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Abstract: A study combining wind power with pumped hydro energy storage for the Jordanian
utility grid is presented. Three solvers of the Matlab optimization toolbox are used to find the optimal
solution for the cost of energy in a combined on-grid system. Genetic algorithm, simulated annealing
(SA), and pattern search (PS) solvers are used to find the optimal solution. The GA solution of
0.0955388 $/kWh is economically feasible. This is 28.7% lower than the electricity purchased from the
conventional utility grid. The discounted payback period to recover the total cost is 10.271 years.
The suggested configuration is shown to be feasible by comparing it to real measurements for this
case and a previous wind-only case. It is shown that the indicators of the optimal solution are
improved. For instance, carbon dioxide emissions (ECO2) and conventional grid energy purchases are
reduced by 24.69% and 24.68%, respectively. Moreover, it is shown that the benefits of adding hydro
storage, combined with increasing the number of wind turbine units, reduces the cost of energy of
renewables (COERenewables). Therefore, combining hydro storage with wind power is economically,
environmentally, and technically a more efficient alternative to the conventional power generation.

Keywords: pumped hydro storage; wind farm; simulated annealing; genetic algorithm; pattern
search; Matlab optimization toolbox; economic and environment feasibility

1. Introduction

Hydro and wind powers are promising renewables. However, due to the stochastic nature of
the wind power, it is more efficient and reliable to combine it with another suitable energy system to
provide a stable operation for large utility grid systems. Pumped hydro storage (PHS) is a suitable
energy storage system that can be hybridized with wind power in order to overcome its variability and
provide real-time load following. Hydro power makes up around 19% of electrical power generated
worldwide [1]. It is one of the oldest methods of renewable energy generation [2]. Hydropower
originates from the sun, as its water cycle is driven by solar radiation. Approximately 22% of incoming
solar energy is captured to form precipitation, which is the source of hydropower [3]. Hydropower
stations can be categorized based on their output power. They are classified as small, mini, or micro
types when the maximum output power is 15 MW, 1 MW and 100 kW, respectively [4]. In this
paper, the maximum output of the PHS exceeds the small type, therefore, a large type is added to the
aforementioned category.

PHS plants are mainly used to serve demand during the peak load hours [3]. When wind
generation exceeds demand, excess power can be stored by pumping water into the upper reservoir of
the PHS system. Conversely, when the load exceeds the wind generation, the stored hydro energy can
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be used to supply the power deficit. In fact, PHS plants are considered to be one of the best utility-scale
energy storage solutions due to their ability to supply power in just one to three minutes [3].

In the published literature, the operation of the grid-connected PHS, combined with wind power,
has been extensively investigated. In [5], the authors suggested using pumped hydro storage as an
operating reserve ancillary service in order to mitigate the problems related to wind farm integration
with the grid. A probabilistic unit commitment using Lagrange relaxation was suggested to find
the optimal scheduling of the thermal generators when wind power was integrated into the system
while considering the uncertainty of the wind speed. It was found that pumped hydro storage could
be effectively employed to reduce operating and flying reserve costs. In [6], PHS application in
combination with a wind farm to increase profit in electricity markets was investigated. The results
showed that the revenue was a function of the type of hydro storage used and market characteristics.
The revenue increased by up to 11% by employing PHS. The authors in [7] proposed a deterministic,
dynamic programming, long-term generation expansion model to find the optimal generation mix,
total system cost, and total carbon dioxide emissions of a PHS system connected to a wind farm.
It was found that in order to gain financial benefit from building the capital-intensive PHS, the
exogenous market costs had to be very strong. In [8], a novel coordination strategy of a wind farm
combined with PHS for a faster, reliable self-healing process in the grid restoration phase was proposed.
The problem was formulated as a two-stage adaptive robust optimization and solved using the
column-and-constraint generation (C&CG) decomposition algorithm. The results proved that the
PHS could increase system reliability and reduce wind power curtailment. A combinatorial planning
model in order to maximize wind power utilization and reduce wind energy curtailment was studied
in [9]. A posterior multi-objective (MO) optimization approach was proposed to deal with wind energy
curtailment cost and the total social cost. The obtained results introduced an optimization approach
capability and efficiency regarding the planning of renewable-based power systems. In [10], a sizing
method for a wind–hydro system in the Canary Islands was proposed and its economic benefits
for the island’s electrical system were investigated. The contribution of this wind–hydro system to
satisfying electricity demand was 29% higher than wind-only, and the electrical energy generation cost
was reduced by 7.68 M€/year. In [11], the authors presented an improved probabilistic production
simulation method to facilitate the cost–benefit analysis of PHS. A case study on the IEEERTS79 system,
which was used to demonstrate the effectiveness of the proposed simulation method, helped the
industry move toward high penetration of the integrated wind energy power system.

