 6 and 7.

3.2. Energy Conservation in the Dynamic Process

The energy conservation of the fluid within the crack is investigated here. The major energy terms
taking part in the energy conservation regarding the dynamic fluid flow include the input energy WI ,
the kinetic energy of the fluid WK, the energy dissipated by viscosity WV , and the work done by the
fluid on the crack flanks WC. These terms as a function of time can be derived via the time integral of
the rate of these energy terms, which are shown as follows:

.
W I = Q(t) · Pf = x′D(x, t)bPf (23)

.
WK =

d
(∫ 1

2 V(x0, t)2dm
)

dt
=

1
2

bρ
d
(

x′2D(x, t)2∫ x
0

1
D(x0,t)dx0

)
dt

(24)

.
WV =

∫
V(x0, t)dFV(x0, t) = 12bηx′2D(x, t)2

∫ x

0

1

D(x0, t)3 dx0 (25)

.
WC =

∫
C′(t)dFC(x0, t) =

∫ x

0
C′(t)bP(x0, t)(−∂D(x0, t)

∂x0
)dx0 (26)

The rate of energy dissipated by viscosity
.

WV is calculated by visco-friction between the crack
and fluid. The rate of work done on the crack flank

.
WC involves the calculation of the force component

on the direction of crack propagation.
The conservation of energy should be satisfied:

WI = WK + WV + WC (27)
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which can be written, ∫ t

0

.
W I =

∫ t

0

.
WK +

∫ t

0

.
WV +

∫ t

0

.
WC (28)

In the following section, the energy conservation is verified. After solving Equation (22), the
total input energy WI as a function of time is compared with the total energy consumed by the fluid
WK + WV + WC.

3.3. Comparison between Experimental and Theoretical Results

All the detailed data of the samples are shown in Table 1. The fracturing fluid is water with black
ink. Because the viscosity of black ink is only slightly larger than the viscosity of water, the viscosity
η for calculation is set as 0.9× 10−3 Pa·s, which is the viscosity of water at 25 degrees centigrade.
Figures 6 and 7 show the typical experimental and theoretical results of the dynamic process. The
positions of the crack tip and fluid front are recorded frame by frame. As it can be seen in Figure 6a,b
and Figure 7a,b, the theoretical dynamic fluid fronts are in good agreement with the experimental
results. Both experimental results and numerical results show that during the dynamic propagation
of the hydraulic fracture, the fluid front separates with the crack tip and has a different velocity
compared to the crack. Before the fluid front approaches the crack tip, the results of the calculation
with and without the crack-flank resistance term provide similar results. However, when the fluid front
approaches the crack tip, the calculation with that term provides a much better result. It is because
when approaching the crack tip, the fluid occupies most of the crack, and the horizontal component of
the force applied by the crack flanks increases to an important part of the total resistance. The results
indicate that when the fluid occupies most of the crack, the crack-flank resistant force is not negligible
in a dynamic calculation.

Table 1. Sample data.

NO. Crack Notch Width
(mm)

Initial Crack
Length a (mm)

Fracturing
Pressure Pf (MPa)

Initiation
Toughness *
(MPa

√
m)

#5 Intrinsically sharp crack 35 1.95 2.52
#6 Intrinsically sharp crack 35 1.72 2.22
#7 Intrinsically sharp crack 37 1.52 2.15

#11 0.5 30 3.56 3.62
#12 0.5 30 2.74 2.78
#13 0.5 30 2.26 2.30
#14 2.0 30 4.06 4.13
#15 2.0 30 2.64 2.68
#16 2.0 30 2.53 2.57

* According to our preliminary study, the initiation toughness is related to both the crack notch width and the
pressure-hold time before initiation which results in craze and blunting in the near-tip region.

