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Abstract: Stochastically fluctuating wind power has an escalating impact on the stability of power
grid operations. To smooth out short- and long-term fluctuations, this paper presents a coordinated
control algorithm using model predictive control (MPC) to manage a hybrid energy storage system
(HESS) consisting of ultra-capacitor (UC) and lithium-ion battery (LB) banks. In the HESS-computing
period, the algorithm minimizes HESS operating costs in the subsequent prediction horizon by
optimizing the time constant of a flexible first-delay filter (FDF) to obtain the UC power output. In the
LB-computing period, the algorithm keeps the optimal time constant of the FDF from the previous
period to directly obtain the power output of the UC bank to minimize the power output of the
LB bank in the next prediction horizon. A relaxation technique is deployed when the problem is
unsolvable. Thus, the fluctuation mitigation requirements are fulfilled with a large probability even
in extreme conditions. A state-of-charge (SOC) feedback control strategy is proposed to regulate the
SOC of the HESS within its proper range. Case studies and quantitative comparisons demonstrate
that the proposed MPC-based algorithm uses a lower power rating and storage capacity than other
conventional algorithms to satisfy one-minute and 30-min fluctuation mitigation requirements (FMR).

Keywords: index terms—wind power fluctuations; hybrid energy storage system (HESS); model
predictive control (MPC); flexible first-delay-filter (FDF); fluctuation mitigation requirements (FMR)

1. Introduction

Wind energy is an inexhaustible and environmentally friendly source of renewable energy.
Countries like China, USA, Germany, and Spain have led in the installation capacities of wind energy in
global markets. During the last decade, China shared the highest wind energy capacities in the world.
The Chinese government has been providing attractive policies for local wind energy manufacturing
companies and developers [1]. A comprehensive assessment of the production of energy from wind
has identified a grid-integrated wind generation potential of 11.9–14% of China’s projected energy
demand by 2030 [2].

However, fluctuations in energy due to the intrinsic stochastic nature of wind can pose significant
challenges for power grids, especially when a significant amount of wind power must be integrated
into existing power networks [3]. To maintain stable operations, electric power utilities have published
technical requirements for the connections of wind farms into power grids [4–6].

Energy storage is one of the most promising and practical techniques for mitigating wind power
fluctuations [7,8], with different storage technologies with characteristics that are vastly differing.
Many systems deploy batteries in a complementary mode with other storage devices, such as
ultracapacitors for compensation of fluctuating output in different timeframes. A common system
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of this type is a battery-ultracapacitor-based hybrid energy storage system (HESS) [9,10]. Generally,
ultracapacitors have higher power capacity than battery energy storage, while batteries provide higher
energy density [9]. Since energy storage size determines the cost of the HESS, it becomes imperative
that the control method of the HESS should be tailored to minimize the required energy storage. In this
paper, we introduce a coordinated control algorithm for a HESS composed of a high power density
ultra-capacitor (UC) bank and a high energy density lithium-ion battery (LB) bank.

A first-delay-filter (FDF) is conventionally applied to perform the online charge/discharge control
of energy storage [11,12], since it is suitable for real-time application due to its rapid computational
speed. However, FDF filters lead to overcompensation due to their inertia feature, which can further
deteriorate a system’s capability to cope with wind power variations. Tanabe et al. [4] and Xiangjun
et al. [13] combined an FDF with a rate limiter to ensure that wind farm power fluctuations still
met the required technical requirements, while a flexible FDF with time constant optimization to
limit the power fluctuation under restriction has also been proposed. Some studies have adopted
algorithmic approaches to energy storage systems (ESS) or HESS scheduling. Abbey et al. utilized a
knowledge-based control approach [14], while Datta et al. implemented fuzzy logic to smooth power
fluctuations of photovoltaic-diesel hybrid power system [15]. However, these methods are all based on
an FDF, and fail to guarantee that the smoothing power output at the point of interconnection of wind
farm always fulfills the fluctuation mitigation requirements (FMR).

In a previous work, we presented a wavelet-based scheme to control a HESS [5], which provides
a lower required storage capacity than the required capacity calculated for FDF-based techniques.
Using a model predictive control (MPC) is another effective solution owing to its superior handling
capability of constraints in order to mitigate wind power fluctuations. MPC has gained popularity in
industry since the 1990s and has become a major success story in modern control engineering [16].
In this paper, the main contribution is the proposal of a MPC-based rolling optimization control
strategy for a HESS in the presence of practical constraints, consisting of two types of computing
periods (HESS-computing and LB-computing periods). At each time step, a quadratically-constrained
programming (QCP) problem is solved to minimize the cost of HESS or LB in the next prediction
horizon. It effectively mitigates wind power fluctuations in multiple time scales, and with a novel
state-of-charge feedback (SOCFB) control scheme, it can also effectively restore the SOCs of the HESS
to its proper safety range.

