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Abstract: On the path towards the decarbonization of the electricity supply, flexibility and demand
response have become key factors to enhance the integration of distributed energy resources, shifting the
consumption from peak hours to off-peak hours, optimizing the grid usage and maximizing the share of
renewables. Despite the technical viability of flexible services, the reduction of greenhouse gas emissions
has not been proven. Traditionally, emissions are calculated on a yearly average timescale, not providing
any information about peak hours’ environmental impact. Furthermore, peak-hours’ environmental
impacts are not always greater than on the base load, depending on the resources used for those time
periods. This paper formulates a general methodology to assess the potential environmental impact
of peak-hourly generation profiles, through attributional life cycle assessment. This methodology was
applied to five different countries under the INVADE H2020 Project. Evaluation results demonstrate
that countries like Spain and Bulgaria could benefit from implementing demand response activities
considering environmental aspects, enhancing potential greenhouse gas reductions by up to 21% in
peak hours.

Keywords: life cycle assessment; greenhouse gas emissions; demand response; global warming potential;
peak hours; flexibility

1. Introduction

Climate change has pushed the electricity grid in an evolution towards smart grids by including
distributed energy resources (DERs) and the Internet of Things (IoT) [1]. At the same time, the increase
in electricity consumption is directly related to a significant contribution of the electricity supply to
the carbon footprint, since CO2 emissions in the power sector increased by 2.5% as a result of a 4%
rise in the global energy demand (GED) [2]. Renewable energy sources (RESs) are helping the energy
transition by increasing their share in the energy mix. As stated by Pleßmann et al. in [3], a transition from
a conventional to a renewables-based power supply system is possible for the EU, even considering nuclear
power phase-out. Despite this, the variability of these resources requires flexibility in the energy system.
The goal is to decarbonize the electricity sector, reducing the power system’s environmental impact by
shifting the consumption to those time periods where electricity from renewable sources is produced.
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This is currently being implemented with the integration of energy storage systems, the activation of
demand response (DR) mechanisms, and the development of flexibility markets [4,5]. Demand-side
management (DSM) activities can be key for energy strategy and policy development. Nilsson et al. [6]
proposed an interdisciplinary framework to evaluate demand response based on price and environmental
signals. Gerbaulet et al. [7] proved that the integration of storage and DSM, as well as other mechanisms,
could lead to a decarbonization of the entire energy sector by 2050. This is also supported by Child [8],
considering also the integration of flexibility services and interconnections. All energy agents can benefit
from flexibility services, as defined in [9], where distribution system operators (DSOs), balance responsible
parties (BRPs), and prosumers are the main stakeholders of the flexibility platform.

This shift in the energy mix entails an environmental burden, requiring an analysis of the resources
used during daily high-demand time periods, as well as their effects on the environment. Traditionally,
peak hours (PH) were covered by using conventional sources such as coal or natural gas, since renewable
sources had a low capacity factor [10]. Policies in terms of energy planning and grid expansion attempt to
tackle climate change by restricting greenhouse gas (GHG) emissions in the electricity sector, since GHG
emissions are closely linked to the production and use of energy [11]. However, each national electricity
mix has unique characteristics based on the resources located inside the borders as well as geo-political
conditions, and this must also be considered when defining energy policies [12–17].

GHG emissions accounted by the electricity sector are calculated based on techniques that include
absolute carbon emissions and average carbon intensity, as stated by Khan in [18]. This was the case in [19],
which assessed the Belgian low-voltage electricity mix using life cycle assessment (LCA) approaches,
resulting in average environmental impacts, to check the quality of the datasets from the European Network
of Transmission System Operators for Electricity (ENTSO-E). Additionally, ecoinvent 3.1. Average CO2

emissions were also developed in [20,21]. However, these studies did not analyze the temporal variability
of CO2 based on the resources used to cover the national demand when the demand reaches maximum
values. On the contrary, the absolute emissions approach quantifies the total amount of CO2; it is
usually used in national and international studies for tracking changes in emissions, comparing scenarios
and developing GHG regulation [22–25]. However, these approaches are not useful for accounting the
electricity produced with the temporal variation of resources (and hence, emissions).

Earlier studies considered the time-varying dependence of electricity production to assess the potential
environmental impacts. The hourly life cycle footprint of electricity generation in Belgium using LCA was
first assessed by Messagie et al. in [26]. However, they calculated the average carbon emissions for each
specific month, and hence peak hours resources could not be evaluated. Nilsson et al. [27] analyzed the
change in residential electricity consumption through the possibility for the final customer to visualize
the electricity prices in real-time. A similar path was followed by Cubi et al. [28] in Canada, assessing
the building environmental impacts related to the variability of the resources used during the day-time.
Khan et al. [29] approached the electricity mix environmental impacts with an analysis in which peak hours
and off-peak hours were compared, leading to useful results for policy makers regarding Bangladesh’s
grid. This method was followed by Khan et al. in [30] to evaluate GHG emissions in New Zealand.
The hourly-defined life cycle assessment (HD-LCA) approach was put forth in [31], with the enhancement
that the hourly electricity supply was environmentally evaluated. As a result, electric vehicle (EV) charging
processes could be scheduled according to the time variability of GHG emissions. In [32], Rangaraju et al.
emphasized the importance of considering the temporal resolution of EV charging in LCA, by combining
the electricity mix time variability and charging time frames. The geographical and temporal variation
of marginal electricity generation can affect the environmental impacts of an energy system, as well as
policy decisions, as stated by Olkkonen and Syri in [33]. In addition, the time-varying nature of marginal
electricity generation sources should be taken into account for relevant LCA models.
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All the previously mentioned works studied how to assess the environmental impacts of electricity
systems, but none assessed peak hours for flexibility objectives, considering peak hours as the most
expensive and resource-intensive time periods. Furthermore, none of them used hourly attributional LCA
in which the time variability is considered, nor did they compare this methodology to traditional LCA
and yearly average values. There is a knowledge gap in the environmental assessment of peak hours’
electricity generation, and more specifically in using LCA approaches for analyzing the flexibility potential
of electricity production. The contribution of this paper is the definition of a general methodology for the
environmental impact assessment of peak-hourly electricity generation by means of attributional LCA,
using statistical data of electricity generation. Additionally, this methodology was implemented in an
evaluation of five different countries through the ENTSO-E Transparency Platform and GaBi R© Software
database, leading to peak-hourly national carbon intensity curves and share of resources. The results and
discussion of this analysis can provide some guidance to energy policy makers as well as energy services
companies (ESCOs) and aggregators in taking decisions on how flexibility and DR strategies should be
designed, quantified, and rewarded, considering not only economic savings but also CO2 cuts.