As for the energy terms, in most of the time during propagation, the total input energy is almost
the same as the total energy consumed by the fluid as shown in Figure 6c,d and Figure 7c,d. This
is a good verification of the first-order approximation of pressure distribution. As can be seen, the
viscosity energy is only a very small part of the total input energy. The kinetic energy of the fluid and
the work done on the crack flank takes up most of the energy during the dynamic process. The results
show that the value of WC/WI has a positive relationship with the velocity of the crack tip. When the
crack arrests, the WC stops to increase and the WC/WI starts to decrease. This result is predicted by
Equation (8), which involves the crack tip velocity. Overall, the kinetic energy of the fluid takes up
over half of the total input energy during this process. When the crack slows down or is arrested, this
ratio further increases. The WC and the WV share the rest of the input energy.
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the crack in the dynamic situation. As it can be seen, the crack is prone to re-initiation when the 
fluid front approaches the crack tip. The crack speed of the re-initiation is higher than the fluid 
velocity, and the crack arrests before the fluid front approaches again. The experimental and 
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with the experimental results, there are still problems that need further investigation. According to 
our numerical results, the fluid front allowing for the first-order approximation of the crack-flank 
resistance predict an extremely high fluid velocity when the fluid front further approaches the crack 
tip. It is not clear whether the behavior at such high speed is real or is simply an artifact of the 
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Figure 6. (a,b) are the comparison between experimental results and theoretical results of fluid front for
sample #12 (fracturing pressure: 2.74 MPa) and sample #14 (fracturing pressure: 4.06 MPa) respectively.
The fluid front positions are the numerical results by solving Equation (22) with and without the term
of the crack flank resistance. The calculations with the crack flank resistance term provide better results
of the fluid front position; (c,d) are corresponding energy as a function of time. The energy terms
are calculated using the equations from Equation (23) to Equation (26). The kinetic energy WK of the
fluid occupies around half of the total energy. The work done by the fluid on the crack flank is a
non-negligible part of the total energy. The input energy and the consumed energy conform well to
each other.

Recent numerical simulation [5] showed that the dynamic fracturing (in 1 millisecond) is not
smooth or continuous but was a distinct stepwise process concomitant with fluid pressure oscillations.
The experimental results here provide a direct evidence for the stepwise propagation of the crack in the
dynamic situation. As it can be seen, the crack is prone to re-initiation when the fluid front approaches
the crack tip. The crack speed of the re-initiation is higher than the fluid velocity, and the crack arrests
before the fluid front approaches again. The experimental and theoretical results of crack tip and fluid
front also agree with the existing studies [38–40].

Despite that the numerical results provided by solving Equation (22) are in good agreement with
the experimental results, there are still problems that need further investigation. According to our
numerical results, the fluid front allowing for the first-order approximation of the crack-flank resistance
predict an extremely high fluid velocity when the fluid front further approaches the crack tip. It is not
clear whether the behavior at such high speed is real or is simply an artifact of the model. Interestingly,
the experimental results seem to provide some evidence of this high-speed phenomenon. Figure 8
shows the dynamic images of sample #12, which shares the same time coordinate with the data in
Figure 6a. As can be seen, the fluid front becomes unstable after 0.235 milliseconds. This may result
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from the high speed of the fluid, which leads to turbulence. The data of the fluid front position in
Figure 6a is not sampled at the very front of the unstable fluid after 0.235 milliseconds, as a result of
which the velocity seems to be moderate when approaching the crack tip. If the very front of fluid is
regarded as the fluid front, there will be the high speed of the fluid when approaching the crack tip.
It should be noted that when the fluid front gets close to the crack tip, which is beyond the scope of
this study, all the kinetic energy will turn into the work done on the crack flanks in the way of possible
high fluid pressure. This may provide an explanation for the phenomenon that every time the fluid
front approaches the crack tip, the crack starts to propagate. This phenomenon is seen in all the tests.
Previous research by Rubin [41] showed that in the case of a saturated permeable media, the cavity
between crack tip and fluid front was either filled with the vapor of the fracturing fluid, with a nearly
constant vapor pressure in the case of an impermeable medium, or the pore-fluid infiltrated from the
surrounding domain.
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As can be seen, the crack tip shown in Figure 8 is vague. However, it is clear and readily 
identifiable in the video version in the supplementary materials. 

