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Abstract: In order to improve the accuracy of gas-path fault detection and isolation for a marine
three-shaft gas turbine, a gas-path fault diagnosis method based on exergy loss and a probabilistic
neural network (PNN) is proposed. On the basis of the second law of thermodynamics, the exergy
flow among the subsystems and the external environment is analyzed, and the exergy model of a
marine gas turbine is established. The exergy loss of a marine gas turbine under the healthy condition
and typical gas-path faulty condition is analyzed, and the relative change of exergy loss is used as the
input of the PNN to detect the gas-path malfunction and locate the faulty component. The simulation
case study was conducted based on a three-shaft marine gas turbine with typical gas-path faults.
Several results show that the proposed diagnosis method can accurately detect the fault and locate
the malfunction component.

Keywords: gas turbine; gas path; diagnosis; exergy loss; probabilistic neural network

1. Introduction

A marine gas turbine operates under hostile ocean environments. The air contains salt-ingested
particles, which will have an impact on the gas-path components such as the compressor, combustion
chamber, and turbine, and can lead to fouling, erosion, and corrosion [1,2]. These faults will change
the structure of the components and cause performance degradation, reducing the safety and stability
of the gas turbine [3–5]. The diagnosis of gas-path faults is becoming a major issue [6,7].

Physical failure can be reflected by changes in efficiency and flow of the components, and,
in turn, causes changes in gas-path thermal parameters of a gas turbine, such as pressure, temperature,
rotational speed, and fuel flow rate. Such relationships were described by Urban who proposes the
linear gas-path analysis method [8]. In recent years, many gas-path fault diagnosis methods have been
proposed to assess gas turbine health status, such as non-linear gas-path analysis [9–11], the rule-based
fuzzy expert system [2,12,13], Bayesian hierarchical models [14,15], neural networks [16–19], the genetic
algorithm [4,20,21], the multiple-model method [3,22] and exergy analysis [23]. Gas-path analysis is
an inversely mathematical problem to obtain the deviation of component performance parameters
over gas-path measured variables. Most case studies show that artificial intelligence methods, such as
artificial neural networks, Bayesian hierarchical models, and fuzzy expert systems, may effectively
isolate the faulty components but may not assess the severity of the fault easily [24].

The traditional gas-path analysis method is based on the first law of thermodynamics which
may lead to the strong coupling effect when the number of components involved in fault diagnosis
is large, and the malfunction may not be effectively identified [10]. Exergy analysis is a new branch
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of model-based diagnosis method. The fault diagnosis approach of energy system using the exergy
analysis approach is summarized in [25–27]. At present, exergy analysis has been widely studied and
applied in the field of thermal system fault diagnosis, because it can detect efficiency deviations, and
identify the causes of performance degradation.

This paper proposes a fault-diagnosis method based on exergy loss and a probabilistic neural
network for a three-shaft marine gas turbine. In this method, gas-path fault feature extraction is based
on exergy loss which is from a comprehensive sight of the system to solve the parameter-coupling
problem of traditional gas-path analysis method and to assess the severity of the fault, and a probabilistic
neural network is applied to gas-path fault isolate to locate the malfunction component.

The remainder of this paper is organized as follows. In Section 2, through the analysis of the exergy
flow of the gas turbine, the exergy loss model of the gas path of the marine gas turbine is established.
In Section 3, the fault diagnosis method of the gas turbine based on exergy loss and a probabilistic
neural network is studied. In Section 4, the fault simulation and the results and discussions of gas-path
fault diagnosis are presented. The conclusions of this paper are shown in Section 5.

2. Exergy Model for Marine Gas Turbine

The current gas turbines fault-diagnosis method is generally based on the first law of thermodynamics,
selecting parameters such as temperature, pressure, and rotating speed to diagnose gas-path faults [28],
and mainly concerns the deviation of measured variables. In this section, an exergy model for the
marine gas turbine was established to analyse the gas-path fault effect from a comprehensive sight of
the system. Exergy is defined as the useful part of the energy which can perform work when the system
is brought into equilibrium with the environment [29]. The irreversibility of the conversion process
often occurs in the system, such as heat transfer with temperature difference, mechanical friction,
chemical reaction and malfunction etc., which will cause the exergy loss. Exergy is not conserved,
and its destruction provides an excellent indication of where and how losses occur. Exergy losses are
stable between gas turbine systems and the external environment under healthy conditions. When a
component performance of the gas turbine deteriorates, the exergy flow state of the system will change,
and the exergy flow of other systems will also change at the same time. Therefore, based on the second
law of thermodynamics, the parameter of exergy loss is introduced, in which only one parameter is
used to characterize the change of component fault to solve the measured variables’ coupling problems.