The paper is organized as follows: Section 2 defines the peak-hourly LCA methodology developed in
this work, and justifies why LCA can be a good approach for the environmental assessment of electricity
production including time variability. Section 3 describes each pilot site under the H2020 INVADE Project
and develops the environmental impact assessment for each of them, which are later discussed in Section 4.
Finally, from the results obtained, conclusions are drawn in Section 5.

2. LCA Applied on Electricity Production

There are different approaches to assessing the environmental impact of electricity production. As
stated by Khan in [34], six different methodologies have been used in the literature for electricity generation
systems. Life cycle assessment (LCA) is one of the most established methods, and is widely used for
comparing different generation technologies. The aim of LCA is to assess the potential environmental
impacts of a product or system throughout its entire life cycle, by providing both absolute and average
values of the environmental impact. That means that LCA can also be used to assess the time-variability
of resources in electricity mixes, and is suitable for evaluating the environmental impact of peak hours
electricity production. García et al. studied the possible changes in the Spanish electricity production
mix to assess and guarantee the European Commission Directives accomplishments and CO2 cuts [35].
Consequential LCA was used by Lund et al. [36] to set a business as usual (BAU) projection of the
Danish energy system, focusing on the marginal production unit with particular attention to day–night
and summer–winter variations. Jones et al. used the same approach combined with a net energy
analysis to describe the future environmental outcomes of distributed electricity production in the United
Kingdom [20]. Thomson et al. analyzed [37] the GHG emissions displacement provided by wind power in
the marginal generation of Great Britain, considering the uncertainty of the production. Howard et al. [38]
developed an LCA model to calculate the GHG emissions considering a timeline from 2011 projected
until 2025, considering the grid operation, the integration of wind turbines, and power plants’ addition
and dismantling. Garcia et al. [39] described the average electricity grid mix in Portugal looking at
seven different impact indicators. The same authors improved their study by looking at GHG emissions
implications for EVs, including time constraints regarding electricity peaks of production [40].

The common point of the previously cited papers is that the LCAs of electricity grid mixes account for
the yearly average electricity production of a certain country. To understand the environmental impacts
related to the resources used during peak hours, a time-varying approach should be implemented, as
highlighted by Curran et al. in [41]. According to methodological reviews of LCA electricity mixes [42,43],
the difference between average yearly and shorter time periods could be significant, especially when there
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is a consistent difference in the strategy used to cover peak hours in comparison with the base load. At the
same time, the electricity demand changes depending on seasons, weather, and resources availability, and
consequently the mixes used during base load and peak hours can differ significantly.

Consideration of the time dependency of GHG emissions due to electricity production is the novelty
proposed by this paper in comparison to previous literature [20,35–40,44]. To the best of our knowledge,
there is no such analysis regarding the electricity production in Bulgaria, Germany, the Netherlands,
Norway, or Spain. In this study, the most complete data were analyzed, including the entire year 2018.
Because demand response and flexibility are two main important topics regarding electricity production,
this study aimed to improve upon the knowledge about the resources used during peak time periods, and
to investigate possible alternatives.

2.1. Peak-Hourly Life Cycle Assessment (PH-LCA) Methodology

There are four different stages in an LCA model, according to [45,46]: (i) goal and scope definition;
(ii) life cycle inventory (LCI); (iii) life cycle impact assessment (LCIA); and (iv) interpretation. LCA is an
iterative process, being all the steps interconnected, as shown in Figure 1. Section 2.2 defines the goal and
scope for this study. The life cycle inventory and life cycle impact assessment are developed in Section 2.3
and Section 3.3, respectively. Finally, the interpretation is developed in Section 4.

Figure 1. Life cycle assessment (LCA) steps according to ISO 14040, 14044, and 14067.

2.2. Goal and Scope

The goal and scope definition of an LCA provides the intended application of the analysis, describes
the product system boundaries, and defines the functional unit [47], determining and guiding the choices
to be made in other stages of the analysis. Table 1 defines the goal and scope for this study. In this
article, the attributional LCA approach was applied for peak hours, developing a new LCA methodology
named peak-hourly life cycle assessment (PH-LCA). As a result of this study, comparison between the
environmental impacts of average and peak-hours electricity produced in an entire year can be analyzed.

The functional unit for the environmental impact assessment is defined as one kWh of electricity
produced and delivered to the grid, which is in line with previous studies of the environmental impacts
of electricity generation [19,26–30]. The impact category chosen for the assessment was global warming
potential (GWP), using the CML 2015 life cycle impact assessment method [48].
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Table 1. Electricity grid mix LCA goal and scope structure.
G

oa
l

Intended Application Explorative study

LCA Typology Attributional LCA

Purpose of the Study Provide the reader knowledge to understand the environmental
impacts of peak hours’ electricity production

Comparative Analysis This is not a comparative analysis between countries.
Comparison between average and peak-hourly (PH) global warming potential (GWP) values.

