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Abstract: The classification of disturbance signals is of great significance for improving power quality.
The existing methods for power quality disturbance classification require a large number of samples
to train the model. For small sample learning, their accuracy is relatively limited. In this paper,
a hybrid algorithm of k-nearest neighbor and fully-convolutional Siamese network is proposed to
classify power quality disturbances by learning small samples. Multiple convolutional layers and full
connection layers are used to construct the Siamese network, and the output result of the Siamese
network is used to judges the category of the signal. The simulation results show that: For small
sample sizes, the accuracy of the proposed approach is significantly higher than that of the existing
methods. In addition, it has a strong anti-noise ability.

Keywords: power quality; disturbances classification; Siamese network; small sample learning

1. Introduction

With the development of smart grids, the large-scale integration of advanced power electronic
devices, renewable energies, and electric vehicles have brought new challenges to the operation of
distribution networks. For example, the uncertainty of photovoltaic output power easily causes a
voltage drop in the distribution network [1]. Similarly, the fluctuation and intermittence of wind farms’
produced power may cause the voltages of the distribution network to exceed the limits, since the
wind power lies on the wind speed that varies from time to time [2]. The unstable power quality
will seriously affect industrial production and residential electricity consumption, and even threaten
the safe and stable operation of the power system. How to improve power quality has become a
common concern of power companies and power users. The premise of improving power quality is to
distinguish the category of disturbance quickly for massive high-dimensional power quality data.

Power quality disturbances classification mainly consists of feature extraction and pattern
recognition. The quality of the features has a major impact on the accuracy of the classification.
The traditional processing methods for feature extraction mainly include wavelet transform, fast Fourier
transform, s-transform, and Hilbert–Huang transform. Wavelet transform can be used to analyze the
time-frequency characteristics of signals and it is suitable for the analysis of non-stationary signals
with sudden change characteristics. However, it is sensitive to noise, and the choice of basis function
depends on experts’ experience [3,4]. Fast Fourier transform has the advantage of low computation,
which makes it widely used in the field of signal processing. It is only suitable for the analysis
of stationary signals, and cannot deal with power quality disturbance signals with non-stationary
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characteristics such as transient and sudden change [5]. As an extension of wavelet transform and
short-time Fourier transform, the height and width of window function of s-transform vary with
frequency, which overcomes the shortcoming of short-time Fourier transform with fix height and width
of the window function. Nevertheless, s-transform is insensitive to the detection of singularities in
signals, and the computational complexity is high [6,7]. Hilbert–Huang transform is good at dealing
with nonlinear and non-stationary power quality disturbance signals, but it has the problem of endpoint
effect and modal aliasing [8]. Generally speaking, these traditional methods rely on experience to select
features. There is no unified theoretical basis for extracting features, and the summarized features are
not universal. For different data sets, the quality of classification is difficult to guarantee.

Pattern recognition uses the extracted features to determine the category of power quality
disturbances data. Common methods include support vector machine (SVM), Bayesian classification,
k-nearest neighbor method, case-based reasoning, and multi-layer perceptron (MLP). SVM is suitable
for binary classification. For n categories of power quality disturbances, n SVM needs to be trained.
Each SVM needs to use all the training set. Therefore, the training speed of SVM decreases sharply with
the increase of the training set, which makes it difficult to process large sample data sets [9,10]. Bayesian
classification is sensitive to the form of input data, and the prior probability depends on the hypothesis,
which may lead to poor classification results due to the inaccurate prior model [11]. The k-nearest
neighbor algorithm is simple to implement. When the number of training samples and the dimension
of feature vectors are large, the algorithm’s complexity will be very high. In addition, the K value
that has a great impact on the results needs to be set artificially [12]. Case-based reasoning requires a
large amount of historical data, and all kinds of disturbance scenarios should also be included in the
database [13]. Multilayer perceptron has powerful non-linear mapping ability and can fit arbitrary
continuous functions theoretically. However, it is prone to over-fitting [14]. In general, due to the high
dimensionality of the power quality disturbances data, the accuracy of the traditional methods for
pattern recognition is low, and it is difficult to meet the actual demand.