2. Fluctuation Mitigation Requirements for Wind Power Integration

2.1. Composition of Wind Power Signals

Figure 1 illustrates a conceptual drawing of the Wind/HESS hybrid power generation system
architecture. The system consists of a wind farm, an MPC-based coordinated controller, and a HESS
comprised of a UC bank and a LB bank. At time k, the controller monitors the wind power PW(k),
allocates the charge/discharge reference values PLB,re f (k) and PUC,re f (k) in real-time, and passes these
values to the corresponding DC/AC power converter controllers. Therefore, the combined power
output PO(k) would be the combination of actual output PUC(k), PLB(k), and the wind park power
output PW(k).
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Figure 1. Diagram of a wind/HESS hybrid power generation system. 
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Figure 1. Diagram of a wind/HESS hybrid power generation system.

2.2. Fluctuation Mitigation Requirements

Power fluctuations at different time scales impact differing aspects of power system operation.
Fluctuations within time frames of a few minutes to several hours affect system generation reserves [17],
while fluctuations on the seconds to minutes time scale influence ancillary services, such as frequency
regulation, spinning reserves, voltage support, black-start capacity, and so on [18]. These fluctuations
should be limited with the increased level of wind penetration in order to still integrate as large an
amount of wind power generation as possible into the electricity grid while reducing any impact on
power system stability [19]. The German (E.ON) requires a maximum ramping rate of 10% of connection
capacity per minute specification for wind power systems, and in Ireland there are two specified
settings—ramping rate per minute and ramping rate over 10 min [3]. In Japan, two requirements are
published by Tohoku Electric Power Company—2% of the rated power per minute and 10% of the
rated power per 20 min [4]. In recent years, several fluctuation mitigation requirements (FMR) have
been studied by electric power utilities in China [5,6]. For this work, we have selected two of the FMRs
in force in China as follows:

2.2.1. One-Minute Fluctuation Mitigation Requirements

The maximum fluctuation range of PO(k) in any one-minute evaluation window should be limited
to within γ1% of Prated.

2.2.2. Thirty-Minute Fluctuation Mitigation Requirements

The maximum fluctuation range of PO(k) in any 30-min evaluation window should be limited to
within γ30% of Prated.
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3. MPC-Based Coordination Control Model

3.1. Flow Chart of MPC-Based Coordination and Optimization Control

A detailed flowchart of the complete MPCCC process for the HESS is provided in Figure 2. MPC is
a form of control where the current control action is obtained by solving, online, a finite horizon
open-up optimal control problem at each sampling instant where a receding horizon approach is
implemented [20]. Using the current state x(k) at time k as the initial state, an open loop optimal control
problem is solved over some future interval by taking into account the current and future constraints.
The MPC algorithm yields an optimal control sequence, and the first value in this sequence is injected
into the plant. This procedure is then repeated at time (k+1) using the current state x(k+1).
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Figure 2. Flowchart of the complete MPC-based coordination control process for the HESS.

The goal of a HESS control system is to satisfy any FMRs using the smallest energy storage system
possible. Our proposed MPC-based coordination control (MPCCC) is a novel method for controlling a
HESS, whose basic principle is illustrated in Figure 3. This control system deploys a flexible FDF to
obtain the charging/discharging reference value of the UC bank PUC,re f (k). The corresponding time
constant of FDF T f (k), the charging/discharging reference value for LB PLB,re f (k), and the expected
combined output PO,exp(k) are obtained by solving the optimization problem of the MPCCC.



Energies 2019, 12, 4591 5 of 17

Energies 2019, 12, x FOR PEER REVIEW 4 of 16 

 

controlling a HESS, whose basic principle is illustrated in Figure 3. This control system deploys a 
flexible FDF to obtain the charging/discharging reference value of the UC bank 푃 , (푘). The 
corresponding time constant of FDF 푇 (푘) , the charging/discharging reference value for LB 
푃 , (푘), and the expected combined output 푃 , (푘) are obtained by solving the optimization 
problem of the MPCCC. 