Sc
op

e

Function of the System
The targeted country’s electricity grid mixes are in charge of
producing the electricity needed to meet the national load
in any instant

Functional Unit 1 kWh [27,29,30]

Reference Flow Energy flow (kWh) of electricity

Description of the System Bulgaria, Germany, The Netherlands, Norway, and Spain (Section 3)

System Boundaries Cradle to Gate

Allocation Procedures Detailed in Section 2.2.1

Impact Assessment Method CML 2015 [48]. Impact category : GWP (kg CO2-eq/kWh)

Data Requirements Secondary data provided by ENTSO-E Transparency Platform

2.2.1. System Boundaries

The system boundaries limit the LCA framework by defining the resource inputs and the emissions
outputs of the system, excluding those that are out of the LCA’s scope. The included limitations should
derive from the available hourly data from the statistical source used for the analysis (in this research,
the ENTSO-E TP). Soimakallio et al. [42] describe the challenges of performing an LCA about electricity
mixes, suggesting the main factors and variables to consider as system boundaries. Elements such as
grid losses, electricity import/export, power plant consumption, and environmental impact allocation
procedures are described in the following subsections.

Grid Losses

Specifically in this LCA, the background system includes all the previous steps of the final electricity
production process, like the extraction of the fuel, its refinement, and its transportation to the power
plant. The foreground system is related to the effective production of 1 kWh inside the power plant.
For the background system, the software tool dataset used for this research includes imported electricity
from neighboring countries and transmission/distribution losses (e.g., the electricity mix of the country
which exports the fuel, the losses in transportation, etc.). However, the foreground system does not
include the same values, meaning that it does not contain the exports of the produced electricity in
other countries, the imports of electricity from bordering nations, or the grid losses to distribute the
produced electricity [49]. According to [42], the difficulties in how grid losses should be allocated between
high-, medium-, and low-voltage consumers make the process excessively complicated for the losses
contribution in the final results, especially in terms of GHG emissions. This is why grid losses (distribution,
transmission) of the targeted countries are not considered in this model. Contrariwise, transformation
losses are part of the model because these values can estimated through the efficiency of the power plants.

Import/Export

Another subject of discussion is the amounts of imported and exported electricity from neighboring
countries, as mentioned in the previous subsection. In ENTSO-E TP, the classification named Actual
Generation per Production Type includes the natural resources used for the electricity production, and refers
to the amount of fuels utilized including the import of these substances from other countries. However, it
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does not include the already-produced electricity imports between bordering countries. These data are
integrated in a different class in the ENTSO-E TP platform, as cross-border physical flows, which is not taken
into account in this study. In fact, incorporating electricity imports and exports in a national grid mix
could lead to inaccuracy and imprecision when dealing with GWP calculations, because it is not possible
to know from which power plants the electricity comes from. As a result, the analysis of Nillson et al.
in [27], which contains Swedish electricity imports, could include minor defects compared to a baseline
where exchanges are not considered. Considering only the geographical borders avoids any possible
misconception, as was also done by Khan [29]. Cubi et al. [28] do not specify if imports and exports were
counted, and Khan et al. [30] did not include them. Furthermore, in a recent paper by Moro et al. [44], four
out of five targeted countries of this study (Bulgaria, Germany, Spain, and the Netherlands) had a very
low carbon intensity variation of the electricity production after trading with other countries (−2%, +2%,
−6%, and −1% respectively).

Power Plants’ Consumption

Regarding the electricity consumption of power plants themselves, these values were taken from the
official statistics of the IEA (International Energy Agency) through the LCA software tool, and so they were
included in the model [49]. Specifically, the power consumed in pumping the water in hydro pumped
storage (PHS) power plants was considered when data from TP were available. The sources of electricity
for the pumps were assessed according to the average national electricity mix presented in this study.

Combined Heat and Power Plant Emission Allocation Procedures

Finding the suitable allocation factor can sometimes be problematic, and can have a significant impact
on the LCA results. According to [45], allocation should be avoided whenever possible. Combined
heat and power plants (CHP) produce two outputs, and so it is necessary to allocate the environmental
impacts of just the electricity production. LCA software tools present a database for every resource used
in CHP power plants, such as natural gas, biogas, heavy fuel oil, hard coal, lignite, and biomass. In the
used database, there are data regarding the share of electricity, the overall efficiency, and the share of
electricity to thermal energy within a CHP plant. According to the description of the dataset, for the CHP
production, allocation by exergetic content is considered. Whenever there seemed to be a lack of data
regarding the amount of produced heat or the efficiency of CHP plants in a country’s database, the research
found that this was due to the low percentage of produced heat relative to the total energy originated,
which was rounded down to 0.0 since it is usually only about 0.01 [49]. Therefore, the allocation of CHP
plants was considered as a part of the analysis only when data were available (Bulgaria, Germany, and
The Netherlands).

2.3. Life Cycle Inventory (LCI)

LCI can be understood as a model of the product system which fulfills a function that is quantified
in the functional unit. It requires hypothesis definition, data collection, and data modeling, resulting
in an inventory table with all the environmental interventions. The objective of the LCI is to quantify
the resources used and the emissions and waste per functional unit [47]. Traditional LCA approaches
quantify the resources, emissions, and wastes on average per functional unit. However, when the aim
is to quantify the environmental impacts on peak hours to develop flexibility services, this approach is
not enough. The time variability of the electricity production is a fundamental issue to consider in order
to correctly assess the GWP during different time slots. To achieve that objective, a new methodology
named peak-hourly LCA is defined in Figure 2, and it is compared to the traditional approach of LCA for
electricity production.
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Figure 2. LCA methodology for peak hours electricity generation.