In recent years, deep learning technology has become one of the most popular research fields of
artificial intelligence, and it has made great achievements in the fields of the power system such as
load curve modeling, photovoltaic power prediction, and fault diagnosis. Specifically, many scholars
have tried to apply some deep neural networks to improve the accuracy of power quality disturbance
classification. For example, the stack sparse auto-encoder is proposed to automatically extract the
feature of power quality disturbances data in [15]. The simulation result shows that the stack sparse
auto-encoder can effectively learn the natural characteristics of data by reducing dimensionality.
To improve the accuracy of classification, a novel framework consists of convolutional neural networks
and other classifier is presented in [16,17]. While in [18], the s-transform is used to obtain the specific
features, and then the categories of power quality disturbances are determined by a probabilistic neural
network. Although the accuracy of these deep neural networks is high, the training process requires a
large number of samples which are difficult to obtain in some distribution networks. Siamese network
is a typical neural network for few-shot learning. It can automatically determine the categories of
samples by calculating similarity, which is very suitable for classification using a few samples from the
training set. At present, effective applications based on the Siamese network focus on data classification
such as signatures recognition [19,20], disease diagnosis [21] and object tracking [22]. To the best of our
knowledge, there is no report on the use of the Siamese network to classify power quality disturbances.

The above analyses brings us to a summary: although traditional methods (e.g., SVM) are suitable
for small sample learning, their accuracy is low. Some deep neural networks such as convolutional
neural networks (CNN) have relatively high accuracy, but they need a large number of samples for
training models. How to design a novel method with high accuracy by learning small samples deserves
further study.

In order to address these issues, a hybrid algorithm of k-nearest neighbor and fully-convolutional
Siamese network is proposed to classify power quality disturbances. The key contributions of this
paper mainly include:
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1. This is the first exploration of the application of the hybrid algorithm of k-nearest neighbor and
fully-convolutional Siamese network in power quality disturbances. The proposed approach only
requires a few samples to train the model, and the accuracy is higher than the traditional method.

2. The conventional Siamese network is composed of multiple full connection layers, which leads
to its low accuracy. By applying multiple convolutional layers, the Siamese network can
automatically extract the intrinsic attributes of power quality disturbance to improve accuracy.

3. Unlike most deep neural networks (e.g., CNN and MLP) that train a classifier (e.g., SoftMax)
through samples, the Siamese network judges the categories by calculating the distance between
two feature vectors, which provides a new idea for power quality disturbance classification.

The rest of this paper is organized as follows. Section 2 introduces the generation of data sets.
Section 3 explains the principle of the Siamese network and its application in power quality disturbance.
Section 4 tests the performance of the proposed approaches through simulation. Section 5 summarizes
the work and results of this paper.

2. Data Set Generation

Most of the existing literature get data sets through simulation since it is difficult to obtain the
actual data of power quality disturbance. Various power quality disturbances are defined in the IEEE
standard 1159 [23]. This paper considers seven classical power quality disturbance signals, including
swell, sag, harmonic, flicker, interruption, spike and oscillatory transient. Their mathematical formulas
are shown in Table 1, where T is 0.02, α is a random number within the thresholds. The above power
quality disturbance signals are visualized as shown in Figure 1.
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Table 1. Mathematical formulas of power quality disturbances.

Symbol Type of Disturbance Equations Parameters

C1 Normal sine z = A sin wt T = 0.02 s, w = 2π f
C2 Swell z = A[1 + α(u(t− t1) − u(t− t2))] sin wt 0.1 ≤ α < 0.8,T ≤ t2 − t1 ≤ 9T

C3 Harmonic z = A(sin wt + α3 sin 3wt + α5 sin 5wt+
α7 sin 7wt + α11 sin 11wt) 0.05 ≤ αi ≤ 0.15