In order for sustainable power generation to become universally adopted so that its planetary
benefits are realized, the economic and technical designs of these power plants must be locally
appropriate and optimal. This paper addresses this fundamental challenge for design engineers and
managerial decision-makers.

The scientific/technical problem that is addressed and solved in this case study is as follows.
In order to solve the global warming and cost of energy problems contributed to by electric power
generation, local renewable resources must be utilized, combined, and optimized in their overall
system design. This paper addresses these technical problems in a case study of combining wind
and hydro power generation in Jordan as a specific location. In addition, this paper investigates the
financial, environmental, and technical feasibility of wind farming and pumped hydro energy storage
in an oil-importing country to reduce the energy-producing burden. Three heuristic optimization
techniques are used from the Matlab optimization toolbox to verify the system design. Results show
that the proposed system may be notably beneficial for Jordan. The same methodology can be applied
in countries where this is relevant, such as Panama, a country which one of the authors visited for
this purpose.

The fundamental problem of global sustainable energy production is the optimal use of locally
specific renewable energy sources, such as wind and hydro energy resources, as laid out in this paper.
In other words, this global problem must be solved locally everywhere. This is an engineering design
optimization, which usually requires hybrid power plants. This paper presents a detailed case study
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of how this engineering problem is solved. In the process, it also sheds light on our concept of local
solutions to a global problem. This important concept is often lost on countries and companies that
attempt to build sustainable power generation projects.

In this paper, the Matlab optimization toolbox was used to find the optimal solution in terms of
technical, environmental, and economic considerations. Moreover, genetic algorithm (GA), simulated
annealing (SA), and pattern search (PS) techniques were used from the above toolbox to solve the
problem described in this paper. Furthermore, it was shown that the objective function, cost of energy,
of the on-grid, which was penetrated by the hydro–wind system (COEPS) was optimally minimized.
The economically feasible solution was considered to find detailed solutions. This work aims to
help decision-makers find the best technical solutions before actual implementation of the proposed
energy configuration.

2. Description of the Proposed System

This paper discusses the combination of a wind and hydropower system (See Figure 1), which is
integrated with the distribution grid in the country of Jordan, as a case study in an oil-importing country.
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Figure 1. On-grid hydro–wind energy schematic.

The location was the same as one investigated in [12], where an on-grid wind power system was
studied in Aqaba, Jordan. However, in this paper, an on-grid wind farm combined with a PHS station
was investigated. Therefore, some data are the same, while others are updated for this more up-to-date
study. The location was considered to be geographically suitable to construct a PHS station.

Artificial intelligence techniques (GA, SA, and PS) provided by the Matlab optimization toolbox
were used to find the optimal solution of the objective function (COEPS). Then, based on the best
fitness, many indicating corresponding functions were computed, such as the wind and hydro fraction
(WHf), grid purchases, the footprint of the renewables, and carbon dioxide emissions (ECO2). This
procedure aimed to help design engineers replicate the same criteria to find optimal solutions for other
system configurations to be adopted based on these technical studies and negotiations between electric
utilities and investors. Economic, technical, and environmental feasibility impacts were also studied.