The methodology followed for this study is based on the identification of electricity production
peak hours for every day of the year, compared to the base load. Every single peak hour, extracted from
a statistical source, was analyzed to define the resources used to meet the greatest electricity demand of
the day. The electricity mix was normalized into the functional unit of 1 kWh. Then, the resultant GHG
emissions, and therefore the GWP impact indicator values, were calculated. To compare the obtained
results for peak-hours to average values, the traditional LCA approach was also implemented. In this case,
all the hours of the year 2018 were considered. Accordingly, peak hours GWP values were compared with
the average, resulting in monthly results to highlight the seasonal variations.

The scope of this comparison is based on individuating the differences in the use of various resources
to meet the electricity demand in different time frames. A similar approach is followed in [28–30], but the
results are presented in order to show the link between electricity demand and carbon intensity and not
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to compare peak hour values with a fixed average. In [27], the aim is to determine the hourly time slot
where the highest CO2 intensity takes place throughout the year. This approach may hide the seasonality
between summer and winter, since the peak hour time slot differs from season to season. In this paper,
the hourly analysis enhances the differentiation of GHG emissions from peak hours and off-peak hours.

This paper bases its results on the data extracted from the Transparency Platform (TP) of the European
Network of Transmission System Operators for Electricity (ENTSO-E), as well as the GaBi R© Software
database. The software allows the carbon intensity of every source to be assessed, considering the electricity
produced as input. The related database is essential to differentiate the impact of each technology in
different nations, having variable country-based data in which the same power plant can have different
emission factors according to the country in which it is based.

The ENTSO-E TP database is based on hourly time periods. Hence, it is possible to determine the time
slots where peak consumption takes place. A critical review of the ENTSO-E TP from 2018 in [50] points out
a number of simplifications, but at the same time the review highlights that it is the single most important
data source for European researchers. For this study the consistency of the data is guaranteed, supported
by the fact they were compared, when possible, with the statistics from each national Transmission System
Operator (TSO). As a result, the most complete and available data were used for the analysis, referring to
the entire year 2018.

The databases available for the development of electricity grid mixes analysis have limitations that
hinder the accurate development of the model. For this reason, certain assumptions and hypotheses were
considered. Even if from the ENTSO-E TP, the data for hydro production are divided into categories such
as hydro pumped storage, hydro run-of-river and poundage, and hydro water reservoir; these were all
merged together in this work. The reference value for hydro power plants is the carbon intensity provided
by the database, which makes a mean between the different types of hydro technologies. The same
procedure was used to calculate the environmental impacts of wind power production, grouping onshore
and offshore wind only for Germany and the Netherlands (the two countries which have both technologies).
ENTSO-E shows data including solar thermal and solar photovoltaic electricity in the same box (i.e., Solar),
without any distinction. Thus, the model was developed incorporating the data in the Electricity from
photovoltaics GaBi R© Software model.

2.4. Life Cycle Impact Assessment (LCIA)

Life cycle impact assessment (LCIA) yields indicators that evaluate the product life cycle on
a functional unit basis, considering one or several impact categories. For the purpose of this study,
the impact category used to assess the potential environmental impact of the electricity production was the
global warming potential, measured in kg CO2-eq/kWh. Section 3 provides the results of the LCIA stage.

3. Case Study: INVADE H2020 Project Pilot-Sites Electricity Grid Mixes

3.1. INVADE Project Description

The methodology described in Section 2 was applied under the H2020 INVADE project to assess the
potential environmental impact of large-scale pilots integrating DERs and EVs, by means of a cloud-based
platform for the provision of flexibility services. Denominated Integrated electric vehicles and batteries to
empower distributed and centralized storage in distribution grids, this project belongs to the Low-Carbon Energy
call of the Horizon 2020 Work Program 2016–2017. This project is based on five pilot sites located in five
different countries, which are environmentally assessed in the following section.
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3.2. Overview of the Installed Capacity of Pilot Site Countries

The installed capacity represents the total amount of power in MW that is installed in a country.
It determines the resources the country has available to meet the demand, representing the number of
power plants that can be used for electricity generation in a targeted country. As can be seen in Table 2,
the targeted countries of the H2020 INVADE project have different installed capacities. These data
represent the percentage of power plants which can produce electricity in the country divided by source
used, and are not directly related to the power generation. For example, in Spain the maximum hourly
power request in 2018 was 42 GW, but the country has nearly 105 GW of installed capacity. This means that
even if the power plants which are run by natural gas represent the major share of the installed capacity
(29.3%), it does not necessarily mean that the highest share of electricity production in 2018 was from
natural gas, as determined in Section 3.3.

Table 2. Electricity installed capacity in the targeted countries for the year 2018.

Main Flexible Hydro Power Others

Bulgaria - (12,708 MW)
Lignite (33.7%)
Hydro (25.2%)
Nuclear (15.5%)

Pumped storage (6.8%)
Reservoir (14.2%)

Solar (8.2%)
Natural gas (6.1%)
Wind onshore (5.5%)
Others (5.8%)

Germany - (221,020 MW)
Wind (26.6%)
Solar (19.6%)
Natural gas (14.3%)

Pumped storage (4.2%)
Reservoir (0.5%)

Hard coal (11.4%)
Lignite (9.6%)
Hydro (6.5%)
Others (12%)

Netherlands - (30,531 MW)
Natural gas (57.6%)
Hard coal (14.5%)
Wind Onshore (11.5%)

Pumped storage (0%)
Reservoir (0%)

Solar (8.1%)
Wind Offshore (3%)
Waste (2.1%)
Others (3.2%)

Norway - (33,755 MW)
Hydro (93.2%)
Wind Onshore (3.5%)

Pumped storage (10.8%)
Reservoir (78.5%) Thermal power* (3.3%)

Spain - (104,975 MW)
Natural gas (29.3%)
Hydro (24.7%)
Wind Onshore (21.7%)

Pumped storage (5.4%)
Reservoir (18.22%)

Hard coal (9.1%)
Nuclear (6.8%)
Solar (6.4%)
Others (2%)

Source: ENTSO-E TP [51]. * The installed capacity data from Norway in ENTSO-E TP were not sufficient. More
detailed data come from [52].