C4 Flicker z = A(1 + α sin βwt) sin wt 0.1 ≤ α ≤ 0.20.1 ≤ β ≤ 0.2
C5 Interruption z = A[1− α(u(t− t1) − u(t− t2))] sin wt 0.9 ≤ α < 1.0T ≤ t2 − t1 ≤ 9T
C6 Sag z = A[1− α(u(t− t1) − u(t− t2))] sin wt 0.1 ≤ α < 0.9T ≤ t2 − t1 ≤ 9T
C7 Spike z = A[1− (u(t− t1) − u(t− t2))] sin wt T/20 ≤ t2 − t1 ≤ T/10
C8 Oscillatory transient z = αe−c(t−t1)[u(t− t1)− u(t− t2)] sin βwt + sin wt 0.1 ≤ α ≤ 0.8T ≤ t2 − t1 < 3T

3. Methodology

3.1. Siamese Network

The traditional method for power quality disturbance classification is to use a classifier, such as
CNN and SVM. These methods are not suitable for the application of power quality disturbance
classification where the number of categories is large and the number of samples per category is small.
The Siamese network is a kind of distance-based method used for solving this problem. It calculates
the similarity metric between the power quality disturbances signals to be classified and a database of
stored prototypes. This similarity metric was used to match new power quality disturbances signals
from previously-unused categories during training.

The core idea of the Siamese network is to map the power quality disturbance signal to the
target space through a function, and compare the similarity in the target space using simple distance
(e.g., Euclidean distance). Specifically, the given a series of functions, GW(X) are parameterized by W.
The goal of the training process is to find the optimal parameters W so that the similarity is large when
X1 and X2 belong to different disturbances categories and small when they are the same disturbance
category. In the training phase, two samples are selected as a pair of inputs data for the Siamese
network [24–26].

As shown in Figure 2, the Siamese framework has a symmetrical structure where the neural
networks share weights to process power quality disturbance signals.
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Figure 2. Structure of Siamese network for power quality disturbances classification.

Let X1 and X2 present a pair of power quality disturbance signals. Y is a binary label for a pair of
signals. If X1 and X2 belong to the same category of disturbance, Y equals 1. On the contrary, if X1 and
X2 do not belong to the same category of disturbance, Y equals 0. W represents the shared weight vector
of deep neural networks (e.g., CNN and MLP). The GW(X1) and GW(X2) are the variables generated
by mapping X1 and X2 into low-dimensional space. The similarity of X1 and X2 in low-dimensional
space is measured by the energy function. Its mathematical formula is as follows:

EW(X1, X2) = ‖GW(X1) −GW(X2)‖. (1)
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The contrastive loss function relies on samples and the parameters of the energy function. Its
mathematical formula is:

Loss(W) =
P∑

i=1

L
(
W, (Y, X1, X2)

i
)

(2)

L
(
W, (Y, X1, X2)

i
)
= (1−Y)LG

(
EW(X1, X2)

i
)
+ YLI

(
EW(X1, X2)

i
)
, (3)

where P is the number of samples in the training set. (Y, X1, X2)
i is the i-th sample that includes a pair

of power quality disturbance signals and a label (same or fake). LG is the loss function for a pair of
signals from the same category. LI is the loss function for a pair of signals from different categories.
L will increase the energy function of different pairs and decrease the energy function of the same pairs.
In order to achieve this, LG is designed as a monotonically increasing function, and LI is designed
as a monotonically decreasing function. In this paper, the exact loss function for a single sample is
designed as follows:

L(W, Y, X1, X2) = (1−Y)
2
Q
(EW)2 + Y2Qe−

2.77
Q EW , (4)

where Q is a constant and the loss function is convergent. The concrete proof can be seen in [25].

3.2. Convolutional Network

The convolutional network has been widely used in image classification, target detection, and style
transfer because of its powerful feature extraction ability [27–29]. In this paper, an important
contribution of the proposed approach is that the convolutional network is used to extract
representations that are robust to geometric distortions of the input data.