2.1. PHS Station Data

The information that was specified for the pumped hydro storage plant to be accurately modeled
is shown in Table 1. First, the roundtrip efficiency referred to the ratio of the energy out to the energy
in over a period of time [13]. It is difficult to separately measure the charging and discharging energies,
therefore, manufacturers usually determine the round-trip efficiency and consider it to be the charging
efficiency by assuming 100% discharging efficiency. Many authors have discussed this issue in the case
of battery systems. Thus, the charging efficiency was set to be equal to the round-trip efficiency, and
the discharging efficiency was assumed be in agreement in [14,15].
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Table 1. Values of parameters used for the pumped hydro storage (PHS) station.

Parameter Unit Value

Lifetime Years 50 [16]
Usable state of charge [1] % 85
Roundtrip efficiency (ζ) % 85 [17]

Capital cost $/kW 1651.04
Operation and maintenance cost (OMC) (%/Year of capital cost (CC)) 1.5

Gross head m 50
Mean water depth m 15

Second, the usable state of charge (SOC) [1] referred to the ratio of the usable energy that was
taken to the total energy of the PHS. In other words, the usable SOC was the energy left in the upper
reservoir compared with the amount of energy in a full reservoir. This gave an indication into how
long the PHS station could provide energy before a refill. In this study, it was assumed that a minimum
stored energy should remain, and this value was the complement of the usable SOC. The usable SOC
was assumed to be the same as the round-trip efficiency. Third, an initial PHS stored energy in the
upper reservoir was assumed [18]. The aforementioned parameters helped to determine the PHS
power generation capacity in kW, which could be used to supply the load as needed. This capacity
value was sized using the GA, SA, and PS of the Matlab optimization toolbox. The capital cost of the
PHS had an average value of 1651.04 $/kW [16]. The operation and maintenance costs (OMC) were
taken as percentages of the capital cost (CC) [16]. Table 1 shows the values that were assumed and
considered for the PHS plant. These plant data were used to compute the hourly energy generated.
There was an approximate ratio of ten between the rated power (in kW) and energy (in kWh) of the
PHS station, as stated in [19].

2.2. Wind Speed and Probability Distribution Function

Wind speed can change rapidly in any region. Its variation depends on several factors, such
as the surface and the local weather. Appropriate predictions of wind speed in a specific area are
necessary for wind power and energy estimations in that area. One of the models for characterizing
the wind power is a cubic function of the wind speed. Therefore, a small error in the prediction of
wind speed leads to huge variations in the wind energy estimation. Various methods are used to study
the characteristics of wind speed. Weibull and Rayleigh distributions are the most preferred methods,
as they are flexible and easy in terms of parameter determination.

The focus in this paper was on the Rayleigh distribution, which is a special form of the Weibull
distribution with a shape factor that is always equal to two. In the Rayleigh distribution, the mean
wind speed is sufficient to determine the wind characteristics. The Rayleigh distribution function
(fR(v)) is given by Equation (1) [20,21].

fR(v) =
(
π
2

)( v
v2

a

)
exp−

[
π
4

( v
va

)2
]

(1)

where va is the average wind speed in a specific area in (m/s). The wind speed logarithmic law shown
in Equation (2) was used to model the variation of wind speed due to the difference in height between
the anemometers of the metrological station and the hub of the proposed wind turbine. In addition, it
considered the terrain roughness between two altitudes [12,22].

v
v0

=
ln(H/z0)

ln(H0/z0)
(2)

where v0 is the wind speed corresponding to the height (H0) and Z0 is the roughness coefficient. A case
study was conducted in Aqaba, which is the free Trade Area in Jordan. The wind speed was measured
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in a specific location using anemometer installed at 45 m above ground level, in which the output data
was taken on a monthly average basis. Then, Rayleigh distribution was used to obtain hourly data, as
shown in Figure 2. The roughness factor of the logarithm used for this case was 0.03 to adjust for the
wind speed of open terrain areas [22]. Also, the hub height of the proposed wind turbine was 80 m
(Table 2) which was also considered in the logarithm. The wind speed-based Rayleigh distribution
function in Aqaba for twelve months is shown in Figure 2.
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Table 2. Manufacturer information of a C96–2.5 MW wind turbine.