3.3. LCIA: GWP Results

This section presents the results of the performed LCA. As mentioned in Section 2.3, the GWP impact
factors of each technology are dependent on the country they are based in. However, to frame the studied
context, Table 3 shows the average life cycle emission factors for electricity generation from the most used
technologies in Europe, according to Turconi et al. [43].

The values in Table 3 include upstream and downstream processes and thus all the steps involved
in the electricity generation, like the construction of the power plants and Operations and Maintenance
(O&M) procedures. The ranges of the values are wide, because the 167 case studies analyzed have
different system boundaries and methodologies [43]. Even so, the software used in this study has a specific
country-based database for each technology, conferring the results a significant precision. As it is possible
to see from Table 3, even renewable sources have non-zero GWP values. This is due to indirect emissions,
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especially related to the manufacturing of the components for the construction of renewable power plants,
which are taken into account in this study.

Table 3. Emission factors of power production technologies. Extracted from [43].

Energy Source GWP (kg CO2-eq/kWh)

Hard coal 0.66–1.05
Lignite 0.8–1.3

Natural gas, single cycle 0.61–0.85
Natural gas, combined cycle 0.36–0.59

Oil 0.53–0.9
Nuclear 0.003–0.035
Biomass 0.008–0.13

Hydropower 0.002–0.02
Solar photovoltaic (PV) 0.013–0.19

Wind 0.003–0.041

Two types of graphs (Figures 3–12), area and line plots, are presented in the following sections to
facilitate the comprehension of the results. Area plots, represented by odd Figures 3, 5, 7, 9 and 11,
show the GWP value of each resource used only during peak hours in the related country’s grid mix.
The outcomes are shown month by month and are compared with the average GWP value (represented
by a dotted line), which takes into account all the hours of the year. This is why the dotted line does not
coincide with the average of the values of the 12 months.

However, it is possible that resources such as hydro and nuclear, even though they have a great
share of the electricity production, could not appear in the graph because of their low carbon impact
factors (Table 3). Line plots, represented by even Figures 4, 6, 8, 10, and 12; correspond to the variation in
the percentage of use of the most representative sources during the year, compared with the monthly
peak hours GWP variations. All the previous listed figures were made with our own calculations and
estimations through MATLAB R©. All data sources have already been mentioned in the text, namely the
GaBi R© Software professional database and the ENTSO-E TP. Every energy source grouped under the
label “Others” was calculated in terms of carbon intensity in the same way as the other main sources.
Nevertheless, their weights were too low to be represented on the chosen plot typology, and for that
reason the results are merged in a single and more general group.

3.3.1. Bulgaria

The electricity demand of this southeastern European country during the year is mainly covered by
lignite and nuclear power, as explained in Table 4. The high percentage of hydro power capacity (Table 2)
is reflected in the consistent use of hydro power plants. Solar and wind power together represented just
5.35% of the total electricity production in Bulgaria in 2018. The total electricity produced during the year
was equal to 45.2 TWh.

Table 4. Percentage of resources used during peak and off-peak hours in Bulgaria [51].

Lignite Nuclear Hydropower Natural Gas Wind Solar Others

42.29% 34.78% 11.42% 4.26% 2.75% 2.60% 1.90%

Consequently, the GWP during peak hours was mainly based on lignite (Figure 3). The GWP during
peak hours was higher than the average from September to December because of higher use of lignite and
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a lower use of flexible hydro to cover the peak demand (+6.65% more on average). From Figure 4, it is
possible to see the direct correlation between the use of lignite and hydropower during peak hours and
the GWP. Hydropower and lignite are the only two represented resources because they were the only ones
with a significant variation in their usage throughout the year. When there was the possibility to use the
hydro reservoirs and the hydro pumped storage, the GWP decreased in comparison with the average.
The months in which the power production during peak hours was greater than the average showed
higher values of GWP. The reason is that nuclear power represents a huge and constant portion of the
base production (34.78% throughout the year), and the less extra power is needed, the less fossil fuels are
used to generate it. The two presented curves of lignite and hydro in Figure 4 have exactly the opposite
trends. April is a symbolic month, with the highest share usage of hydro and the lowest of lignite, leading
to the lowest GWP of the year (0.397 kg CO2-eq/kWh). The reasons behind this event are related to the
low power production in April and possibly to the abundance of water resources.

Figure 3. Monthly peak hours GWP compared with average through the year (dotted line) in Bulgaria.

Figure 4. Percentage use of resources throughout the year compared with monthly GWP in Bulgaria, both
related to peak hours.
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3.3.2. Germany

Germany has a national production mix which relies on different sources. Regarding the base load,
lignite and hard coal, respectively 24.46% and 13.72%, were the most used fossil fuels. The use of lignite
throughout 2018 was almost constant, as shown in Figure 5. Wind farms had the highest share of capacity
in the country and a total share of production of 20.63%, as presented in Table 2 and Table 5. Nuclear still
had a regular contribution (13.64%), while solar (7.83%) and biomass (7.63%) power plants surpassed the
use of natural gas (6.41%) in 2018. Hydropower accounted for just 2.81% of the total electricity production.
The total electricity produced during the year in the country was equal to 2183.6 TWh.

Table 5. Percentage of resources used during peak and off-peak hours in Germany [51].

Lignite Wind Hard Coal Nuclear Solar Biomass Natural Gas Hydro Others *

24.42% 20.63% 13.72% 13.64% 7.83% 7.63% 6.41% 2.81% 2.91%
* Others includes: coal gas derived, fossil oil, geothermal, other renewables, waste.

Figure 5. Monthly peak hours GWP compared with average through the year (dotted line) in Germany.