However, it is time-consuming and cumbersome to optimize 푇  in each sampling period. Instead, 
푇 (푘) is only optimized for every Δ푇 period based on ultra-short-term wind power forecasts by solving 
the MPCCC model for the HESS. This is referred to as the HESS-computing period. In LB-computing 
periods, the optimal time constant is instead kept from the last computing period to directly get 
푃 , (푘) . The goal of this stage is to minimize 푃 , (푘)  in the next control horizon, which 
degenerates to the MPCCC model for controlling the LB bank. We propose using a state-of-charge 
feedback (SOCFB) control strategy to regulate the SOC of both banks of the HESS within their proper 
ranges. 

N

Y

clock=clock+1

Start

Read the power output of              k

clock = 0

End

MPC-based 
otimization for HESS

Data preprocess

Obtain                     by directly 
filtered through a FDF

  

State-of-charge feedback control

ObtainMod(clock,       )=0 ? T

cookies( )k 

MPC-based 
optimization for LB

Return 
UC,ref LB,ref O,exp( ), ( ), ( ), ( )P k P k P k k

cookies ( )k 

UC,ref ( )P k

LB,ref O,exp( ), ( )P k P k

Obtain LB UC( ), ( )P k P k

Calculate                by Eq.(35)O ( )P k

?k N
Y

N

k = k+1

 

Figure 2. Flowchart of the complete MPC-based coordination control process for the HESS. 



 state-of-charge 
feedback 
control

state-of-charge 
feedback 
control

MPC-based 
coordination 

control








Optimization
 of

W ( )P k

UC,ref ( )P k

W ( )P k

UC ( )P k

UC ( )P k

O ( )P k

LB ( )P k

LB,ref ( )P k
LB ( )P k

( )fT k

first-delay-filter

O_UC ( )P k

UC ( )P k

W ( )P k

 
Figure 3. Block diagram of the proposed MPC-based coordination control algorithm.

However, it is time-consuming and cumbersome to optimize T f in each sampling period. Instead,
T f (k) is only optimized for every ∆T period based on ultra-short-term wind power forecasts by solving
the MPCCC model for the HESS. This is referred to as the HESS-computing period. In LB-computing
periods, the optimal time constant is instead kept from the last computing period to directly get
PUC,re f (k). The goal of this stage is to minimize PLB,re f (k) in the next control horizon, which degenerates
to the MPCCC model for controlling the LB bank. We propose using a state-of-charge feedback (SOCFB)
control strategy to regulate the SOC of both banks of the HESS within their proper ranges.

The concrete modelling process is described in the following subsections.

3.2. Flexible First-Delay-Filter with Variable Time Constant

As shown in Figure 2, the transfer function model of the first-delay-filter (FDF) is:

PO_UC(s) =
1

1 + T f · s
· PW(s) (1)

where PO_UC is the combined output of PW and PUC. The reference value of the UC bank is regulated to:

PUC,ref(s) = PO_UC(s) − PW(s) (2)

A recurrence formula for PO,exp(k) and PUC,re f (k) are obtained via the discretization of Equations (1)
and (2), given by:

PO_UC(k) =
T f

T f + ∆t
· PO_UC(k− ∆t) +

∆t
T f + ∆t

· PW(k) (3)

PUC,ref(k) = PO_UC(k) − PW(k) (4)

where ∆t is the time step. we set ∆t = 1 s for this paper.
The theoretical range of T f is [0,+∞), which is difficult to optimize. Defining a constant

α = T f /
(
T f + ∆t

)
, Equation (3) can be rewritten as:

PO_UC(k) = α · PO_UC(k− ∆t) + (1− α) · PW(k) (5)

where, obviously, α ∈ [0, 1]. When α = 0, the UC bank is out of use, indicating that all fluctuations
should be mitigated by the LB bank, which is economically feasible. Since a UC’s “best fit” frequency
band is [1/Tmax, 1/Tmin], where Tmin ≤ 1 s and Tmax ≥ 60 s [21], we can set α ∈ [0,αmax], where αmax =

Tmax/(Tmax + ∆t). Substituting Equation (5) into Equation (4), we obtain:

PUC,ref(k) = α · [PO_UC(k− ∆t) − PW(k)] (6)
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Here, α is an increasing function of T f , which means optimizing α is equivalent to optimizing T f ,
where a larger α leads to more power being absorbed by the UC bank and thus providing a smoother
PO_UC(k) output.