2.1. Exergy Flow Analysis of Gas Turbine

The general layout of the three-shaft marine gas turbine is shown in Figure 1, and gas-path
components include a low-pressure compressor, a high-pressure compressor, a combustion chamber,
a high-pressure turbine, a low-pressure turbine, and a power turbine. The marine gas turbine is
driven by a low-pressure turbine, and compressed air is then further compressed by a high-pressure
compressor. The compressed air enters the combustion chamber, expands, and burns with the fuel.
The mixture then expands into the high- and low-pressure turbines, and finally enters the power
turbine, where power and torque are output, and the exergy flow of the gas turbine is shown in
Figure 2.

There are 11 exergy flows among the components and the external environment, regardless of the
generator connected to the power turbine. Flow 0 (atmosphere) is compressed by the low-pressure
compressor, generating flow 1 (compressed air). Flow 1 is compressed by a high-pressure compressor,
generating flow 2 (compressed air). Flow 2 and flow 10 (fuel) are mixed and burned in the combustion
chamber to form flow 3 (gas) and expand into a high-pressure turbine to do work. The energy
flowing out of the high-pressure turbine subsystem is split into flow 8 and flow 4. Flow 8 drives the
high-pressure compressor to rotate, and flow 4 enters the low-pressure turbine to continue to expand
and do work. The energy outflow from the high-pressure turbine subsystem is divided into flow 9
and flow 5. Flow 9 drives the low-pressure compressor to rotate, and flow 5 expands into the power
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turbine to do work. Flow 6 enters the generator to generate energy flow 7 (electrical energy). Flow 11
is exhaust gas.
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Figure 2. Exergy flow diagram of marine three-shaft gas turbine.

The operation of a gas turbine is accompanied by exergy flow among components and the
environment, and the process of exergy flow will produce irreversible loss, which we call exergy loss.
The exergy flow and exergy loss of each component are shown in Table 1.

Table 1. Exergy flow and exergy loss of marine gas turbine components.

Number Component Exergy Inflow Exergy Outflow Exergy Loss

1 Low-pressure compressor B0 + B9 B1 (B0 + B9) − B1
2 High-pressure compressor B1 + B8 B2 (B1 + B8) − B2
3 Combustion chamber B2 + B10 B3 (B2 + B10) − B3
4 High-pressure turbine B3 B4 + B8 B3 − (B4 + B8)
5 Low-pressure turbine B4 B5 + B9 B4 − (B5 + B9)
6 Power turbine B5 B6 = wnet B5 − B6
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2.2. Exergy Models for Gas Turbine

In order to derive the loss of gas turbine systems, it is necessary to establish exergy models of
the high-pressure compressor, low-pressure compressor, combustion chamber, high-pressure turbine,
low-pressure turbine, and power turbine.

Enthalpy and entropy are the key parameters for calculating exergy and are related to temperature.
The enthalpy and entropy of air can be obtained from a table of thermodynamic properties of air.
The specific enthalpy and entropy of air can be obtained by the air temperature. T0 is standard
temperature, s0 is standard-specific entropy, and h0 is standard-specific enthalpy.

(1) Exergy model of the low-pressure compressor

The formula for calculating the specific exergy of energy flow at the outlet of the low-pressure
compressor of a marine gas turbine BLCout is as follows:

BLCout = B1 = hLCout − h0 − T0(sLCout − s0) (1)

where hLCout is the specific enthalpy of the outlet of the low-pressure compressor, kJ/kg; sLCout is the
specific entropy of isentropic variation at the outlet of the low-pressure compressor, kJ/(kg·K); and B1

is the specific exergy of the energy of compressed air flowing out of the low-pressure compressor and
entering the high-pressure compressor.

The formula for calculating the specific exergy of energy flow at the inlet of the low-pressure
compressor of a marine gas turbine BLCin is as follows:

BLCin = B0 + B9 (2)

where B0 is the specific exergy of air flowing into the low-pressure compressor, B0 = 0; B9 is the specific
exergy of energy flow (mechanical energy) flowing out of the low-pressure turbine subsystem and
driving the rotation of the low-pressure compressor:

B9 =
1
2

JLCLTω1
2 (3)

where JLCLT is the rotary inertia of the shaft connecting the low-pressure compressor and the low-pressure
turbine; and ω1 is the rotation rate of the shaft connecting the low-pressure compressor and the
low-pressure turbine.