Figure 6. Percentage use of resources throughout the year compared with monthly GWP in Germany, both
related to peak hours.
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According to the LCIA, the GWP during peak hours was higher than the average only in February
(+5.2%) and November (+4.52%) (Figure 5). This was due to the highest percentages of the use of hard coal
(+29.15% in average) and natural gas (+26.1% in average) during the entire year, and also the higher use of
lignite in comparison with the other months. From Figure 5, April and May were the months with the
lowest GWP (−23.95%), because of the lower use of fossil fuels compared to the average. This strategy
was applicable considering that both months had peaks of demand much lower than the average, with the
power requested during peak hours being around 5.45% lower compared to the other months. This means
that the base power from nuclear power plants (which is almost constant throughout the year) had a more
important role than during the months in which the production was higher and so fewer fossil fuels had
to be used. It is interesting to look at solar and wind power trends: electricity production from solar power
was clearly higher during the summer months, while the wind production had its maximum in the winter
months (Figure 5). These two facts lead the peak hour GWP to be lower than the average for 10 out of
12 months. February and November, the two exceptions, saw a larger use of fossil fuels compared to the
other months.

3.3.3. The Netherlands

In the Netherlands, the use of natural gas for electricity production represented 67.85% of the total.
It was the most important resource affecting the GWP value. Nuclear power helped to cover a small
percentage of the base load (6.61%), while the lack of hydropower capacity influenced the electricity
generation strategy. The overall production percentages are presented in Table 6. The total electricity
produced during the year in the country was equal to 224.8 TWh.

Table 6. Percentage of resources used during peak and off-peak hours in the Netherlands [51].

Natural Gas Wind Nuclear Solar Biomass
67.85% 19.48% 6.61% 5.48% 0.58%

Through the analysis related to the ENTSO-E data [51], the yearly average value was 0.287 kg
CO2-eq/kWh. In the study performed by Moro et al. [44], the average outcome for the GWP was 0.558 kg
CO2-eq/kWh. The reason behind this difference lies in the fact that hard coal electricity production in the
Netherlands was not mentioned by the ENTSO-E TP for 2018. However, hard coal has still a considerable
percentage in the energy mix, as is notable in Table 2. This lack of data reduces the accuracy of the GWP
results, but not the effect of the other resources on peak hours. As is notable from Figure 7, hard coal is
not specified.

As can be seen in Figure 8, the GWP line follows the natural gas use curve. The valley formed by the
dotted line from March to June is linked to a similar one drawn by the natural gas curve. From April until
July, the amount of electricity produced through solar power plants during peak hours was higher than
the yearly average, resulting in an increase of +39.7% on average, affecting positively the GWP. The lowest
values for wind production corresponded to the highest values of the GWP (Figure 7), as in February,
when the production from wind power was 49.94% lower than the yearly average. The changes in the
use of resources through the year were limited, and this is why there were no major changes in monthly
GWPs. The Netherlands was the country with the lowest observed fluctuations in terms of GWP, being in
the range between 0.256 and 0.303 kg CO2-eq/kWh (respectively −10.9% and +5.6% in comparison with
the yearly average value of 0.287 kg CO2-eq/kWh). As already observed in the case of Germany, solar and
wind power had opposite concavities. When the availability of solar and wind power during peak hours
was higher than the average, lower values of GWP were obtained.
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Figure 7. Monthly peak hours GWP compared with the annual average (dotted line) in the Netherlands.

Figure 8. Percentage use of resources throughout the year compared with monthly GWP in the Netherlands,
both related to peak hours.

3.3.4. Norway

As mentioned in Table 7, Norway bases its electricity needs on hydropower. The high percentage of
water reservoirs and pumped hydro storage (87.93%) allows the Nordic country to manage the generation
in a flexible manner. Thanks to this, the GWP value related to the produced electricity was much lower
compared to the other studied countries, being around an order of magnitude less. Although it is beneficial
for the flexibility of the generation, Norway is a good example of a country in which pumped hydro is
not actually valuable because of the high presence of naturally charged reservoirs. The pumped storage
technology was just a small percentage compared with the conventional hydropower (see Table 2). Its use
is historically based in the months of June and July [53]. Regarding the case study of 2018, a greater use in
May was also observed. PHS is used to store the electricity that comes from conventional thermal power
plants, leading to higher GWP values during those months, as presented in Figure 9. The total electricity
produced during the year in the country was equal to 146.8 TWh.

Table 7. Percentage of resources used during peak and off-peak hours in Norway [51].

Hydro Reservoir Hydro Run-of-River Wind Onshore Natural Gas Others

87.93% 6.87% 2.32% 2.10% 0.77%
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Figure 9. Monthly peak hours GWP compared with average through the year (dotted line) in Norway.

Figure 10. Percentage use of resources throughout the year compared with monthly GWP in Norway, both
related to peak hours.

According to Figure 9, what was not produced with reservoirs and pumped storage was mainly made
by natural gas, wind, and waste power plants. This is why the GWP line follows the “Others” resources
use curve for the majority of the year 2018. Whenever there was more production from waste (+42.5% in
average) and natural gas (+18.9% on average), the GWP was higher than the average (Figure 10). Curiously,
the months of May, June, and July were also the ones with the lowest power generation during peak hours.
During the month of August, the amount of power required for the nation’s needs was close to the yearly
average, but fewer thermal power plants were used while hydropower plants were even more exploited
than usual, leading August to be the month with the lowest GWP of the year, with a value of 0.0172 kg
CO2-eq/kWh. Nevertheless, the monthly changes in the use of all the resources was always lower than 2%
and this is why also the GWP did not differ substantially.