Turbine

Manufacturer USA

Power

Rated power 2.5 MW
Cut-in wind speed 4.0 m/s
Rated wind speed 12.5 m/s
Cut-out wind speed 25.0 m/s
Survival wind speed 70.0 m/s

Rotor

Diameter 96.0 m
Swept area 7238 m2

Number of blades 3
Maximum rotor speed 15.5 U/min
Tip speed 78 m/s
Type 46.7
Material Fiberglass
Power density 345.4 W/m2

Gearbox

Type Spur
Stages 2.0

Tower

Hub height 80.0 m
Type Steel tube
Shape conical
Corrosion protection painted
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Other information that was determined for the wind farm to be precisely sized is shown in Table 3.
The financial input parameters were the same as the ones described in the wind-only investigation [12].
The project lifetime was assumed to be 50 years. Therefore, the wind turbine will be replaced twice,
with a cost that was assumed the same as the capital cost.

Table 3. Lifetime and spacing parameters of the wind farm.

Parameter Unit Value

Life-time per unit Years 20
Row spacing of the farm (RS) m 384

Column spacing of the farm (CS) m 672

The geographical area of the wind farm (AWF) was computed using Equation (3). L and W are the
dimensions of the wind farm, which was considered to have a rectangular shape. For the row spacing
(RS) and column spacing (CS) values shown in Table 3, Equations (4) and (5) were used to calculate L
and W.

AWF = L×W (3)

L = CS(Ncol − 1) + Dr (4)

W = RS(Nrow − 1) + Dr (5)

where Dr, Nrow, and Ncol are the rotor diameter, number of rows, and number of columns, respectively.
These helped to compute the maximum and minimum wind areas, i.e., the Amax and Amin. A footprint
cap limit of 20,000 Dunam was considered for the on-grid wind hydro energy system.

2.3. Load Demand Hourly Data

The load demand hourly values of Aqaba, Jordan in 2017 were prepared after tailoring the
supervisory control and data acquisition (SCADA) demand values in 2016 used in [12]. They were
obtained from the National Control Center of the National Electric Power Company, Jordan. A
percentage growth of 6% for a year is usually used in electric utilities in Jordan to obtain the annual
load demand for the following year, therefore, in this paper, the hourly load values in 2017, as shown
in Figure 3, were obtained by applying this percentage.
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The minimum, maximum, and mean load demand values were 27.295 MW, 132.270 MW, and
85.073 MW, respectively, as shown in Figure 3.

3. Mathematical System Formulation

3.1. Modeling of the Hydro Station

The priority was to satisfy the load from the wind farm. If the wind power was not sufficient, then
energy deficit should be covered by the PHS station and, lastly, the energy purchased from the utility
grid. The Matlab code had the target of satisfying the entire load. Three cases were considered. First,
the load was satisfied by the wind farm, and if there was excess wind power and the reservoir was full,
the generation of the hybrid renewable energy system came only from the wind power plant. Second,
the load was satisfied by the wind farm, and there was excess wind power and the reservoir was not
full. Thus, we computed the excess wind power that could charge the PHS plant by comparing the
excess wind power value to the rated capacity of the PHS plant.

Third, when the generation of wind farm was less than what was required by the load demand,
we checked the availability of the PHS plant for this power deficit. Moreover, the PHS minimum
energy storage capacity was set, which was not exceeded during the discharge.

Once the rated power of the hydro station, Prated, in kW was optimized, the energy in kWh, Wrated,
was estimated based on the assumption made in Section 2.1. Then, the potential energy (in J/m3),
WJ, and (in kWh/m3), WkWh, of water in the upper reservoir were computed using Equation (6) and
Equation (7), respectively.

WJ = ρwatergH (6)

WkWh = 2.78× 10−7WJ (7)

where ρwater is the density of water (1000 kg/m3), g is the gravitational acceleration (9.81 m/s2), and H is
the actual head of the PHS station [12].

