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Abstract: With the refinement and intelligence of power system optimal dispatching, the widespread
adoption of advanced grid applications that consider the safety and economy of power systems,
and the massive access of distributed energy resources, the requirement for bus load prediction
accuracy is continuously increasing. Aiming at the volatility brought about by the large-scale
access of new energy sources, the adaptability to different forecasting horizons and the time series
characteristics of the load, this paper proposes a phase space reconstruction (PSR) and deep belief
network (DBN)-based very short-term bus load prediction model. Cross-validation is also employed
to optimize the structure of the DBN. The proposed PSR-DBN very short-term bus load forecasting
model is verified by applying the real measured load data of a substation. The results prove that,
when compared to other alternative models, the PSR-DBN model has higher prediction accuracy and
better adaptability for different forecasting horizons in the case of high distributed power penetration
and large fluctuation of bus load.

Keywords: Load forecasting; VSTLF; bus load forecasting; DBN; PSR; deep learning

1. Introduction

Electricity cannot be stored in large quantities, and the investment recovery cycle of large-scale
energy storage equipment is long. Therefore, in order to ensure the safe operation of power systems
and power quality on the user side, the operators must have knowledge of future power loads [1].
Power system load forecasting is an important method to understand the trend of future electric
load. In addition, power load forecasting is of great significance for the planning of power systems
and scheduling of generation and transmission maintenance. Power system load forecasting is
generally divided into long-term forecasting, medium-term forecasting, short-term forecasting, and
very short-term forecasting [2]. Among them, short-term load forecasting (STLF) and very short-term
load forecasting (VSTLF) are of great significance for economic dispatch, optimal power flow, and
electricity market trading. The higher the accuracy of load forecasting is, the more beneficial it is to
improve the utilization rate of power generation equipment and the effectiveness of economic dispatch,
and reduce the operation cost of smart grid.

In the past decades, experts and scholars have made systematic and effective research on traditional
deterministic and probabilistic STLF and VSTLF. Deterministic forecasting methods can be divided
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into two main categories [3]: The first category uses statistical forecasting models, such as linear
regression [4], curve extrapolation [5], Autoregressive Integrated Moving Average (ARIMA) model [6,7],
and other time series methods; the second category uses artificial intelligent forecasting models, such as
Bayesian estimation [8], Random Forests [9], Support Vector Regression (SVR) [10,11], Artificial Neural
Network (ANN) [12,13], Deep Belief Network (DBN) [14,15], and Long Short Term Memory (LSTM)
Network [16,17]. These methods have achieved high forecasting accuracy and good robustness in
day-ahead and hour-ahead load forecasting. However, most of the studies are focused on system-level
load forecasting and there are relatively few on bus load forecasting. Generally, bus loads can refer to
loads supplied by transmission and distribution systems transformers [18]. Bus load forecasting can
be conducive to the optimal scheduling of decentralized generation, network congestion studies, and
others [19].

With the refinement and intelligence of power grid optimal dispatching and the wide application
of advanced smart grid applications, which take into account the security and economy of power
system, the demand for bus load forecasting accuracy is increasing. Since bus load base is much smaller
than that of a system, the uncertainty of bus load and the multi-dimensional nonlinearity [20] are
more obvious. The traditional method of distributing the predicted value of system through bus load
ratio often fails to achieve satisfactory results [21]. In this regard, the literature [18] modifies the ANN
model for the aggregated load of the interconnected system and proposes two novel hybrid forecasting
models, which can capture and successfully treat the special characteristics of bus load patterns. In
Ref. [19], a bus load forecasting model based on clustering and ANN is proposed; the day-ahead load
forecasting and hour-ahead load forecasting are carried out, achieving high prediction accuracy.