3.3.5. Spain

Spain has several different resources with a great share in the electricity production, like Germany.
Natural gas and hard coal were the fossil fuels used at higher rates, with percentages of 20.91% and
13.29% respectively. Nuclear power plants accounted for 22.46% of the total yearly electricity production,
and wind onshore power represented a consistent share (20.21%). Solar production was also present
during night hours because of some concentrated solar power plants with molten salts. Table 8 shows the
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resources used during the year in descending order. The total electricity produced during the year in the
country was equal to 242.7 TWh.

Table 8. Percentage of resources used during peak and off-peak hours in Spain [51].

Nuclear Natural Gas Wind Hard Coal Hydro Solar Lignite Biomass Others *

22.46% 20.91% 20.21% 13.29% 13.22% 4.69% 1.28% 1.25% 2.32%
* Others includes: fossil oil, other renewables, and waste.

Figure 11. Monthly peak hours GWP compared with average through the year (dotted line) in Spain.

Figure 12. Percentage use of resources throughout the year compared with monthly GWP in Spain (both
related to peak hours).

The dependence on fossil fuels resulted in a high GWP in Spain. Figure 11 demonstrates that natural
gas and hard coal were the main drivers of a high GWP, and the less they were used, the lower the indicator
was. Figure 12 shows that during the month of March there was a minimum of the GWP value (0.157 kg
CO2-eq/kWh, due to a high production of wind power which reached 30% of the share of production and
at the same time an increase in the use of hydro storage and solar power plants. The two maximum GWP
points recorded in September and November, both 0.341 kg CO2-eq/kWh, were due to a decrease in solar
electricity production and a consequential increase of fossil fuels to meet the demand needs (Figure 12).
Spain was the analyzed country with the highest fluctuations among the different months of the year.
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March had the lowest GWP, being 44.2% lower than the average value. On the contrary, September and
November had the greatest GWP values, specifically 21.3% higher than the annual average value of
0.281 kg CO2-eq/kWh.

4. Discussion

The effects of temporal variability on GWP values confirmed their importance in this study. Impact
indicators can differ substantially depending on the amount of power produced, the season, and the
resources used throughout the year. The expectation to obtain higher GWP values during peak hours in
comparison with the annual average value was not completely confirmed here. In fact, many factors can
cause variations in the GWP during different periods, such as the marginal technology used in peak hours
and the baseline technology, which can make a difference in the overall GWP value. For this reason, it is
important to consider not only economic savings but also environmental aspects when defining DR and
flexibility strategies.

During low-demand times (e.g., night hours), the power requested is lower than during peak hours,
and consequently it is logical that the GWP value should be lower than the average, because less resources
are used to produce the electricity. In contrast, it should be noted that the comparison was always made
taking into account the functional unit equal to 1 kWh. Hence, the time slots were not compared with
their absolute production values but with relative ones, normalized to 1 kWh. For example, an hour with
a power generation of 2000 MW can have a higher GWP value than a 5000 MW one, since it depends on
the resources used to meet the demand. In summary, GWP is usually higher not because more electricity
is produced, but because more fossil fuels are used to reach the maximum production.

Table 9 summarizes the results obtained with the traditional LCA and PH-LCA approaches in each
specific country. Countries with a consistent share of flexible hydropower in their capacity portfolio such
as Bulgaria, Norway and Spain mainly used this resource to meet the peak hours demand because of its
rapidity in producing electricity and its low marginal cost. As a result, lower GWP figures were obtained
compared to the yearly average. During the months in which the GWP was higher than the comparable
value, it was demonstrated that the more conventional power plants were powered to reach the demand
during the spikes of production, because of nationwide lacks in rainfall and water shortages.

Table 9. Summary of results between LCA and peak-hourly life cycle assessment (PH-LCA).

Approach Country/
Indicator

Bulgaria
(kg CO2-eq/kWh)

Germany
(kg CO2-eq/kWh)

The Netherlands
(kg CO2-eq/kWh)

Norway
(kg CO2-eq/kWh)

Spain
(kg CO2-eq/kWh)

Traditional
LCA

Yearly average
GWP 0.617 0.476 0.287 0.0287 0.281

Attributional
PH-LCA

Minimum GWP
on PH (month)

0.397
(April)

0.362
(April)

0.256
(April)

0.0172
(August)

0.157
(March)

Maximum GWP
on PH (month)

0.717
(October)

0.502
(February)

0.303
(August)

0.0335
(May)

0.341
(September)
(November)

PH Resources
Lignite
Hydro

Solar
Lignite
Wind

Natural gas
Solar
Wind

Hydro
Natural gas

Wind
Natural gas
Hydro

Average – PH
difference [%] −35.7% and +16.21% −23.9% and +5.2% −10.9% and +5.6% −40.1% and +16.7% −44.2% and +21.3%

Germany and the Netherlands mainly had their peak hours production during times in which wind
and/or solar power were efficiently running, also leading to lower GWP values. Particularly in Germany,
the good alternation of sunny and windy days, the first ones during the summer months and the second
ones during winter, were advantageous for the national electricity grid. Regarding the Netherlands,
the almost constant usage of natural gas to match the national electricity request throughout the year did
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not lead to substantial changes in the monthly GWP values. In addition, countries which do not have the
geographical morphology to host PHS plants could investigate the potential of centralized and distributed
energy storage to shave the generation electricity curve and provide flexibility to the electricity grid.

The results of this study show that by considering the environmental impact of electricity generation,
flexible resources such as EVs, water boilers, or batteries can be scheduled according to carbon intensity,
reducing their environmental impacts, which is in line with the findings of Baumann et al. [31]. At present,
DR strategies and flexibility services are implemented following price signals, for the purpose of achieving
economic savings for the end-user. However, if decarbonization is the main objective of these initiatives,
flexibility potential should be environmentally assessed. By implementing peak-shaving or load-shifting
strategies from peak hours to off-peak hours, the flexibility potential can be quantified in CO2 savings,
using the maximum peak-hourly GWP value and the average GWP for the same functional unit. According
to Table 9, the flexibility potential was around 16% in Bulgaria and Norway, greater than 5% in Germany
and The Netherlands, and 21.3% in Spain, being the country with the maximum flexibility potential.