The convolutional network consists of an input layer, convolutional layer, pooling layer, and output
layer. The operation of the convolutional layer is shown in Figure 3. The convolutional layer convolutes
the signal matrix from the input layer and adds the bias vector to output the feature map through the
activation function. The relationship of dimension is as follows: m = n− k + 1. The mathematical
formula of the convolutional layer is as follows:

xi = f (xi−1 ∗wi + bi), (5)

where wi denotes the weight of convolutional kernel in i-th layer. xi is the output value of in i-th
convolutional layer and bi is the bias vector in i-th convolutional layer. ∗ denotes the operation of
convolution and denotes the activation function. The activation function is used to transform data
nonlinearly so that the neural network can fit the complex nonlinear relationship. Common activation
functions include sigmoid, hyperbolic tangent and rectified linear unit. When the input value is large,
the output of Sigmoid and hyperbolic tangent functions are close to 0. In this case, with the increase of
the number of hidden layers, the error is difficult to continue to propagate downwards and the gradient
disappears easily. For this reason, the rectified linear unit will be used as the activation function in the
convolutional layer.

Energies 2019, 12, 4732 6 of 13 

 

contribution of the proposed approach is that the convolutional network is used to extract 
representations that are robust to geometric distortions of the input data.  

The convolutional network consists of an input layer, convolutional layer, pooling layer, and 
output layer. The operation of the convolutional layer is shown in Figure 3. The convolutional layer 
convolutes the signal matrix from the input layer and adds the bias vector to output the feature 
map through the activation function. The relationship of dimension is as follows: 1m n k= − + . The 
mathematical formula of the convolutional layer is as follows: 

1( )i i i ix f x w b−= ∗ + , (5) 

where iw  denotes the weight of convolutional kernel in i-th layer. ix  is the output value of in i-th 
convolutional layer and bi is the bias vector in i-th convolutional layer. ∗ denotes the operation of 
convolution and denotes the activation function. The activation function is used to transform data 
nonlinearly so that the neural network can fit the complex nonlinear relationship. Common 
activation functions include sigmoid, hyperbolic tangent and rectified linear unit. When the input 
value is large, the output of Sigmoid and hyperbolic tangent functions are close to 0. In this case, 
with the increase of the number of hidden layers, the error is difficult to continue to propagate 
downwards and the gradient disappears easily. For this reason, the rectified linear unit will be used 
as the activation function in the convolutional layer. 

 

Figure 3. Operation of convolutional layer. 

The pooling layer compresses and maps the feature map from the convolutional layer to 
reduce the computational complexity and dimension of the feature. The features generated by 
pooling layer have the invariant properties of rotation and can prevent the over-fitting to a certain 
extent. As shown in Figure 4, the size of the feature map decreases after being processed by the 
pooling layer, and the relationship of dimensions among input data, pooling matrix, and output 
data are as follows: /m n k= . The mathematical formula of pooling layer is as follows: 

1subdown( )i i i ix x bβ −= + , (6) 

where “subdown“ is subsampled function. iβ  and ib  are bias vectors. In this paper, the pooling 
layer will select the max-pooling function. 

 

Figure 4. Operation of pooling layer. 

3.3. K-Nearest Neighbor 

1 0
1 1

1 1
0 1 1 0

1 1
3 1 2

Signal matrix n×n

Kernel k×k

Feature map
m×m

Figure 3. Operation of convolutional layer.



Energies 2019, 12, 4732 6 of 12

The pooling layer compresses and maps the feature map from the convolutional layer to reduce
the computational complexity and dimension of the feature. The features generated by pooling layer
have the invariant properties of rotation and can prevent the over-fitting to a certain extent. As shown
in Figure 4, the size of the feature map decreases after being processed by the pooling layer, and the
relationship of dimensions among input data, pooling matrix, and output data are as follows: m = n/k.
The mathematical formula of pooling layer is as follows:

xi = βisubdown(xi−1) + bi, (6)

where “subdown“ is subsampled function. βi and bi are bias vectors. In this paper, the pooling layer
will select the max-pooling function.
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3.3. K-Nearest Neighbor

The input of the Siamese network is a pair of power quality disturbance signals, and its output is
the distance between the two signals. Usually, we need to make many pairs of unknown signals and
known signals that are fed to the Siamese network. Then, we divide the unknown signals into the
kind of known signal with the shortest distance from it. This traditional method will be affected by
noise, resulting in the accuracy of the Siamese network decline. Therefore, the k-nearest neighbor is
proposed to improve the accuracy of the Siamese network. Its steps are as follows:

(1) For an unknown signal, it is combined with the known signal from the training set into n
pairs. The n is the number of samples in the training set. These n pairs of signals are fed to the
Siamese network, and the distance between the unknown signal and n samples is output by the
Siamese network.