3.3. Capacity Calculation

The energy state of the UC and LB storage systems at time k, representing the energy content in it,
are given by:

EUC(k) = EUC(t0) −
k∑

j=1

PUC(t0 + j) · ∆t (7)

ELB(k) = ELB(t0) −
k∑

j=1

PLB(t0 + j) · ∆t (8)

where EUC(t0) and ELB(t0) are the initial energy states.
The SOC of the battery can be measured by integrating the battery current over time:

SOC(k) = SOC(k− 1) −
η · PB(k− 1)

ĈB
(9)

where η is the corresponding conversion efficiency and ĈB is the rated energy capacity of the battery.
Thus, Equation (9) can provide both SOCUC(k) and SOCLB(k) for the system.

The energy storage capacity used for damping fluctuations of the UC and LB banks, i.e., CUC and
CLB, respectively, are then defined as:

CUC = max
k=1,...,N

EUC(k) − min
k=1,...,N

EUC(k) (10)

CLB = max
k=1,...,N

ELB(k) − min
k=1,...,N

ELB(k) (11)

where N is the total number of time points in the data sample.

3.4. MPC-Based Coordination Control Model

3.4.1. MPC-Based Coordination Control Model for the HESS

For the HESS-computing period, we formulate the optimization model to obtain the optimal
combined power output of the HESS and the wind system that meets all FMRs. The cost of HESS
usage in the subsequent control horizon is tightly related to the operational economy and should
be minimized.

(1) Objective function
With this relationship in mind, we can express the objective function of the optimization model as:

min J =
M∑

k=1

[
ηUC · P2

UC(k) + ηLB · P2
LB(k)

]
+ µUC ·

 M∑
k=1

PUC(k)


2

+ µLB ·

 M∑
k=1

PLB(k)


2

(12)

where ηUC, ηLB, µUC, and µLB are penalty coefficients associated with the power and energy costs of
the storage system, M is the control horizon, and PUC(k) and PLB(k) are optimizing control variables.
Thus, the goal consists of reducing the power and energy penalties associated with using the HESS.

(2) Equality constraints: power balance constraint

PUC(k) + PLB(k) + PW(k) = PO(k) (13)



Energies 2019, 12, 4591 7 of 17

where k = 1, . . . , M, and FDF constraint:

PO_UC(k) − α · PO_UC(k− ∆t) = (1− α) · PW(k) (14)

where k = 1, . . . , M. Note that there exists a coupling of the optimization variables α and
PO_UC in Equation (14), making the formula a quadratically constrained quadratic programming
(QCQP) problem.

Power balance constraint of the UC bank:

PUC(k) + PW(k) = PO_UC(k) (15)

where k = 1, . . . , M.
(3) Inequality constraints: FMR constraints

max
i=0...59

PO(k− i) − min
i=0...59

PO(k− i) ≤ Prated · γ1% (16)

max
i=0,...,1799

PO(k− i) − min
i=0,...,1799

PO(k− i) ≤ Prated · γ30% (17)

where k = 1, . . . , M. The combined output should simultaneously meet the FMRs of both time scales.
Output power constraints:

0 ≤ PO(k) ≤ Prated (18)

0 ≤ POUC(k) ≤ Prated (19)

where k = 1, . . . , M.
HESS power constraints:

− PUC, ch(k) ≤ PUC(k) ≤ PUC, dh(k) (20)

− PLB, ch(k) ≤ PLB(k) ≤ PLB, dh(k) (21)

Here, k = 1, . . . , M, and PUC, ch(k), PUC, dh(k), PLB, ch(k), and PLB, dh(k) are the maximum charging
and discharging power of the UC and LB banks, respectively, such that:

PUC, ch(k) = min
{
[SOCUC_max − SOCUC(k− 1)]·

ĈUC

∆T
, P̂UC

}
(22)

PUC, dh(k) = min
{
[SOCUC(k− 1) − SOCUC_min] ·

ĈUC

∆T
, P̂UC

}
(23)

PLB, ch(k) = min
{
[SOCLB_max − SOCLB(k− 1)] ·

ĈLB

∆T
, P̂LB

}
(24)

PLB, dh(k) = min
{
[SOCLB(k− 1) − SOCLB_min] ·

ĈLB

∆T
, P̂LB

}
(25)

where k = 1, . . . , M and ∆T is the charge and discharge time. ĈUC, P̂UC, ĈLB, and P̂LB are determined
when designing the capacity configuration of the HESS.