Figure 7. (a,b) are comparison between experimental results and theoretical results of fluid front for
sample #15 (fracturing pressure: 2.64 MPa) and sample #16 (fracturing pressure: 2.53 MPa) respectively.
The fluid front positions are the numerical results by solving Equation (22) with and without the term
of the crack flank resistance. The calculations with the crack flank resistance term provide much more
realistic results of the fluid front position; (c,d) are corresponding energy as a function of time. The
kinetic energy WK of the fluid occupies over half of the total energy. WC stops increasing after the arrest
of the crack as expected. The input energy and the consumed energy conform well to each other.
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Figure 8. Dynamic images of the relationship between crack tip and fluid front of sample #12. The
direction of the high-speed camera is shown in Figure 1a. The crack tip and the fluid front separate
at the beginning of the propagation, and the fluid front catches up with the crack tip when it slows
down. The phenomenon of fluid ejection presents when the fluid front approaches the crack tip, and
meanwhile the fluid velocity is theoretically high but actually low in the real case.

As can be seen, the crack tip shown in Figure 8 is vague. However, it is clear and readily
identifiable in the video version in the Supplementary Materials.

3.4. Will the Fluid Front Catch Up with a Propagating Crack?

Now let us turn our attention to the separation of the fluid front and the crack tip during the
dynamic process, namely the existence of the lag region. The main purpose of this section is to
determine whether the fluid front and the crack tip share the same front or not after initiation, and to
investigate the existence of the “equilibrium state” which indicates that the fluid front will travel at a
constant velocity shortly after the initiation of the crack. Earlier discussion has already shown that
the momentum-balance equation of the fracturing fluid between the linearly-slowly-varying plates
can be expressed by Equation (14). It should be noted that the linear profile assumption is only valid
in the crack of HF-DCB specimen. In the following analyses, a more generalized-form crack profile
is investigated:

D(x, t) = A(Vct− x)n (29)

where n is a positive real number. The coordinate is the same as the one shown in Figure 4. Equation (29)
describes a more generalized profile of the crack propagating at a constant velocity. Using the first
order approximation of crack-flank resistance, the governing equation can be written in the following
form by substituting Equations (29) and (18) into Equation (14):

d
dt

(
ρbA(Vct− x)nx dx

dt

)
+ 12ηb

[
A(Vct− x)n] dx

dt

∫ x
0

1
[A(Vct−x0)

n]
2 dx0 =

Pf bA(Vct)n −
∫ x

0 b(− Pf
x (x0 − x))(− ∂[A(Vct−x0)

n]
∂x0

)dx0

(30)
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After the integral, Equation (30) becomes

d
dt

(
(Vct)n(1− x

Vct )
nx dx

dt

)
+ (Vct)n 12η(1− x

Vct )
nx′

ρA2(2n−1)

[
(Vct− x)−2n+1 − (Vct)−2n+1

]
=

(Vct)n Pf
ρ − (Vct)n Pf Vct

ρ(n+1)x

[
(n + 1) x

Vct + (1− x
Vct )

n+1 − 1
] (31)

Equation (31) can be written in the following dimensionless form:

d
dt

(
Vc(Vct)n+1(1−Π1)

nΠ1P1

)
=

(Vct)nV2
c

[
2Π2 − Π3(1−Π1)

nP1
(2n−1)

[
(1−Π1)

−2n+1 − 1
]
− 2Π2

(n+1)Π1

[
(n + 1)Π1 + (1−Π1)

n+1 − 1
]] (32)

where P1 = x′
Vc

, the dimensionless instantaneous velocity of the fluid front; Π1 = x
tVc

, the dimensionless

secant velocity of the fluid front; Π2 =
Pf

2ρV2
c

and Π3 = 12η

A2ρV2n
c t2n−1 . Π1, Π2 and Π3 are the composed

criteria and P1 is the simple criterion.
This governing equation mathematically predicts a dimensionless velocity: “equilibrium fluid

velocity PE”. It indicates an equilibrium state where after a long period of time ( t→ ∞ ) the fluid front
travels at a constant velocity PEVC, and will not catch up with the running crack tip. The equilibrium
state can only be approached. After a long period of time ( t→ ∞ ), for there to be an equilibrium state,
the instantaneous velocity of the fluid front equals the secant velocity and both are time independent,
which leads to P1 = Π1 = PE = constant. Also notice that lim

t→∞
Π3 = 0 for n > 1

2 . This makes the terms

on the right side of Equation (14) readily integrable. After the time integral of Equation (32) over the
range from 0 to t and by taking P1 = Π1 = PE, we have the following dimensionless equation:

(n + 1)2(1− PE)
nP3

E

2
[
1− (1− PE)

n+1
] = Π2 (33)

When n > 1/2, for there to be an equilibrium state, Equation (33) has to be satisfied. This equation
can be utilized to examine the existence of the equilibrium state. It is easy to find that for an arbitrary
n, Equation (33) first goes up then goes down when PE increases from 0 to 1. Thus, for Equation (33) to
have a solution within the range of 0 < PE < 1, there exists a critical Π2, which can be expressed as
Π2c(n). When Π2 < Π2c(n), the solution exists and the equilibrium state will finally be reached. After
a long period of time, the fluid front will travel at a constant velocity PEVc that is slower than the crack
tip and will not meet the crack tip. The equilibrium fluid velocity can be obtained by substituting a
given set of Π2 and n into Equation (33) and solving PE. In the case of Π2 > Π2c(n), the solution does
not exist and there is not an equilibrium state for the system. The fluid front and the crack tip either
keep sharing the same front right (low-viscosity situation) after the initiation of the crack or separate
after initiation (viscosity-dominating situation). It should be noted that the relationship between
Π2c(n) and n can only be numerically obtained as there is no explicit solution. It is worth noting that
there is a maximum equilibrium fluid velocity PEmax when an equilibrium state exists. The value of
PEmax can be solved by substituting a given n and corresponding Π2c(n) into Equation (33). The value
of Π2c(n) and maximum equilibrium fluid velocity PEmax as a function of n are shown in Figure 9.

As can be seen in Figure 9, the maximum equilibrium fluid velocity cannot reach 1.0 over the
range investigated. This means that when approaching the equilibrium state, despite the fluid length
keeps occupying an invariable portion (PE) of the crack length as time goes by, the crack tip and
fluid front keep getting away from each other. It is also worth noting that the parameter A, which
characterizes the opening level of the crack, does not enter Equation (33). This means that the existence
of equilibrium states is not related to the degree of the crack opening.
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Figure 9. Π2c and PEmax as a function of n. The solid line is the criterion of the existence of the
equilibrium state. It is valid regardless of η on the right of the dot line (n = 0.5), and is valid only when
η = 0 on the left of the dot line. The maximum equilibrium velocity indicates the equilibrium velocity
when Π2 = Π2c.