Then, the volume of the water in the upper reservoir (in m3), Vwater, was computed using Equation
(8). At this point, the area required for the PHS station, APHS, was computed using Equation (9) for a
given mean depth, D [12]. Furthermore, Equation (10) was used to compute the water flow (Fwater) in
the pipeline in (m3/s) [23].

Vwater =
Erated
ηWkWh

(8)

APHS =
Vwater

D
(9)

Fwater =
Prated
ηHg

(10)

3.2. Modeling of the Wind Turbine Power Curve

The wind turbine output power model can be typically presented in two main regions. Region 1
exists between the cut-in speed [1] and the rated wind speed (VR), while Region 2 exists between VR

and the cut-out wind speed [6], as shown in Figure 4. This shows the ideal model representation of a
wind turbine and the corresponding main regions.

To convert the hourly wind speed values, obtained before using Rayleigh distribution, into hourly
output wind turbine values, the mathematical model in Equation (11) is used to model Region 1 shown
in Figure 4. PR is the rated power generated by a wind turbine. Further, the corresponding A, B and C
parameters are given in Equations (12)–(14) [9,24,25]. This model is different from the ones described
in [12]. The output power in Region 1 runs smoothly between VI and VR with no protrusions at the
cut-in value, as shown in the models described in [12], see Figure 5. This will result in an accurate
computation of the output power extracted from the wind farm. This leads to precise computations in
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the output wind power and energy and thus in the number of units sizing, geographical footprint,
economic and environmental indicators.

P(v) =

 PR
(
A + Bv + Cv2

)
, VI ≤ v ≤ VR

PR, VR ≤ v ≤ Vo

 (11)

A =
1

(VI −VR)
2

[
VI(VI + VR) − 4VIVR

(VI + VR

2VR

)3]
(12)

B =
1

(VI −VR)
2

[
4(VI + VR)

(VI + VR

2VR

)3
− (3VI + VR)

]
(13)

C =
1

(VI −VR)
2

[
2− 4

(VI + VR

2VR

)3]
(14)
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𝐴 =
1

(𝑉𝐼 − 𝑉𝑅)2
[𝑉𝐼(𝑉𝐼 + 𝑉𝑅) − 4𝑉𝐼𝑉𝑅 (

𝑉𝐼 + 𝑉𝑅

2𝑉𝑅

)
3

] (12) 

𝐵 =
1

(𝑉𝐼 − 𝑉𝑅)2
[4(𝑉𝐼 + 𝑉𝑅) (

𝑉𝐼 + 𝑉𝑅

2𝑉𝑅

)
3

− (3𝑉𝐼 + 𝑉𝑅)] (13) 

Figure 5. Output wind power of a C96–2.50 MW wind turbine.

3.3. Objective Function

The objective function in this study was selected to be the cost of energy of the penetrated system
(COEPS) to reflect the price of the energy supplied by the on-grid hybrid wind hydropower system, as
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designed and sized to cover the load demand shown in Figure 3. It was computed by dividing the
system’s cost by the system’s absorbed energy, as shown in Equation (15) [26].

COEPS =
System′s cost

System′s absorbed energy
(15)

The system cost was computed by first constructing nominal and discounted cost cash flows for
the project lifetime, i.e., 50 years. The nominal cash flow included the capital cost (CC), the replacement
cost [22], the operation and maintenance cost (OMC), and the salvage cost (SC). These costs were
discounted for the present in the discounted cash flow that represented the total current cost (TCC) of
the renewable power system. The system cost calculation criteria are described in detail in [26]. The
wind farm financial parameters are described in detail in [12]. The cost parameters of the PHS station
are given in Table 1. The cost of the energy from the utility grid had the last priority to satisfy the
load demand.

Thus, an economic comparison with one hour time steps was done to satisfy the load demand in
Figure 3. However, there were priorities built into the design code to satisfy the load demand; the
wind farm first, then the PHS plant, and, lastly, the necessity to purchase energy from the grid if the
load was still not satisfied. Moreover, the number of wind turbines (WTs) was computed based on the
rated power, as shown Figure 5.