HESS energy constraints:

ĈUC ·
[
SOCUCmin − SOCUC(t0)

]
≤

M∑
k=1

PUC(k) ≤ ĈUC · [SOCUC_max − SOCUC(t0)] (26)
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ĈLB ·
[
SOCLBmin − SOCLB(t0)

]
≤

M∑
k=1

PLB(k) ≤ ĈLB · [SOCLB_max − SOCLB(t0)] (27)

3.4.2. MPC-based control model for the LB bank

During the LB-computing period, the optimization model is established to obtain the optimal
output of LB and combined power output meeting all FMRs. The goal is to minimize the cost of LB
utilization in the subsequent control horizon.

(1) Objective function

minJ =
M∑

k=1

µLB · P2
LB(k) (28)

where k = 1, . . . , M. Note that PLB(k) is the optimizing variable.
(2) Equality and inequality constraints
The equality and inequality constraints can be derived from Equations (13)–(27) when α is constant

in this period.

3.5. Transformation of the FMR Constraints

Since the FMR constraints in Equations (16) and (17) contain max-min operators, they make it
difficult to solve the MPCCC problem. To ease computational requirements, the FMR constraints
should be equivalently converted into linear constraints, and the FMR interval [5] expanded as the
upper and lower limits of PO(k), i.e.,:

(1− σ1)PO,1 ≤ PO(k) ≤ (1 + σ1)PO,1 (29)

for 1-min FMR, where k = 1, . . . , M and σ1 > 0. This preprocessing improves the solution efficiency.

3.6. Model Solution

Suppose θ is a variable vector containing all states and controls, where:

θ = [PUC PLB PO PO_UC α]
T (30)

for the HESS-computing period, and:
θ = [PLB PO]

T (31)

for the LB-computing period, respectively. Note that PUC, PLB, PO, and PO_UC are all M-dimensional
vectors, and PLB, PO and α are controllable.

We can then formulate the MPCCC problem in a general nonlinear programming form:


obj.
s.t.

min
θ

f (θ) = 1
2θ

TΦθ+ φTθ

Hθ = h
g ≤ g(θ) ≤ g

(32)

where Φ is the diagonal weighting matrix and φ describes the linear part of the objective function,
whereas the matrix H and the vector h describe the equality constraints. g and g are the lower and
upper bound of the inequality constraints.

Note that the quadratically-constrained programming (QCP) problem of Equation (32) is readily
solved using the interior point methods. In this work, we solve the optimization problem at each time
step using IPOPT (Interior Point OPTimize) in MATLAB. IPOPT is a software package for large-scale
nonlinear optimization [22], which is available from the COIN-OR initiative and written in C++ and is
released as open source code under the Eclipse Public License (EPL).
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3.7. Feasibility and Constraints Handling

MPCCC problems can become unsolvable when a large disturbance occurs (i.e., extreme weather
conditions, batteries are depleted, and other conditions that violate the constraints in Equations (16)
and (17)). In this case, the constraints should be relaxed by introducing slack variables such that the
constraints are always feasible. Meanwhile, the objective function is modified by introducing a term
that penalizes the magnitude of the constraint violations. Hence, the MPCCC problem in Equation (32)
is modified to: 

obj.
s.t.

min
θ

f (θ) = 1
2θ

TΦθ+ φTθ+ ρe‖εe‖
2 + ρi‖εi‖

2

Hθ − εe = h
g ≤ g(θ) − εi ≤ g

(33)

where εe and εi are slack vectors for the equality and inequality equations, respectively, and ρe and ρi
are the corresponding penalty factors that are nonzero only if the equation is violated.

Clearly, the relaxed MPCCC problem is still a QCP problem, and so can be solved efficiently.
Thus, feasibility is ensured by increasing the size of the optimization problem.

3.8. State-of-Charge Feedback Control

HESS control strategies should take into consideration the SOC status and maximum available
charge or discharge power constraints of the storage system. Here, the SOC feedback control strategy
is presented to regulate the SOC of the batteries within proper range of 20%–80% (charge/discharge
safety interval).

3.8.1. State-of-Charge Feedback Control of the UC

The UC bank’s power reference value should be limited within the UC power constraint dictated
in Equation (20).