Figure 10 shows the numerical results of the dimensionless fluid velocity as a function of time
under different Π2 and viscosity when n = 1. The numerical results verify the theoretical prediction of
the existence of equilibrium state. Fluid fronts accelerate after the initiation of crack and gradually
approach the equilibrium fluid velocity as long as Π2 < Π2c. Once the Π2 becomes slightly larger
than Π2c, there is no equilibrium state and the fluid front quickly rushes to the crack tip after a certain
period of time tc. Provided that the Π2 stays the same and is smaller than Π2c, the fluid front finally
travels at the same constant velocity after reaching the equilibrium state despite the difference of
viscosity. High viscosity leads to a larger tc. It should be noted that the time tc needed for the fluid
to approach the equilibrium state is actually related to Vc. Higher Vc leads to smaller tc. As can be
seen in the earlier discussion, the lack of characteristic time indicates that tc can be regarded as the
dimensional value carrying the dimension of time and enters the governing equation. The existence of
tc is also seen in the experiments as shown in Figure 6a,b and Figure 7a,b: the fluid is relatively slow
or even static in the first 5 microseconds to 25 microseconds. The fluid tends to accelerate from zero
velocity to an approximately constant velocity after the initiation of the crack. The tc observed in the
experiments varies from 5 microseconds to 25 microseconds.
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Figure 10. Numerical results of dimensionless fluid velocity Vf /VC as a function of time under different
Π2 and viscosity η. These numerical results are obtained using liner profile, n = 1, Π2c = 0.227, and
VC = 1, 000 m/s. There is no equilibrium state when Π2 > Π2c. The initial “slow down” at the time
of 10−9 s is an artificial result of the initial value of the numerical calculation. The numerical results
conform well to the theoretical prediction of Π2c.
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Figure 11a shows the results of numerical (by solving Equation (30) using MATLAB “ode45”) and
theoretical (by solving Equation (33)) equilibrium fluid velocity as a function of Π2. As can be seen,
the numerical solution and theoretical prediction are in consistent with each other. The numerical
equilibrium fluid velocities are precisely predicted by Equation (33). The curves are much the same and
are nearly linear in the range of critical Π2. For n > 1/2, the equilibrium velocities are not influenced
by viscosity. Figure 11b shows the comparison between experimental and theoretical equilibrium fluid
velocity as a function of Π2 for linear crack profile. As it can be seen, the experimental results are in
good agreement with the theoretical prediction of the equilibrium fluid velocity. The experimental
results of whether the fluid front and the crack tip separate or not are shown in Figure 12. As it can be
seen, the curve of Π2c provides a very good prediction of the separation of the two fronts.
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Figure 11. (a) Comparison between numerical and theoretical equilibrium fluid velocity as a function
of Π2 for different crack profiles. The numerical results are derived by solving Equation (22). The
theoretical results are from Equation (33). Some typical profiles are investigated; (b) Comparison
between experimental and theoretical equilibrium fluid velocity as a function of Π2 for n = 1. The
experimental results of equilibrium fluid velocity are extracted from the latter half of the equilibrium
state as shown in Figure 7a.
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Figure 12. Verification of Π2c and Π2s compared with experimental results. The massive data on the
left are extracted from varies experiments in which cracks propagate in a stepwise manner and never
separate with fluid fronts. Two of the data points close to the curve of Π2s are shown in Figure 7a,b.
The sporadic data on the right are the initiation parts of the cracks in the experiments, which are prone
to the separation due to the high speed of crack tip. Both Π2c and Π2s provide good predictions of the
experimental results.
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4. Discussion

The momentum balance of Equation (14) involves the determination of the fluid pressure
distribution within the crack, which leads to the determination of crack flank resistance FC. This
resistance is only a small part of the driving force if the fluid has not occupied most of the crack length,
as a result of which the linear approximation of pressure distribution in this paper is reasonable and
provides good results before the fluid front approaches the crack tip. The FC starts to neutralize most of
the driving force when the fluid runs close to the crack tip and the results are sensitive to the accuracy
of the approximation of the pressure distribution. Strictly speaking, Equation (14) is only a boundary
condition of the following momentum balance equation:

d(M(x0, t))
dt

+ FV(x0, t) + FC(x0, t) + FP(x0, t) = FP f (t) (34)

where FP(x0, t) is the resistance from the fluid pressure. FP is expressed as

FP(x0, t) = bP(x0, t)D(x0, t) (35)

This momentum-balance equation is established between the origin and x0 (x0 < x). The
boundary condition is: FP(x, t) = 0 (t 6= tc), which leads to Equation (14). The boundary condition
only implies that the pressure at the fluid front is 0 before reaching the crack tip, it reveals no details
of the pressure distribution of the fluid. For further studies to improve the accuracy dealing with
the fluid approaching the crack tip, Equation (34) shall be further investigated. Another limitation
regarding the model here is that the crack profile is assumed to be the quasi-static one. The fully
dynamic model should consider the inertia and stress wave of the material that forms the crack. The
model will be extremely complicated considering these two factors. Further study should take these
into consideration.

The experiments here have some drawbacks that should be improved in the future. The
study presented here used PMMA as specimen for the convenience of observation. In terms of
rock, as we know, the fracture toughness is not a constant and does not translate across scales.
Rocks are well known to have cracks and defects at all scales [42–48]. In some case rocks are even
elastic-anisotropic [49,50]. Another problem regarding performing the actual field-scale experiment
is that the pore pressure was not considered in this study. The actual stratum is penetrable, which
may lead to a fundamental difference compared to the results in this study [51]. Last but not least, the
confining pressure is not considered in this study. In the further study, the confining pressure and the
saturation of rock materials are to be considered. The experiments considering these two factors are to
be performed in the further study.