(2) The n samples are listed in descending order by distance. The first k samples are selected,
and the number of categories of k samples is counted. Finally, the unknown signal is assigned to the
largest number of categories.

3.4. Process of the Proposed Method

To summarize the above analysis, the steps for power quality disturbances classification based on
Siamese network are as follows:

(1) Format transformation: as is known to all, the original purpose of designing these deep neural
networks is to classify images, which have the same size of row and column. However, the power
quality disturbance signal is a one-dimensional time series, which cannot be directly used as the input
data of the deep neural network. Therefore, it is necessary to convert the power quality disturbance
signal into a two-dimensional matrix with the same size of row and column. Take the signal containing
140 elements as an example to explain the principle of format transformation Firstly, some zero elements
are added to the tail of the time series to make it become a vector with 144 elements. Then, the time
series is transformed into a matrix of 12 × 12 scales as input data of the Siamese network.
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(2) Data normalization: after format transformation, power quality disturbance signals need to
be normalized, and otherwise the loss function may not converge. In this paper, the input data is
transformed into standard data that range from 0 to 1 by the min-max normalization method.

(3) Updating network parameters: after normalization, the convolution neural network maps the
two signals to low-dimensional vectors. Then, the similarity between the two signals is calculated to
update the weight of the Siamese network via the chain rule and gradient descent method.

(4) Obtain the results: after training the network, comparing an unknown signal against samples
of labeled signals, we are able to determine the labeled signal which is most similar to the unknown
signals and obtains a classification result.

The program of power quality disturbances classification via the Siamese network is designed
with multiple stages: (1) define network, (2) share weights, (3) train network, (4) predict class. Part of
the code is shown in Table 2.

Table 2. The program of power quality disturbances classification via Siamese network.

Program

# 1.Define network
base_network = create_base_network(input_shape)

input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)

# 2.Share weights
processed_a = base_network(input_a)
processed_b = base_network(input_b)

distance = Lambda(euclidean_distance,output_shape=eucl_dist_output_shape)([processed_a, processed_b])
model = Model([input_a, input_b], distance)

# 3.Train network
rms = RMSprop()

model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,batch_size=128,epochs=epochs,validation_data=([te_pairs[:, 0],

te_pairs[:, 1]],te_y))
# 4. Predict class

y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])

4. Case Study

4.1. Architecture and Parameters

The sampling frequency of power quality disturbance data is 3916 Hz, and the sampling time is
10 cycles, namely 784 points per sample. The proportion of training set to the data set is 80%, and the
proportion of validation set and test set is 10%. The proposed methods will run under MATLAB2018a
and Keras which is a deep learning library. The parameters of the computer are: 6 GB of memory,
the processor is dual-core 2.4 GHz and Intel Core i3-3110M.

The architecture and parameters of the Siamese network are shown in Table 3 and Figure 5.
In addition, the CNN, MLP, SVM, extreme gradient boosting (XGBoost) method and light gradient
boosting machine (LightGBM) method are used as baselines to verify the performance of the proposed
Siamese network. Their parameters and structures are as follows:

Table 3. Parameters of the Siamese network.

Layer Parameters Layer Parameters

Conv2D filters = 16, kernel = 5 × 5, ReLU MaxPooling2D Pool size = 2 × 2
MaxPooling2D Pool size = 2 × 2 Dropout Rate = 0.25

Dropout Rate = 0.25 Flatten null
Conv2D Filters = 36, kernel = 5 × 5, ReLU Dense Units = 128
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Figure 5. The architecture of Siamese network for power quality disturbances classification.