3.8.2. State-of-Charge Feedback Control of the LB

PUC(k) is obtained through the SOCFB. The power reference of the LB is calculated by:

PLB,ref(k) = PO,exp(k) − PUC(k) − PW(k) (34)

To determine, we employ an interval narrowing method considering long-term operations.
The procedure is briefly as follows:

Working Stage 1: Let SOCLB_min_alert = 30% and SOCLB_max_alert = 70%. Figure 4 outlines the
SOCFB, expressed stepwise below:
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(1) If SOCLB(k− 1) < SOCLB_min_alert, then set PO,exp(k) to a smaller value.
(2) If SOCLB(k− 1) > SOCLB_max_alert, then set PO,exp(k) to a larger value.
(3) If SOCLB_min_alert ≤ SOCLB(k− 1) ≤ SOCLB_max_alert, the LB strictly responds with the reference

value from Equation (34).
As a result, the target combined output PO,exp(k) can be adaptively modified according to the

charging-level of the LB.
Working Stage 2: Compute SOCLB(k) when the LB bank reacts to the reference value obtained

from Stage 1. Then let SOCLB_min_alert = 20% and SOCLB_max_alert = 80%. Repeat Stage 1, updating
SOCLB(k− 1) with the value of SOCLB(k).

Working Stage 3: Then the combined output is determined as:

PO(k) = PLB(k) + PUC(k) + PW(k) (35)

4. Simulation and Analysis

4.1. HESS Capacity and Power Configurations

The aim of this section is to estimate the power rating demand and capacity for the HESS that can
achieve all FMRs using the proposed method. Thus, SOCFB is not considered at this stage.

Figure 5 demonstrates three typical days (separated into three different cases) of wind power
output with 1-s time resolution from the wind energy database of a wind farm in China. The rated
capacity of the wind farm Prated is 6 MW.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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Figure 5. The wind power output sampled with 1-s resolution.

Denote the average fluctuation as F1, the maximum fluctuation as F1max, and the standard deviation
of power fluctuations in every one-minute interval as ρ1. Similarly, F30, F30max, and ρ30 can be defined
for power fluctuations over a 30-min interval. The statistical analysis results for each of the three
representative cases are given in Table 1.

Table 1. Statistical analysis of cases.

Case ¯
F1 (%) F1max (%) ρ1

¯
F30 (%) F30max (%) ρ30

Case 1 4.16 57.73 0.0279 17.43 72.83 0.1060
Case 2 2.61 65.07 0.0216 16.79 65.07 0.0880
Case 3 2.35 65.87 0.0183 18.12 70.18



Energies 2019, 12, 4591 11 of 17

To show the effectiveness of the proposed MPCCC algorithm, we derived the minimal HESS
power rating and capacity required during a single day for the MPCCC algorithm, then did the
same for a basic FDF [23], an FDF with a rate limiter [4,13], and a wavelet-based sizing algorithm [5].
The solutions are further displayed in Table 2.

Table 2. Capacity configuration solution with different sizing methods.

Methods Power Rating of
LB (MW)

Capacity Rating of
LB (MWh)

Power Rating of
UC (MW)

Capacity Rating of
UC (MWh)

FDF 3.2 10 1.5 0.2
Rate limiter 3.0 7 1.5 0.2

Wavelet-based 2.5 5 1.5 0.2
MPCCC 2.5 3 1.5 0.2

4.2. Comparison of MPCCC and Conventional Algorithms

We simulated the real-time control of a wind power system using a HESS to evaluate the
performance of our proposed algorithm, using four different indices to better evaluate the different
control strategies and to investigate the benefits of the MPCCC algorithm. The indices are:

4.2.1. Maximum Absolute Value of the Energy Storage Power Output

Note that the cost of the power conversion system equipment is in proportion with the power
rating of the system.

4.2.2. Energy Storage Capacity Consumed

The cost of the storage unit is in proportion with the amount of energy it must use.

4.2.3. Battery Health Index

The battery health index (BHI) assesses the effectiveness of utilizing the storage systems within
the specified safety range, as defined by:

BHI =
1
N
·

N∑
k=1

f lag(k) × 100% (36)

where N is the total number of time points in the data sample; f lag(k) is a 0–1 variable defined as:

f lag(k) =
{

1 SOC(k) ∈ [20%, 80%]

0 SOC(k) < [20%, 80%]
(37)

A larger BHI indicates a more effective SOCFB.