As we know, the proppant plays an important role in the real hydraulic fracturing process.
Considering proppant transport would make a big difference compared to the experiments performed
in this study. The proppant will slow down the hydraulic fluid when the crack initiates, because the
proppants are subjected to a larger resistance from the crack flank compared to the hydraulic fluid.
In dynamic situation, the proppants also enhance the pressure drop of the hydraulic fluid in the crack
as it introduces another resistance term in Equation (34). The influence of proppants is well studied in
the previous studies by Siddhamshetty et al. [52,53] These research works may provide guidance for
further study.

5. Conclusions

A laboratory-scale hydraulic fracturing device is built to create dynamic hydraulic fracture and
investigate the dynamic relationship between the crack tip and the fluid front. The momentum-balance
equation of the fracturing fluid under constant fracturing pressure is established. The numerical
solutions of the momentum balance equation conform well to the experimental results. Theoretical
analyses show that the horizontal component of crack-flank resistance starts to exert influence when
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the fluid front approaches the crack tip. In the energy analyses, results show that the kinetic energy of
the fluid occupies over half of the total input energy during the whole process, and when the crack
slows down or arrests, this ratio further increases.

Then the existence of equilibrium state of the dynamic system is investigated. The equilibrium
state indicates that the hydraulic fracture and the fluid front travel at different but constant after a
certain period of time. Moreover, the fluid front will not catch up with the running crack tip. The
existence of equilibrium state is theoretically found and experimentally verified. The theoretical results
of equilibrium velocity PE are in good agreement with the experimental observations. Furthermore,
the dynamic analyses show that the separation of crack tip and fluid front is dominated by both the
crack profile and the equilibrium fluid velocity. The dimensionless separation criterion of the crack
tip and the fluid front in the dynamic situation is established and is found to conform well to the
experimental data. The criterion provides a guideline to distinguish a dynamic hydraulic fracture from
a quasi-static hydraulic fracture in numerical simulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/3/397/s1,
Data S1: Data.zip, Video S1: Video-Craze process of intrinsically sharp crack tip Duration 15 min, Video S2:
Video-Sample#12-Dynamic propagation of hydraulic fracture.
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Nomenclature

a, a1
Initial crack length, a non-dimensional value (1.43× 10−2 in this paper) characterizing the
slope of the linear crack profile

A
A factor controlling the opening of the crack width in the general D(x, t) with a dimension
of L1−n (L is the length dimension)

b Thickness of the specimen
c L− a
C(t), C′(t) The position of crack tip, the velocity of the crack tip
D(x, t) The crack opening width as a function of time t and fluid front position x
E Elastic modulus of the specimen
FV(x, t) The drag force induced by viscosity
FC(x, t) The resistance induced by the slowly-varying flanks of the crack
FP f (t) The total driving force
FP(x0, t) The resistance from the fluid pressure
f1, f2 Point loads in beam analysis
G Energy release rate
K Stress intensity factor
h Half width of the specimen
L Length of the specimen
M(x, t) The total momentum of the fluid
P Point load in beam analysis
P1 The dimensionless instantaneous velocity of the fluid front x′/Vc

Pi, Pf Input pressure, fracturing pressure
PE Equilibrium fluid velocity
P(x0, t) Stress distribution of the fracturing fluid
Q(t) Flow rate
r The distance to crack tip
t Time

http://www.mdpi.com/1996-1073/12/3/397/s1


Energies 2019, 12, 397 19 of 22

tc The time needed for the fluid to approach the equilibrium state
U Total strain energy stored in the specimen
V(x, t), dx/dt Velocity of the fluid front
VHF Volume between the two beams
VC The constant velocity of the crack tip
WI ,

.
WI The (rate of the) input energy

WK ,
.

WK The (rate of the) kinetic energy of the fluid

WV ,
.

WV The (rate of the) energy dissipated by viscosity

WC,
.