The exergy loss of the low-pressure compressor ILC is expressed as Equation (4):

ILC = (B0 + B9) − B1 (4)

(2) Exergy model of the high-pressure compressor

The specific exergy of energy flow at the outlet of the high-pressure compressor of a marine gas
turbine BHCout is calculated by Equation (5):

BHCout = B2 = hHCout − h0 − T0(sHCout − s0) (5)

where hHCout is the specific enthalpy of the outlet of the high-pressure compressor, kJ/kg; sHCout is the
specific entropy of isentropic variation at the outlet of the high-pressure compressor, kJ/(kg·K); and B2

is the specific exergy of the energy of compressed air flowing out of the high-pressure compressor and
entering the combustion chamber.

Equation (6) is used to calculate the specific exergy of energy flow at the inlet of the high-pressure
compressor for marine gas turbine BHCin:

BHCin = B1 + B8 (6)
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where B8 is the specific exergy of the energy flow (mechanical energy) flowing out of the high-pressure
turbine subsystem and driving the high-pressure compressor to rotate:

B8 =
1
2

JHCHTω2
2 (7)

where JHCHT is the rotary inertia of the shaft connecting the high-pressure compressor and the
high-pressure turbine; and ω2 is the rotation rate of the shaft connecting the high-pressure compressor
and the high-pressure turbine.

Exergy loss of the high-pressure compressor is expressed as Equation (8):

IHC = (B1 + B8) − B2 (8)

(3) Exergy model of the combustion chamber

Equation (9) is used to calculate the specific exergy of energy flow at the outlet of the combustion
chamber for a marine gas turbine BCCout:

BCCout = B3 = hCCout − h0 − T0(sCCout − s0) (9)

where hCCout is the specific enthalpy at the outlet of the combustion chamber, kJ/kg; sCCout is the specific
entropy at the outlet of the combustion chamber, kJ/(kg·K); and B3 is the specific exergy flow 9, as
shown in Figure 2.

Equation (10) is used to calculate the specific exergy of energy flow at the inlet of the combustion
chamber for a marine gas turbine BCCin:

BCCin = B2 + B10 (10)

where B10 is the specific exergy of the energy of the fuel entering the combustion chamber:

B10 = 0.975∆H f f (11)

f =
G f

GBin
(12)

where ∆Hf is the specific enthalpy of fuel in the combustion chamber, kJ/kg; f is the fuel–air ratio; Gf is
the fuel flow, and GBin is the air flow.

The exergy loss of the combustion chamber ICC is expressed as Equation (13):

ICC = (B2 + B10) − B3 (13)

(4) Exergy model of the high-pressure turbine

Equation (14) is used to calculate the specific exergy of energy flow at the outlet of the high-pressure
turbine for a marine gas turbine BHTout:

BHTout = B4 + B8 (14)

B4 = hHTout − h0 − T0(sHTout − s0) (15)

where hHTout is the outlet specific enthalpy of the high-pressure turbine, kJ/kg; sHTout is the specific
entropy of isentropic variation at the outlet of the high-pressure turbine, kJ/(kg·K); and B4 is the energy
flowing out of the high-pressure turbine entering the low-pressure turbine.
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Equation (16) is used to calculate the specific exergy of energy flow at the inlet of the high-pressure
turbine for a marine gas turbine BHTin:

BHTin = B3 (16)

Exergy loss of high-pressure turbine IHT is expressed as Equation (17):

IHT = B3 − (B4 + B8) (17)

(5) Exergy model of the low-pressure turbine

Equation (18) is used to calculate the specific exergy of energy flow at the outlet of the low-pressure
turbine of a marine gas turbine BLTout:

BLTout = B5 + B9 (18)

B5 = hLTout − h0 − T0(sLTout − s0) (19)

where hLTout is the outlet specific enthalpy of the low-pressure turbine, kJ/kg; sLTout is the specific
entropy of isentropic variation at the outlet of the low-pressure turbine, and B5 is the specific exergy of
the energy flowing out of the high-pressure turbine expanding into the power turbine to do work.