4.2.4. Equivalent Full Cycle

At the end of a simulation using one of the specified control strategies, the total fractional damage
D was calculated to predict the expected life of the HESS [24]:

D =
m∑

i=1

Ni
1

CF,i
(38)

where CF,i is cycle to failure—which is a function of depth of discharge (DOD) and the corresponding
number of cycles provided in the datasheets [11]—and Ni is the corresponding number of cycles
fulfilled at that DOD. Note that the reciprocal of D is the expected life of the battery.
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For our study, we must rewrite Equation (38) as:

D =
m∑

i=1

1
CF(DOD(k))

(39)

Here, DOD(k) = SOC2(k) − SOC1(k), where SOC2(k) and SOC1(k) are the SOC at battery stop
and start for the k-th discharging process.

Note that the discharge/charge cycling of the batteries is irregular when using the batteries to
smooth wind power output. Therefore, we propose using an equivalent full cycle EFC in this paper to
determine D for the different methods:

D = EFC·
1

CF
(40)

Substituting Equation (40) into Equation (39), we can solve for EFC:

EFC = CF·

m∑
i=1

1
CF(DOD(k))

(41)

We compared the results from our MPCCC algorithm with the results from a basic FDF [9], a FDF
with a rate limiter [4,13], and a wavelet-based control algorithm (OWCC) developed in [3]. The rate
limit was set to ±7%/1800. The related penalty coefficients were derived from [25], where γ1% = 2%
and γ30% = 7%. Tables 3 and 4 give the results from the three cases.

Table 3. Comparison of different control methods (I).

Case Methods D (e−4) Expected life (y) EFC (DOD = 60%) EFC (DOD = 80%)

Case 1

First-delay-filter 9.2887 2.9495 2.7884 2.2183
Rate limiter 7.1713 3.8204 2.1528 1.7127

wavelet-based control 4.2491 6.4477 1.2756 1.0148
MPC-based control 3.7222 7.3606 1.1174 0.8889

Case 2

First-delay-filter 8.7497 3.1312 2.6266 2.0896
Rate limiter 6.8732 3.9861 2.0633 1.6415

wavelet-based control 3.9616 6.9157 1.1892 0.9461
MPC-based control 3.6579 7.4899 1.0981 0.8736

Case 3

First-delay-filter 11.1701 2.4527 3.3532 2.6677
Rate limiter 9.7787 2.8017 2.9355 2.3354

wavelet-based control 7.9426 3.4494 2.3843 1.8969
MPC-based control 6.7711 4.0462 2.0326 1.6172

Table 4. Comparison of different control methods (II).

Case Methods
Maximum

Power of LB
(MW)

Capacity
Consumed

of LB (MWh)

Maximum
Power of UC

(MW)

Capacity
Consumed of

UC (MWh)
BHI of LB (%) BHI of UC (%)

Case 1

First-delay-filter 2.7266 8.9740 0.4235 0.1401 35.14 100
Rate limiter 2.2373 4.9405 0.4235 0.1401 45.46 100

wavelet-based
control 1.9220 2.9545 0.7741 0.1276 100 99.10

MPC-based control 2.0476 2.2035 1.0659 0.1501 100 100

Case 2

First-delay-filter 3.0210 7.9200 0.5012 0.1278 56.64 100
Rate limiter 2.6475 4.9956 0.5012 0.1278 100 100

wavelet-based
control 2.4580 2.9680 0.8641 0.1200 100 100

MPC-based control 2.4479 2.6903 1.4594 0.1500 100 100

Case 3

First-delay-filter 2.5284 6.8001 0.9771 0.1312 62.51 100
Rate limiter 2.5065 5.2008 0.9771 0.1312 98.39 100

wavelet-based
control 2.3564 4.1451 1.2088 0.1226 100 100

MPC-based control 2.3308 3.7573 1.4899 0.1541 100 100
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Clearly, the basic FDF applies the most energy storage of all the algorithms given the same sizing
solution, while by adopting the proposed OWCC scheme, the required storage capacity and power
rating can be kept at lower levels. In Case 1, the CLB is 24.55% of the capacity used with the basic
FDF, 44.60% of the FDF with a rate limiter, and 74.58% of that of the OWCC. In addition, the BHILB

is 85.04% smaller for the MPCCC scheme compared to results employing the basic FDF. In terms
of life expectancy, the expected life of the LB using MPCCC is 2.5 times longer than a system using
FDF, 1.93 times that of a system using a rate limiter, and 1.14 times that of a system implementing
OWCC. It is noted that the MPCCC algorithm adopts a flexible FDF to compute the power reference
value, which can take advantage of the high power density of the UC bank, which allows for the
MPCCC-based system to have the largest PUC of the tested algorithms. Furthermore, the MPCCC
scheme essentially allocates the charging/discharging reference value of the HESS through frequency
distribution by employing the flexible FDF. This separation of use improves the lifetime of both types
of storage devices [9].