With a large number of distributed power access, the uncertainty and nonlinear characteristics
of system [22] and bus load are further enhanced. As the collection time interval of distributed
photovoltaic power, plant data is generally several minutes. The short-term and day-ahead load
forecasting in hours of bus cannot make full use of historical information and have low prediction
accuracy. In order to ensure the reliable operation of power system real-time security analysis and
economic dispatch, more detailed VSTLF is needed. The authors of [23] proposed a chaotic-radial basis
function (RBF) photovoltaic power generation prediction model and verified its prediction accuracy
under different weather conditions. However, the author only validated the prediction accuracy of the
model in the case of single-step prediction and did not involve the forecasting horizon problem of the
model [24]. Ref. [20] proposes a novel load forecasting model based on phase space reconstruction
(PSR) algorithm and bi-square kernel (BSK) regression, and achieves high prediction accuracy on
different data sets. However, after phase space reconstruction, different BSK models are used to
independently predict the various dimensional data, which neglect the time series characteristics of
the load.

In view of the shortcomings of the above forecasting model, considering the adaptability to
different forecasting horizons, the time series characteristics of load, and the volatility brought by
large-scale access of new energy sources, this paper proposes a novel very short-term bus load
forecasting model based on phase space reconstruction and deep belief network (PSR-DBN). Because
the amount of historical data in VSTLF is relatively large and closely related to future load trend, the
impact of weather, electricity price, and other factors on VSTLF is not considered in this paper. Firstly,
the proposed PSR-DBN model performs phase space reconstruction on bus load history data, and
projects the historical data to the motion track of a moving point in the phase space. Then the model
takes advantage of the excellent nonlinear fitting ability of the deep belief network to fit the moving
point trajectory and provide a prediction of the trajectory. Finally, the predicted value of the load
is obtained. At the same time, the structure of the DBN is optimized by cross-validation. In order
to test the validity and superiority of the proposed PSR-DBN very short-term bus load forecasting
model, this paper applies the measured load data of a substation in China to verify the forecasting
effectiveness of the model under different forecasting horizons (5 min–1 h). In addition, other six
alternative forecasting models are employed to further compare with the proposed PSR-DBN model.



Energies 2019, 12, 4349 3 of 17

The major contributions of this paper are as follows:

• A novel hybrid VSTLF model based on phase space reconstruction ensemble deep belief network
is proposed, which can maintain high prediction accuracy in the case of high distributed power
penetration and large fluctuation of bus load.

• The Levenberg-Marquardt backpropagation (LMBP) algorithm is used to fine-tune the DBN,
which can make DBN convergence faster and more accurate, compared with a BP algorithm.

• A practical method based on cross-validation is proposed to tune the structure of DBN for better
forecasting performance.

• The PSR algorithm is adopted to make a regular pattern that could not be obtained in
one-dimensional time series appear in a high-dimensional phase space, which improves the
adaptability of a forecasting model to different forecasting horizons, especially long estimation.

The rest of this paper is organized as follows. In Section 2, the relevant theory of the PSR-DBN
model is introduced. Section 3 provides the principal steps of the PSR-DBN model and covers the
tuning method of network hyperparameter based on cross-validation. Section 4 presents the evaluation
criteria of forecasting accuracy, case study settings, forecasting results, and a comparison. Section 5
gives the conclusion of the paper and an outlook for future research.

2. Methodology

2.1. Phase Space Reconstruction (PSR)

Phase space reconstruction (PSR) is an efficient method for analyzing nonlinear time series. The
basic idea of phase space reconstruction is to regard the time series as a component generated by
a nonlinear dynamic system. The variation law of the component can reconstruct the equivalent
high-dimensional phase space of the dynamic system, and the time series can be projected into a
moving point trajectory in the high-dimensional phase space. If there is a one-dimension time series
x = {x1, x2 · · · xN}, the embedding dimension is m, and the delay time is t, then the set of time series
reconstructed by phase space can be expressed as:

X1

X2
...

XM

 =


x1 x1+t · · · x1+(m−1)t
x2 x2+t · · · x2+(m−1)t
...

... · · ·
...

xM xM+t · · · xN

 (1)

where M = N − (m− 1)t.
The key to PSR is to determine the optimal embedding dimension mopt and optimal delay topt. In

this paper, the C-C method [25] is employed to determine the optimal embedding dimension mopt and
delay topt at the same time.