Equation (20) is used to calculate the specific exergy of energy flow at the inlet of the low-pressure
turbine for marine gas turbine BLTin:

BLTin = B4 (20)

Exergy loss of the low-pressure turbine ILT is expressed as Equation (21):

ILT = B4 − (B5 + B9) (21)

(6) Exergy model of the power turbine

A power turbine is a kind of impeller used to drive an external load (propeller, motor, etc.) and
convert energy into mechanical work. The gas at the outlet of the low-pressure turbine expands for
the last time in the power turbine, outputs external mechanical power, and emits exhaust gas. In this
paper, no waste heat boiler is considered, and the exhaust gas is discharged to the atmosphere.

Equation (22) is used to calculate the specific exergy of the outlet energy of the power turbine:

BPTout = B6 = Wnet (22)

where B6 is the specific exergy of energy entering the generator; and Wnet is the work done by the
power turbine.

Equation (23) is used to calculate the specific exergy of the inlet energy of the power turbine:

BPTin = B5 (23)

The exergy loss of the power turbine IPT is expressed as Equation (24):

IPT = B5 − B6 (24)

The marine gas turbine exergy model can generate large amounts of fault simulation data,
which will extract the exergy loss feature of the component under the healthy condition and typical
faulty condition.
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3. Gas-Path Fault-Diagnosis Approach Based on Exergy Loss and Probabilistic Neural Network
(PNN)

When the gas turbine is in fault status, the exergy loss of each component will change, and its
range of change can be used to assess the severity of the fault. However, the outlet temperature of
the combustor does not install the temperature sensor for high temperature and costly, B3 (flow 3)
can not be calculated. Therefore, the proposed exergy model in Section 2 can only get the exergy of
the low-pressure compressor, the high-pressure compressor, the low-pressure turbine, and the power
turbine by Equations (4), (8), (21) and (24), To detect and isolate the fault location accurately under
different operating conditions, this paper introduces the probabilistic neural network (PNN) classifier
in the traditional exergy analysis method.

3.1. Probabilistic Neural Network (PNN)

A PNN is a kind of neural network based on statistical principles, which is commonly employed to
solve problems of pattern classification [30]. The PNN is an efficient and robust classifier, obtained when
the Bayes strategy for decision making is combined with a non-parametric estimator for probability
density functions [31]. Unlike a traditional multilayer feed-forward network, which requires a
back-propagation algorithm for back-propagation computation, it is a fully forward computational
process. It can be trained very easily and has high classification accuracy [12,32]. The fault diagnosis
method based on PNN is a widely accepted decision method in probability statistics, which can be
described as follows [33]: assuming there are two known fault modes θA, and θB, for the test sample X
= [X1, X2, ..., Xs] to be judged, then:

If hAlA fA(X) > hBlB fB(X), X ∈ θA;
If hAlA fA(X) < hBlB fB(X), X ∈ θB.

where hA, hB is the prior probability of the fault mode θA, θB, respectively (hA = NA/N, hB = NB/N); NA,
NB is the number of training samples for fault mode θA, θB, respectively; and N is the total number of
training samples; lA and lB are the loss functions associated respectively with the decision X ∈ θB and
X ∈ θA; fA(X) and fB(X) are respectively the probability density functions of the category A and B.

The PNN is composed of an input layer, a pattern layer, a summation layer, and an output layer,
as shown in Figure 3 [34].

The input layer does not perform any computation and simply distributes the input to the neurons
in the pattern layer. The number of neurons is equal to the dimension of the sample vector.

The task of the pattern layer is to calculate the pattern, matching the relationship between
the testing samples and the training samples, and to centralize the categories with high similarity.
The number of neurons in the pattern layer is equal to the sum of the number of trained samples in all
categories, and the neuron Xij computes the pattern layer output as follows [30]:

Qi j(X) =
1

σs × (2π)
s
2

exp(−
(X −Xi j)(X −Xi j)

T

2σ2 ) (25)

where X = [X1, X2, ..., XS] is the test sample with s dimension; s is the dimension of the input vector X;
Xij is the jth training sample of the ith class; and σ = [0, 1] is a smoothing factor.