The stability of the EU energy sector can be confirmed by looking at the general degrowth in the
electricity prices according to the latest report of the EU Agency for the Cooperation of Energy Regulators
(ACER) [54]. This trend has caused a reduction in electricity generation peaks and valleys. Nevertheless,
the authors do not think that this would be an obstacle for the exploitation of large-scale batteries and
other storage systems (e.g., PHS). On the other hand, the current EU Emissions Trading System does not
lead to higher prices for fossil power plant owners [55], which is why gas turbines are still a competitive
and trusted choice to cover the peak demand in some countries.

The presented study is replicable in other countries, following the same methodology and using
statistical data sources from electricity generation. The only obstacle may be the lack of hourly data
regarding the national electricity generation and missing data about the different power plants, especially
their carbon intensity per kWh produced. Life cycle inventory data sourcing has been complex since
ENTSO-E is the only platform available for collecting data from national grid mixes on an hourly
basis. Besides, the aggregation between data coming from ENTSO-E and data from the GaBi R© Software
professional database could add uncertainty to these results, adding limitations to the study. Furthermore,
the traditional LCA approach was implemented in order to compare the environmental impact of peak
hours’ electricity production with the general trend, obtaining a yearly average GHG value. Other
methodologies using monthly, daily, or off-peak comparisons could be further developed in the next steps
of this analysis in order to maximize the flexibility potential accuracy in optimization models.

Regarding the methodology, prior literature review states that time-varying environmental assessment
and LCA approaches are the methods that should be considered when assessing the GHG emissions from
the electricity sector [18,26,31,34], aligned with the methodology presented in this publication. However,
uncertainties in LCA initiatives may affect strategic plans and government policies, as stated by [56]. LCA
models should resemble emissions in the real world. In this paper, data were gathered from the statistical
database of the ENTSO-E, which collects data directly from the different TSOs, and ensures the quality
and validation of data coming from real sources, according to [50]. Additionally, databases used under
the LCI for electricity modeling in this research paper (i.e., GaBi R© Software Professional Database and
ecoinvent 3.1) are validated by external entities and publications [19,45].

5. Conclusions

This study proposed a general peak-hourly LCA methodology to environmentally assess electricity
production by calculating the carbon footprint based on GWP values throughout one year of study. This
methodology can be implemented using statistical sources of hourly electricity production and energy
sources databases. To develop the case study, the ENTSO-E TP was considered, which is currently the
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database with most reliable data in electricity generation. Then, the proposed methodology was applied to
all the pilot sites of the INVADE H2020 project that are integrating DERs and flexible loads to provide
flexible services. The study is based on an hourly analysis to ensure that peak hours can be assessed in
terms of GWP. This paper presented the results of the GWP impact category of five different pilot-site
countries belonging to the project. Bulgaria was the studied country with the highest yearly average
GWP (0.617 kg CO2-eq/kWh), led by lignite-based power plants but with a hydro power potential widely
used to meet the peak demand. Germany showed a high potential in renewable use during peak hours,
but the base load was still covered by fossil fuels like lignite and hard coal, leading to a yearly average
GWP of 0.476 kg CO2-eq/kWh. The Netherlands had the lowest fluctuations in terms of monthly GWP
during peak hours, being in the range between 0.256 and 0.303 kg CO2-eq/kWh (respectively -10.9% and
+5.6% in comparison with the yearly average value of 0.287 kg CO2-eq/kWh), displaying the use of the
same strategy in the electricity generation mix for both peak and base loads. Norway had high relative
but limited variations, considering the changes in the monthly GWP affected the yearly average value
(0.0278 kg CO2-eq/kWh) in a scale of 10-3 kg CO2-eq/kWh and so the peak hours had a limited influence
on the environmental impacts of electricity production in the country. In Spain, the monthly GWP changed
substantially throughout the year, especially in September when the value increased by +21.3% compared
to the yearly average (0.281 kg CO2-eq/kWh) and in March when the carbon intensity during peak
hours had a difference in percentage of −44.2% compared to yearly average. The differentiation between
resources used in peak hours and off-peak hours was highlighted and discussed, helping to understand the
overall GWP value. We determined that seasonality is an important factor in terms of resources utilization
and thus in GWP. The comparison between peak-hourly LCA and traditional LCA results proved that the
average approaches fell short in quantifying the environmental impacts of time-varying systems, as is the
case of electricity production.

Using time-varying carbon prices based on temporal carbon intensity variations could be a good
approach for designing carbon pricing strategies, enhancing the transition towards a low-carbon energy
system. When defining and implementing DSM strategies, not only economic benefits should be
considered, but also the environmental impacts or savings thanks to load shifting and peak-shaving.
Flexibility should be quantified in terms of carbon intensity, since not all countries use the most polluting
resources as natural gas or coal for covering peak-hours demand.

Other aspects could be investigated further, such as analyzing the potential environmental impacts of
electricity grid mixes, but by adding other indicators apart from GWP, like human health impact, resource
depletion, and ecotoxicity. Additionally, the integration of centralized energy storage (CES) in the grid
could be environmentally assessed by means of a consequential LCA, analyzing the shift in the generation
profile, conceivably shifting the peak hours in the curve, developing a new scenario where electricity
production and consumption do not have the same profile, but also considering the environmental impact
of the CES life cycle. The same approach could be applied to assess the possible variations of renewable
sources power output, considering uncertainty. Furthermore, the optimization in the use of flexible
hydropower to reduce the environmental impacts of the electricity generation is a topic of wide interest
that could be further studied.
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