(1) As far as MLP is concerned, the number of neurons in the input layer is 784, and the number of
neurons in the middle layer is 500 and 200, respectively. The number of neurons in the output layer is
equal to the number of categories. To prevent over-fitting, a dropout layer with a rate of 0.25 is inserted
between each full connection layer. The loss function is cross-entropy and the optimizer is the root
mean square prop (RMSprop). (2)The CNN consists of two convolutional layers, two Max-Pooling
layers, two dropout layers and two full connection layers. The size of kernel in the convolutional layers
is 5. The value of the dropout layer is 0.25. The size of pool in max-pooling layers is 2. The number
of neurons in the full connection layers is 128 and 8, respectively. (3) For SVM, the fitcecoc function
from MATLAB2018a is used to classify power quality disturbances. (4) For XGBoost, the gamma is
0.1. The max depth is 6 and the subsample is 0.7. The min child weight is 3 and eta is 0.1. (5) For
LightGBM, its specific parameters are shown in Table 4. (6) After many experiments, when k is equal
to 20, the performance of the proposed method is the best.

Table 4. Parameters of LightGBM.

Variable Value Variable Value Variable Value Variable Value

Boosting type gbdt reg_alpha 1 learning_rate 0.01 feature_fraction 0.9
objective multiclassova num_leaves 63 bagging_seed 0 bagging_fraction 0.9

metric multi_error reg_lambda 2 lambda_l1 0 bagging_freq 01
num_threads 8 lambda_l2 1 verbose −1 num class 8

Figure 6 shows the training process of the Siamese network. As the number of iterations increases,
the loss functions of the training set and validation set decrease. When the number of iterations is more
than 120, the loss function of the neural network tends to be stable, which indicates that the network
has converged. The loss function of validation set is very close to that of test set, which indicates that
the Siamese network has strong generalization performance.
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4.2. Simulation Results

In order to analyze the influence of data size on the performance of the proposed method,
simulation was carried out in seven cases that are shown in Table 5. Each case was run 30 times
independently and their average accuracy is obtained as shown in Table 6.

Table 5. The number of samples in different cases.

Cases Training Set Validation Set Test Set Total

Case 1 80 40 40 160
Case 2 160 64 64 288
Case 3 400 56 56 512
Case 4 800 112 112 1024
Case 5 1600 224 224 2048
Case 6 3200 448 448 4096
Case 7 6400 896 896 8192

Table 6. The accuracy of different cases.

Approaches Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Proposed method 81.25% 84.82% 94.79% 98.22% 97.99% 98.70% 98.09%
MLP 37.50% 39.06% 32.14% 46.42% 52.23% 65.87% 80.24%
CNN 57.50% 68.75% 91.07% 98.12% 98.21% 98.43% 99.21%
SVM 22.50% 18.75% 16.07% 18.75% 19.19% 18.97% 24.55%

XGBoost 35.00% 34.38% 60.71% 73.21% 80.36% 85.94% 89.73%
LightGBM 42.50% 43.75% 64.29% 73.21% 83.04% 87.72% 91.18%

In order to analyze the performance of the proposed methods under different signal-to-noise
ratios (SNR), the original power quality disturbance signals and Gauss white noises are combined to
form new samples as shown in Figure 7. Each case is tested 30 times independently, and the average
accuracy of each case under each SNR is counted as shown in Tables 7 and 8.
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Figure 7. Visualization of various power quality disturbance signals with noises. (a) The signal-to-noise
ratio is 15; (b) the signal-to-noise ratio is 25; (c) the signal-to-noise ratio is 35; and, (d) the signal-to-noise
ratio is 45.
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Table 7. The accuracy of proposed methods under different SNR.

SNR/dB Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

15 76.88% 80.36% 89.50% 91.46% 91.81% 92.50% 93.75%
25 78.44% 81.25% 92.71% 93.75% 95.83% 95.34% 96.40%
35 79.06% 82.14% 92.70% 95.67% 96.06% 97.39% 97.61%
45 80.34% 84.29% 94.73% 96.73% 97.61% 97.61% 97.72%

Table 8. The accuracy of different methods in case 3.