The summation layer adds the cumulative probability of the class to obtain the estimated density
function of the fault patterm. Each summation node receives the outputs from pattern nodes associated
with a given class [35]:

Pi(X) =

 Ni∑
j=1

w jQi j(X)

+ w0 (26)

where Ni is the number of samples in the ith class (i = 1, 2, ..., n); n is the number of classes; weights wi
= (wi0, wi1, ..., wiNi) are created during the training process; and Pi(X) ∈ (−1, 1).
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The output layer receives all kinds of density functions. The class of an unknown pattern X is
obtained in the output layer using Equation (27):

Class(X) = arg max(Pi(X)) (27)

The output value of the category with the largest function value is 1, and the output value of the
remaining categories is 0.
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3.2. Fault Diagnosis Process

The fault-diagnosis process is shown in Figure 4.
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Step 1: Data acquisition

The measured variables that acquire from the gas turbine monitoring and control system
include the outlet temperatures of four components, boundary condition (T0, P0), and fule flow wf.
The outlet temperatures of the four components make up the set T = {T1, T2, T3, T4}. T1 is the
outlet temperature of the low-pressure compressor, T2 is the outlet temperature of the high-pressure
compressor, T3 is the outlet temperature of the high-pressure turbine, and T4 is the outlet temperature
of the low-pressure turbine.

Step 2: Parameter estimation under the healthy condition

Parameters estimation under healthy condition is on the healthy condition estimation model of a
gas turbine that is established by back-propagation neural networks [36]. For the gas turbine health
estimation model, the inputs are the environment parameters (T0, P0) and fuel flow control variable wf,
and the outputs are temperature set Th on the healthy condition.

Step 3: Exergy-loss calculation

T and Th are input into the exergy model, respectively. The output of the exergy model is the
exergy loss of gas turbine I = {I1, I2, ..., Is}, and exergy loss of its healthy condition estimation model
Ih =

{
Ih1 , Ih2 , . . . , Ihs

}
.

Step 4: Data normalization

To eliminate the magnitude differences among different input parameters, the relative change of
exergy loss ∆I = I − Ih = {∆I1, ∆I2, ..., ∆Is} are normalized to a s-dimensional vector X = [X1, X2, ..., Xs].

The data of one component of the gas turbine in the training samples are gathered together to
form a one-dimensional array ∆Im (m = 1, 2, ..., s), where s is the number of components. The maximum
∆Im

max and minimum ∆Im
min of the array ∆Im are selected, and normalization of the one-dimensional

array is carried out according to Equation (28):

Xm =
∆Im
− ∆Im

min

∆Immax − ∆Im
min

(28)

Step 5: Fault detection and isolation

The input X of the PNN that has been trained by the training samples which select from the fault
database, and the fault mode Ci (i = 0, 1, 2, ..., n) will be output from the output layer of the PNN.
Finally, the fault diagnosis results are obtained by consulting the fault discrimination matrix which is
established for fault detection and isolation and can be expressed as Equation (29):

{C0; C1; C2; ...; Cn} = E(n+1)×(n+1) (29)

where Ci (i = 0, 1, 2, ..., n) is one kind of fault pattern; and n is the total number of fault patterns,
which is equal to the dimension of the fault discrimination matrix. E(n+1)×(n+1) is an n + 1 dimensional
identity matrix.

4. Example Verification

4.1. Simulation and Result Analysis of Exergy Loss of Typical Gas-Path Faults

In this paper, it is considered that the faulty condition of a gas path will affect some characteristics of
components, such as compressor fouling, erosion, turbine wear, and damage, and the main performance
parameters are its efficiency and flow rate. This section conducts fault implantation studies for a marine
gas turbine low-pressure compressor, high-pressure compressor, high-pressure turbine, low-pressure
turbine, and power turbine [21].
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To simulate the gas-path fault of the marine gas turbine with different severity, the severity of the
fault is reflected in the decrease of the efficiency and flow of each component, as shown in Table 2.

In this paper, the exergy loss of the main components of the marine gas turbine is simulated,
the performance parameter decline factor is determined, and the variation of exergy loss of each
component with the severity of the fault is studied.

The efficiency and flow rate are implanted in the simulation model with severity from 20% to
100% (efficiency and flow rate reduce by 1–5%), respectively. The relative changes of the exergy loss of
the main components under the condition of 0.5 to 0.9 are obtained. Taking the efficiency decline fault
of the low-pressure compressor as an example, the exergy loss of each component of the marine gas
turbine is analyzed.

The relative variation of exergy loss of marine gas turbine components with the severity of
low-pressure compressor efficiency fault is shown in Figure 5a–d.