3.4. Indicators of the Objective Function

There are technical, economic, and environmental indicators that were computed based on the
optimal value of the COEPS. These included the wind and hydro fraction (WHf), as shown in Equation
(16), and carbon dioxide emissions (ECO2).

WH f =
Renewable generation

System′s absorbed energy
(16)

The ECO2 was computed by summing up the hourly multiplied grid energy purchases with a grid
emission factor of 583.866667 gCO2/Wh.

4. Optimization Toolbox of Matlab

The optimization toolbox in Matlab is a collection of functions that implement Matlab’s numerical
capability and computing environment. This toolbox provides functions to find parameters which
minimize or maximize objectives to satisfy specific constraints. Therefore, the optimal solutions of
continuous and discrete problems can be obtained, tradeoff analyses can be achieved, and optimization
design tasks can be performed using this toolbox. In addition, parameter estimations and tuning can
be done using this toolbox. Moreover, solvers for linear programming (LP), quadratic programming,
nonlinear programming (NLP), constrained linear least squares, nonlinear least squares, and nonlinear
equations are included in this optimization tool box [27]. In this paper, the genetic algorithm
(GA), simulated annealing (SA), and pattern search (PS) optimization methods were used from the
Matlab toolbox.

GA, which is a search technique based on a principle of biological genetics and natural selection,
allows a composition of many individuals to evolve under specified selection rules to a state that
maximizes fitness under a specific objective function.

As a Matlab tool, GA is a powerful tool capable of providing robust approximation for systems
that may be subject to uncertainties [28,29]. Its research mechanism consists of the use of candidate
solutions represented in a binary form, called chromosomes. Several genetic operators, such as
crossover, mutation, and inversion, are used to adapt and fit the generated population of chromosomes
in each research step [29].
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The flow of the genetic algorithm can be summarized by the following steps [30].

• Create initial population (usually a randomly generated string);
• Evaluate all the individuals (apply some function or formula to the individuals);
• Select a new population from the old population based on the fitness of the individuals and the

required objective function;
• Apply some genetic operators (mutation, crossover, and inversion) to the population members to

create new individuals;
• Evaluate the newly created individuals based on the required objective function.

Repeat the last three steps until the stopping criteria has been satisfied, where a certain fixed
number of generations is obtained.

In summary, the GA toolbox has four main modules: The optimization problem definition module,
the variables setting module, the generation of the initial population module, and the evolution module.
These modules interact with each other by exchanging information that enables the operation of the
algorithm. Before running the optimization algorithm, it is necessary to characterize the optimization
problem. Then, the type and the representation of the variables used by the algorithm must be defined.
GA works directly with real variables or with codified variables. Thus, depending on the type of
variable defined by the problem and the type of representation used by the GA, there is a necessity for
coding/decoding to pass from the actual workspace to the GA workspace.

Moreover, pattern search (PS), i.e., direct search or derivative-free search, is one of the Matlab
optimization methods used to optimize functions that are not continuous or differentiable. Optimization
attempts to find the best-match solution with the lowest error value in a multidimensional analysis
space of possibilities [27]. Furthermore, simulated annealing (SA) is a Matlab toolbox method used
to solve unconstrained and constrained optimization problems [31,32]. The models of this method
simulate the heating process of the materials. At each iteration step of the simulated annealing
algorithm, a new point is randomly generated. The distance of the new point from the current point
is based on a probability distribution with a scale proportional to the temperature. An annealing
schedule is selected to systematically decrease the temperature as the algorithm proceeds. As the
temperature decreases, the algorithm extends its search to finally reach an optimal solution. The SA
algorithm consists of two main options, namely, “AcceptanceFcn” and “TemperatureFcn”. The first
option accepts the worst case in order to achieve a global solution for the desired problem. The second
option selects the suitable algorithm uses to update the temperature. Two stopping criteria are used
for the SA algorithm, which are function tolerance and maximum iterations. In the first criterion, the
algorithm runs until the average change in value of the objective function is less than the value of
tolerance. In the second criterion, the maximum number of iterations can be determined [27].