WC The (rate of the) work done by the fluid on the crack flanks
w Beam deflection in double-cantilever-beam (DCB) specimen
wHF Beam deflection in hydraulic fracture in double-cantilever-beam (HF-DCB) specimen

x, x′, x′′ x0
The position of fluid front, the velocity of the fluid front, the acceleration of the fluid front,
a point in the fluid

Π1 The dimensionless secant velocity of the fluid front x/tVc

Π2 Pf/2ρV2
c

Π3 12η/A2ρV2n
c t2n−1

Π2c(n) Critical Π2 as a function of n controlling the existence of equilibrium state

Π2s(n)
Critical Π2 as a function of n controlling the separation between the fluid front and the
crack tip

ρ Density of the fluid
σ, Pf Hydraulic pressure
η Dynamic viscosity of the fracturing fluid (water with black ink): 0.9·10−3 Pa·s

θ
Beam deflection angle in beam analysis and a polar-coordinate parameter in Williams’
fitting

µ Shear modulus of the specimen
ν Poisson’s ratio
τ Shear stress of the fluid

Appendix A. Hydraulic Fracture in Double-Cantilever-Beam (HF-DCB) Solutions

The distributed load can be regarded as infinite numbers of small point loads d f distributed along the
beam. As it can be seen in Figure A1, the deflection at x0 is contributed by the point loads along the beam, and is
separately considered, namely 0 < x1 < x0, and x0 < x2 < a. It should be noted that the x0 is not the same x0 asin
dynamic fluid analyses. The deflection at x1 induced by a small point load at x1 (0 < x < x1) is be expressed as:

wm(x1, x1) =
6

Ebh3λ3

[
2
3

λ3x1
3 + 2λ2Hx1

2 + 2λDx1 + F
]

d f1 (A1)

where d f1 = σbdx1. The angle of deflection at x1 can be expressed as

tan(θ(x1)) =
∂w(x, x1)

∂x

∣∣∣∣
x=x1

(A2)

Taking both the deflection and angle of deflection into consideration, the deflection contributed by a small
point load at x1 to the point at x0 is expressed as:

w1(x1, x0) = wm(x1, x1) + tan(θ(x1))(x0 − x1)

= 6
Ebh3λ3

[
− 1

3 λ3x1
3 + λ3x0x1

2 + (2λ2Hx0 + λD)x1 + λDx0 + F
]
d f1

(A3)

The sum of the deflection contributed by distributed load along x1 (0 < x1 < x0) to the point at x0 can be
derived as:

w1(x0) =
∫ x0

0
[wm(x1, x1) + tan(θ(x1))(x0 − x1)] (A4)
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According to the well known relationship between the energy release rate 𝐺 and the stress 
intensity factor 𝐾, 𝐾 = √𝐸𝐺, the stress intensity factor 𝐾 can be expressed as Equation (5). 
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Figure A1. Schematics of beam deflection. The total deflection is the sum of w1 and w2. Both w1

and w2 are calculated by regarding the distributed load as infinite numbers of small point loads. The
coordinate is not the same as the coordinate used in Figure 4.

Now consider the deflection contributed by the distributed load at x2 where x0 < x2 < a. The contribution
by a small point load at x2 is expressed as:

w2(x0, x2) =
6

Ebh3λ3

[
−1

3
λ3x0

3 + λ3x2x0
2 + (D + 2x2λH)λx0 + F + x2λD

]
d f2 (A5)

where d f2 = σbdx2. The total deflection contributed by distributed load at x2 to the point at x0 can be derived as:

w2(x0) =
∫ a

x0

w(x0, x2) (A6)

Thus, the total deflection can be derived as the sum of the Equations (A4) and (A6)

wHF(x) = w1(x) + w2(x) =
σ

Eh3λ3 ϕ(x) (A7)

where ϕ(x) is expressed in Equation (6).
The strain energy stored in the beam can be calculated by the work done by the distributed load

U(a) = 2
∫ a

0

1
2

σbwHF(x)dx =σ2Φ(a) (A8)

The energy release rate is expressed as

G =
1
b

dW
da

=
1
b

σ2Φ′(a) (A9)

where

Φ′(a) =
∂Φ
∂a
− ∂Φ

∂c
(A10)

According to the well known relationship between the energy release rate G and the stress intensity factor K,
K =

√
EG, the stress intensity factor K can be expressed as Equation (5).
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