Table 2. Summary of marine gas turbine gas-path fault simulation.

Fault Code Fault-Pattern Fault
Component Fault Severity Fault Simulation

Coefficient

C0 Healthy - - -

C1
Low-pressure compressor

efficiency decrease
Low-pressure
compressor 20% to 100% compressor efficiency

decrease (1% to 5%)

C2
High-pressure compressor

efficiency decrease
High-pressure

compressor 20% to 100% compressor efficiency
decrease (1% to 5%)

C3
High-pressure turbine

efficiency decrease
High-pressure

turbine 20% to 100% turbine efficiency
decrease (1% to 5%)

C4
Low-pressure turbine

efficiency decrease
Low-pressure

turbine 20% to 100% turbine efficiency
decrease (1% to 5%)

C5
Power turbine efficiency

decrease Power turbine 20% to 100% turbine efficiency
decrease (1% to 5%)

C6
Low-pressure compressor

flow rate decrease
Low-pressure
compressor 20% to 100% compressor flow rate

decrease (1% to 5%)

C7
High-pressure compressor

flow rate decrease
High-pressure

compressor 20% to 100% compressor flow rate
decrease (1% to 5%)

C8
High-pressure turbine flow

rate decrease
High-pressure

turbine 20% to 100% turbine flow rate
decrease (1% to 5%)

C9
Low-pressure turbine flow

rate decrease
Low-pressure

turbine 20% to 100% turbine flow rate
decrease (1% to 5%)

C10
Power turbine flow rate

decrease Power turbine 20% to 100% turbine flow rate
decrease (1% to 5%)

As can be seen from Figure 5, as the efficiency of the low-pressure compressor is reduced,
the relative exergy changes of each component of the marine gas turbine are increased. The relative
change in the exergy loss of the low-pressure compressor is the highest in comparison with other
components, which can indicate that the low-pressure compressor is the source of failure. It is found
that the exergy loss of the component increases with the severity of the gas-path fault, and the change
of the exergy loss of the component is clear when the efficiency fault occurs.

In addition, as can be seen from Figure 5a, when the low-pressure compressor malfunctions,
the change degree of exergy loss is much greater than that of efficiency. Therefore, exergy loss is more
sensitive to fault diagnosis compared with efficiency.
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4.2. Analysis of PNN Fault Diagnosis Based on Exergy Loss

4.2.1. Fault-Detection Index

We select the error rate and the missing rate as the evaluation performance indexes of fault
diagnosis. A reliable fault diagnosis system should minimize the error rate and the missing rate. If the
total number of test event is T, then the missing rate is defined as the proportion of missed events in
the specified events. Equation (30) is used to calculate the missing rate Mr.

Mr =
M
L
× 100% (30)

where M is the number of missed events for detecting a specific fault; and L is the number of specific
fault events.

1caonimacaonima 

Figure 5. The relative variation of components exergy loss under a given faulty condition.
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The error rate is defined as the proportion of misreported events. Equation (31) is used to calculate
the error rate Fr.

Fr =
F

T − L
× 100% (31)

where F is the number of misreported events for detecting a specific fault.

4.2.2. Example of Marine Gas Turbine Fault Diagnosis under Certain Operating Conditions

According to the established exergy model of the marine gas turbine, the simulation models of
health conditions and faulty conditions was established in MATLAB/SIMULINK, and the simulation
time set to 500 s, time step set to 0.2 s. Therefore, the total number of test event T is 2500.

The moment of gas path fault (C1, C2, ..., C10) implantation for the marine gas turbine is shown
in Figure 6 with 50 s as an interval. A fault is set at 20 s of each interval, and the system returned to
normal at 50 s.

The proposed fault-diagnosis method was verified under the 0.8 perating condition which means
the marine gas turbine outputs 80% of its rated power. The ambient temperature was set to a variable
varying with the simulation time, as shown in Figure 7. The operating condition setting is shown in
Figure 8.

The relative change in the exergy loss of each component of a marine gas turbine over the
simulation time is shown in Figure 9.

Figure 9 shows the change of the relative exergy loss of each system when the gas-path fault of
the marine gas turbine (C1, C2, ..., C10) varies with the simulation time, which provides the database
for subsequent fault diagnosis.
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Figure 9. Relative change of exergy loss for marine gas turbine systems under simulated faults.