SNR/dB Proposed Method MLP CNN SVM XGBoost LightGBM

15 89.50% 24.07% 86.78% 26.79% 37.50% 37.50%
25 92.71% 26.43% 88.43% 16.07% 55.36% 57.14%
35 92.70% 30.36% 89.11% 25% 53.57% 57.14%
45 94.73% 32.86% 90.46% 16.07% 53.57% 62.50%

In order to analyze the performance of the proposed methods under different sampling frequency,
each algorithm is repeated 30 times at different frequencies, and the average accuracy is shown in
Table 9.

Table 9. The average accuracy of different methods.

F/Hz Proposed Method MLP CNN SVM XGBoost LightGBM

715 84.38% 39.29% 87.50% 19.64% 60.71% 60.71%
1275 88.54% 41.07% 83.93% 21.43% 51.79% 55.36%
1995 90.62% 48.21% 87.50% 21.43% 44.64% 48.21%
2875 92.97% 35.71% 87.50% 32.14% 55.36% 60.71%
3915 94.79% 32.14% 91.07% 16.07% 60.71% 64.29%

4.3. Discussion of Results

The following conclusions can be drawn from Table 6: (1) obviously, the accuracy of the existing
methods is less than 70% in cases 1 and 2. The accuracy of the proposed method is higher than
80%, which indicates that the proposed method had clear superiority in power quality disturbances
classification with small samples. (2) As the number of samples increases, the accuracy of each
algorithm increases. It shows that increasing the number of samples was helpful for improving the
accuracy. For a large sample size, the accuracy of the proposed method is very close to that of CNN,
and it is much higher than that of other methods. (3) Generally speaking, the proposed method had the
best performance, followed by CNN. The performance of XGBoost and LightGBM is similar. SVM has
the worst effect.

The following conclusions can be drawn from Tables 7 and 8: (1) When the signal-to-noise
ratio is 15, the accuracy of XGBoost and LightGBM decreases significantly, which indicates that their
anti-noise ability is weak. (2) The accuracy of MLP and SVM under different SNR is relatively low,
which indicates that they are not suitable for classifying power quality disturbances with noises.
(3) In contrast, the accuracy of proposed methods and CNN under different SNR in case 3 is more
than 85%, which shows that they have strong robustness. In addition, the accuracy of the proposed
methods is slightly higher than that of CNN.

The following conclusions can be drawn from Table 9: obviously, the accuracy of the proposed
methods has a positive correlation with the sampling frequency. When the sampling frequency is
715 Hz, the accuracy of the proposed methods is slightly lower than that of CNN, which indicates that
the proposed method is suitable for power quality disturbance signals with high sampling frequency.
When the sampling frequency is more than 1275 Hz, the accuracy of the proposed methods is higher
than that of other methods.
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5. Conclusions

The classification of disturbance signals is of great significance for improving power quality and
system operation. In this paper, a hybrid algorithm of k-nearest neighbor and fully-convolutional
Siamese network is proposed to classify power quality disturbances by learning small samples.
The following conclusions are obtained through simulation:

(1) For larger sample sizes, the accuracy of the proposed methods is very close to that of CNN,
and higher than that of other traditional methods. For small sample sizes, the accuracy of the proposed
method is significantly higher than that of the existing methods (e.g., MLP, CNN, SVM, XGBoost and
LightGBM), which shows that the proposed method is very suitable for power quality disturbance
classification with a small number of samples.

(2) If the data size is small, the accuracy of the proposed method is higher than that of the
traditional methods (e.g., MLP, CNN, SVM, XGBoost and LightGBM) under different SNR. Besides,
both the proposed method and CNN show strong anti-noise ability.

(3) The accuracy of the proposed method has a positive correlation with the sampling frequency.
In order to ensure the accuracy of the proposed method is high enough, the sampling frequency of the
power quality disturbance signal is better than 1275 Hz.
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