5. Results and Discussion

Every component shown in Figure 1 was modeled and coded in Matlab along with the objective
function of the cost of energy of penetrated system (COEPS) and the rest of the corresponding indicators.
Table 4 shows the results obtained using the GA, SA, and PS solvers. Also, many data corresponding
to the optimal value of the COEPS are included in Table 4. The three aforementioned solvers of the
Matlab optimization toolbox were selected to solve the problem described in this paper. The SA and PS
solvers provided solutions that were 1.27634% and 1.98903% higher than the GA solution, respectively.
Therefore, the GA solution was found to be feasible compared with the other solutions.
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Table 4. Detailed results of the optimized system using genetic algorithm (GA), simulated annealing
(SA), and pattern search (PS) algorithms.

Parameter Value (GA) Value (SA) Value (PS)

COEPS ($/kWh) 0.0955388 0.0967582 0.0974391
ECO2 (kt/year) 198.9044 204.5988 207.5809
COERenewables ($/kWh) 0.0631 0.0637 0.0641
Number of WTs 47 45 44
Amax (m2) 9,676,800 7,142,400 8,506,368
Amax (Dunam) 9676.800 7142.400 8506.368
Amin (m2) 6,856,704 6,561,792 6,266,880
Amin (Dunam) 6856.704 6561.762 6266.880
Total cost (M$) 441.3 426.37 419.44
WHf (%) 56.1427 54.3791 53.4641
Grid purchases cost (M$) 45.649 46.956 47.641
Grid energy purchases (GWh) 340.67 350.42 355.53
Prated (PHS) (kW) 18,118.5 19,226.37 20,039.45
Erated (PHS) (kWh) 181,185 192,263.7 200,394.5
WJ (J/m3) 4.905 × 105

WkWh (kWh/m3) 0.136359
Vwater (m3) 1.56322 × 106 1.65880 × 106 1.72895 × 106

APHS (in m2) 104,214.902 110,586.803 115,263.501
APHS (in Dunam) 104.2149 110.5868 115.2635
Fwater (m3/s) 43.457 46.115 48.065

The GA solution of 0.0955388 $/kWh was economically feasible compared with the SA and PS
COEPS values. The optimal value of the COEPS, which was found using the GA, is shown in Figure 6.
This value was 28.7% less than the energy bought from the conventional electric network, which is an
excellent indication for the economic feasibility of this suggested configuration.Energies 2019, 12, x FOR PEER REVIEW 12 of 16 
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Further, Figure 7 shows the current best point for the two decision variables found at the optimal
value of the objective function.
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Note that the area of the wind farm was assumed to be rectangular and was therefore computed
by incrementing the odd optimal number by one. Furthermore, the ECO2 in the suggested location was
634.645 kt/year [12], therefore, the emissions were mitigated by 68.66%, assuming that the renewable
configuration in Figure 1 was adopted. Also, the geographical area of renewable plants (ARenewables)
was increased. However, only 48.91% of the geographical area limit was used to install the designed
hydro-wind energy system. Thus, the rest of the area (51.09%) could be used in the future as load
demand and the system size grow.

The discounted payback period (DPP) is frequently used in renewable energy studies to find
the length of time needed to retrieve the initial investment [33–35]. This was done in this paper by
building the cumulative cash flow (CCF), as shown in Table 5. Note that the present value factor (PVF),
cash flow (CF), and the corresponding discounted cost values (CFdiscounted) were calculated. The CF
in Table 5 included the total cost found before in Table 4 using GA, and the energy savings of the
renewable energy system. These energy savings were computed by multiplying the yearly renewable
generation (436.438 GWh) by the energy purchased price of electric utilities in Jordan. Afterward, the
CCF values were computed by cumulatively adding the discounted cost values. Then, the time to get
back the total cost value was calculated using Equation (17). Note that Table 5 shows only 15 years of
the 50-year project life-time, because the aim was to obtain a positive cost value from the CCF, which
was held at the 11th year. This was just before the time when the total cost was retrieved. Table 5
shows that the DPP was computed to be around 10.271 years (10 years, 3 months, and 7 days).