The first step of diagnosis is to judge the overall state of the system; the diagnosis model is µ0.
If µ0 = 1, the system is healthy; if µ0 = 0, the system is under fault. The second step is to judge the
specific faults of each system. µ1–µ10 represent typical faults of marine gas turbines (C1, C2, ..., C10),
respectively. µi = 1 means fault detected; and µi = 0 means fault undetected. (i = 1, 2, 3, ..., 10).

Using MATLAB Neural Network Toolbox to carry out the PNN fault diagnosis of the marine gas
turbine, it can be seen in Figure 10 that the diagnosis effect of each fault is good when the fault occurs,
and the error rate is relatively low, but the missing rate is relatively high. Omissions usually occur at
the switching time between normal mode and fault mode and decrease with detection time. Error rate,
missing rate, and detection time are shown in Table 3. As can be seen in Table 3, the probability neural
network diagnosis method based on the exergy loss can diagnose the gas path failure of the marine gas
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turbine well and can diagnose the specific fault at a maximum of 3.3 s, which means its sensitivity
is good.

Energies 2019, 12, x FOR PEER REVIEW 14 of 17 

 

failure of the marine gas turbine well and can diagnose the specific fault at a maximum of 3.3 s, which 

means its sensitivity is good. 

 

Figure 10. Fault-diagnosis result of a marine gas turbine system. 

5. Conclusions 

In this paper, a gas-path fault-diagnosis method of a marine gas turbine based on exergy loss 

and a probabilistic neural network was proposed. The exergy model of the three-shaft marine gas 

turbine was established based the exergy flow analysis to extract the exergy loss feature of the 

component under the healthy condition and typical faulty condition. A PNN classifier was 

introduced in the exergy analysis method to achieve good performance in detecting and isolating the 

gas-path fault. A simulation case study was conducted based on a three-shaft marine gas turbine with 

typical gas-path faults and environmental change. The simulation results show that the proposed 

diagnosis method can accurately detect the gas-path fault and locate the malfunction component. 

0 100 200 300 400 500
0

0.5
1


0

0 100 200 300 400 500
0

0.5
1


1

0 100 200 300 400 500
0

0.5
1


2

0 100 200 300 400 500
0

0.5
1


3

0 100 200 300 400 500
0

0.5
1


4

0 100 200 300 400 500
0

0.5
1


5

0 100 200 300 400 500
0

0.5
1


6

0 100 200 300 400 500
0

0.5
1


7

0 100 200 300 400 500
0

0.5
1


8

0 100 200 300 400 500
0

0.5
1


9

0 100 200 300 400 500
0

0.5
1


1

0

Figure 10. Fault-diagnosis result of a marine gas turbine system.

5. Conclusions

In this paper, a gas-path fault-diagnosis method of a marine gas turbine based on exergy loss and
a probabilistic neural network was proposed. The exergy model of the three-shaft marine gas turbine
was established based the exergy flow analysis to extract the exergy loss feature of the component
under the healthy condition and typical faulty condition. A PNN classifier was introduced in the
exergy analysis method to achieve good performance in detecting and isolating the gas-path fault.
A simulation case study was conducted based on a three-shaft marine gas turbine with typical gas-path
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faults and environmental change. The simulation results show that the proposed diagnosis method
can accurately detect the gas-path fault and locate the malfunction component.

Table 3. Fault-diagnosis indicators.

Fault Code Error Rate Missing Rate Detection Time

C0 0% 16.4% 3.3 s
C1 0.0000% 0.0000% 0 s
C2 5.0780% 3.3333% 1 s
C3 0.0000% 4.0000% 1.2 s
C4 0.0400% 6.0000% 1.8 s
C5 0.3998% 6.0000% 1.8 s
C6 0.6797% 4.0000% 1.2 s
C7 0.5198% 4.0000% 1.2 s
C8 0.6397% 1.3333% 0.4 s
C9 0.0400% 8.6667% 2.6 s
C10 0.0000% 4.0000% 1.2 s

The exergy losses of 10 typical gas-path faults with different severity were analyzed, and we
found that the exergy loss relative change of components is the monotone increasing function of the
operating condition and fault severity, respectively. Moreover, they are also highly sensitive to the
performance parameters of components, which is conducive to locating the fault cause.

In this paper, the proposal was verified by a single gas-path fault. In future work, we will
continue to improve and evaluate the performance of the proposed method on a multiple gas-path
fault condition.
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