To further investigate the necessity of the SOCFB, we compared two different MPCCC schemes:
namely, MPCCC-BA, corresponding to the basic MPCCC without the SOCFB and MPCCC, which is
the proposed complete MPCCC scheme. For this experiment, we used the MPCCC-based one-day
capacity configuration solution in Table 2.

As shown in Table 5, using the SOCFB consumes 7% more LB bank capacity compared to
the MPCCC-BA system, since the SOCFB in the MPCCC additionally charges/discharges the HESS
according to the SOCs of each of the banks. However, the BHI of the LB bank increases by 84%,
which will prolong the lifetime of the HESS and ensures enough energy storage for long-term mitigation.

Table 5. Comparison of different MPCCC methods.

Methods
Maximum
Power of
LB(MW)

Capacity
Consumed of

LB (MWh)

Maximum
Power of UC

(MW)

Capacity
Consumed of

UC (MWh)
BHI of LB (%) BHI of UC (%)

MPCCC-BA (without
the state-of-charge

feedback)
2.0644 2.2555 1.1594 0.1552 43.73 80.62

MPCCC (with the
state-of-charge

feedback)
2.0522 2.3225 1.0784 0.1523 80.37 92.95

4.3. Verification of the Proposed Control Strategy

In this section, the power profile of Case 1 was applied to verify the effectiveness of the proposed
control strategy. For this experiment, the computation cycle of the HESS-computing period ∆T was
10 s. To validate the effectiveness of the proposed SOCFB, the initial SOC states of the UC and LB
banks were set to 65% and 75%, respectively. As this paper focuses mainly on MPC-based coordinated
control of a HESS, neither inverter control specifics nor the related issues were considered. Simulation
results were obtained using MATLAB and accordingly displayed in Figures 6–9.
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Figure 9. State-of-charge curves of the ultra-capacitor bank.

It can be seen in Figure 6 that the power fluctuations were effectively smoothed by means of the
proposed MPCCC algorithm. Figure 7 reveals the maximum smoothed power output fluctuations in
both time scales. As the figure makes clear, the fluctuations were effectively restricted below the limit
value of 2% per min and 7% per 30 min.

Figures 8 and 9 show that the SOCFB of the LB and UC banks effectively kept the SOCs between
20% and 80% for most periods during the entire observed sample. For example, when the SOC of the
LB bank went above 70% at about 5:00 am or under 30% at about 9:50 am, the SOCFB would adaptively
work to adjust the power reference value. In contrast, another time-domain simulation without SOCFB
was also performed, and the SOC curves frequently deviated from the expected safety range. Hence,
the proposed SOC feedback control can achieve good management of the SOCs of the LB and UC
banks, which would enhance the reliability of long-term operation.

Furthermore, the average computing CPU time in each step size is 0.0263 s. Since the time step in
this paper is 1 s, the calculation speed is sufficient to satisfy real-time operation requirements.

5. Conclusions

The main contributions of this paper are:

• A novel MPC-based coordinated control strategy consisting of HESS-computing and LB-computing
periods is developed. At each time step, we solve a QCP problem using IPOPT in MATLAB. In the
HESS-computing periods, the goal is to minimize the cost of HESS in the next prediction horizon,
the optimal power output of LB is obtained, as well as the optimal time constant of first-delay filter
for obtaining the power output of UC. In the LB-computing period, the optimal time constant in
the last HESS-computing period is kept to directly obtain the power output of UC, the goal of
this stage is simplified to minimize the cost of LB utilization in the subsequent control horizon.
This control strategy effectively mitigates wind power fluctuations in multiple time scales;

• Adopted a flexible FDF with an optimization of the time constant to obtain the reference value of
the UC bank, which can take the full advantage of the high power density of the UC bank;

• Allocated the charge/discharge instruction value of the HESS based on frequency distribution by
employing the flexible FDF. This improves the lifetime of both storage devices;

• Deployed a relaxation technique when the MPCCC problem is unsolvable. Thus, the FMR is
fulfilled with a large probability even in extreme conditions; and

• Presented a novel SOCFB control scheme that effectively restores the SOCs of the HESS to its
proper safety range.

This scheme resulted in required storage ratings that are lower than the ratings calculated using
previous published techniques.
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