DPP = nl +

∣∣∣CCF (nl)
∣∣∣

CFdiscounted(nl + 1)
(17)

where nl is the year number at the last negative cost value of the CCF.
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Table 5. Calculation of the discounted payback period.

Year (N) PVF CF (M$) CFdiscounted (M$) CCF (M$)

0 1.000 −441.300 −441.300 −441.300
1 0.944 58.483 55.234 −386.066
2 0.892 58.483 52.165 −333.901
3 0.842 58.483 49.267 −284.633
4 0.796 58.483 46.530 −238.103
5 0.751 58.483 43.945 −194.158
6 0.710 58.483 41.504 −152.654
7 0.670 58.483 39.198 −113.456
8 0.633 58.483 37.020 −76.436
9 0.598 58.483 34.964 −41.472

10 0.565 58.483 33.021 −8.451
11 0.533 58.483 31.187 22.736
12 0.504 58.483 29.454 52.190
13 0.476 58.483 27.818 80.008
14 0.449 58.483 26.272 106.280
15 0.424 58.483 24.813 131.093

DPP (Years) 10.27096862

The study performed in this paper, after adding the hydro storage system, was compared to a
previously studied scenario in [12] for a wind-only system connected to the utility grid at the same
location. Table 6 shows the percentage increase/decrease for the parameters computed in Table 4. For the
wind–hydro on-grid system, the COEPS and the grid purchases were reduced by 16.93% and 24.68%,
respectively, showing the importance of the storage system for wind power that fluctuates naturally.
These cost and emissions reductions are significant, especially for non-oil producing countries, such as
Jordan, which imports around 96% of its energy needs as oil and natural gas. The carbon emissions
reduction was improved compared with the wind-only system. Furthermore, renewable penetration
increased by 56.64% as a result of adding the PHS system, resulting in a more environmentally friendly
power system.

Table 6. On-grid wind farm with/without PHS comparison.

Parameter Percentage Increase (+) or Decrease (−) in %

COEPS −12.26
ECO2 −24.69

COERenewables −1.52
Number of WTs +104.35
ARenewables (max) +71.14
ARenewables (min) +21.79

Total cost +110.83
WHf +56.64

Grid purchases cost −24.69
Grid energy purchases −24.68

6. Conclusions

In this paper, every component shown in Figure 1 was modeled and coded in Matlab along
with the objective function (COEPS). A wind–hydro grid connected power system was proposed as
an adjunct to an existing power grid. This was mathematically modeled and then coded in Matlab.
The GA of the Matlab optimization toolbox was used to find the optimal feasible value of the COEPS,
which was 0.0955388 $/kWh. This was 28.7% less than the conventional energy from the power grid.
The discounted payback period was 10 years, 3 months, and 7 days. Furthermore, carbon emissions
were reduced by 68.66% compared with experimentally estimated data. As a result, the grid energy
purchases were also reduced. Specifically, comparing the system described in this study with the
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formerly studied on-grid wind-only system showed that the COEPS, ECO2, COERenewables, and grid
energy purchases were reduced by 12.26%, 24.69%, 1.52%, and 24.68%, respectively. These are very
promising results, especially for oil-importing countries, such as Jordan, where imported energy is a
significant financial burden to the economy. The proposed wind power system with hydro storage is
recommendable for its clean and economical features, compared with the conventional fossil-fueled
grid or wind-only on-grid renewable configurations.

Finally, this paper is a case study to demonstrate the important point of local solutions to the global
problem of global warming. The paper is necessarily limited to the specific data and assumptions of
the local case study. Future work will include applying the above principle and the methodology of
this paper to many other local engineering boundary conditions.
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