Based on Equation (1), the associated integral is defined as:

C(m, N, rk, t) =
2

M(M− 1)

∑
1≤i< j≤M

θ
(
rk − ‖Xi −X j‖

)
(2)

where θ(x) =
{

0 x < 0
1 x ≥ 0

.

According to BDS (Brock-Dechert-Scheinkman) statistical conclusions [26,27], when N > 3000,
the range of values of m and rk can be obtained, m ∈ {2, 3, 4, 5}, rk = k× 0.5σ, where σ is the standard
deviation of the time series and k ∈ {1, 2, 3, 4}.
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Based on matrix partitioning average strategy, the test statistics S is defined as:

S(m, N, rk, t) =
1
t

t∑
i=1

Ci

(
m,

N
t

, rk, t
)
−Cm

i

(
m,

N
t

, rk, t
)

(3)

For N→∞ , Equation (3) can be deformed to:

S(m, rk, t) =
1
t

t∑
i=1

Ci(m, rk, t) −Cm
i (m, rk, t) (4)

For the fixed m and t, S(m, rk, t) will equal for 0 for all r, if the data are iid and N→∞ . However,
the real data set is not infinite, and there may be a correlation between data. Thus, the optimal delay
time may be either the zero crossing of S(m, rk, t) or the times at which S(m, rk, t) shows the least
variation with r [25].

To represent the variation of S(m, rk, t) with r, the test statistics ∆S is defined as:

∆S(m, t) = max
[
S
(
m, rk1 , t

)]
−min

[
S
(
m, rk2 , t

)]
(5)

where k1 ∈ {1, 2, 3, 4}, k2 ∈ {1, 2, 3, 4}.
The means of S and ∆S are defined as S and ∆S, and the equations are shown as:

S(t) = 1
4×4

5∑
m=2

4∑
k=1

S(m, rk, t)

∆S(t) = 1
4

5∑
m=2

∆S(m, t)
(6)

For all values of t, S(t) and ∆S(t) can find corresponding values. Wherein, the t value corresponding
to the first zero point of S(t) or the first minimum point of ∆S(t) is rounded to be the optimal delay topt.

The test statistic Scor is defined as:

Scor(t) = ∆S(t) +
∣∣∣S(t)∣∣∣ (7)

where the t value corresponding to the global minimum point of Scor(t) is the optimal embedded
window tω.

When the optimal delay topt is determined by Equation (6) and the optimal embedded window tω
is determined by Equation (7), the optimal embedding dimension mopt can be determined by rounding
the value of Equation (8).

tω = (mopt − 1)topt (8)

2.2. Deep Belief Network (DBN)

The Deep Belief Network (DBN) is a deep learning model proposed by Geoffrey Hinton [28] in
2006 and is a stack of multiple Restricted Boltzmann Machines (RBM). Compared with the Artificial
Neural Network (ANN), DBN employs pre-training technology combined with Backpropagation (BP)
algorithm to solve network parameters. Therefore, it is not easy for DBN to fall into a local optimal
solution and has higher convergence accuracy. Furthermore, when the number of layers and the
number of neurons in each layer are large, DBN also has a fast convergence speed, which makes it
more suitable for the fitting problem of complex nonlinear time series [29].

2.2.1. Restricted Boltzmann Machine (RBM)

The RBM consists of a visible layer V and a hidden layer H. As shown in Figure 1, the visible
layer consists of nv neurons and the hidden layer consists of mh neurons, each of which takes a value of
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0 or 1 and obeys the Bernoulli distribution, i.e., vi ∈ {0, 1}(i = 1, 2 · · · n), h j ∈ {0, 1}( j = 1, 2 · · ·m). There
is no connection between the neurons in each layer, and the neurons between the layers are connected
by weights ω.
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RBM is a kind of probabilistic unsupervised learning. Its network parameters are composed
of visible layer bias b, weight matrixω, and hidden layer bias c, and the optimal value of network
parameters is determined by the minimum energy function. The energy function is defined as:

E(v, h |θ ) = −
n∑

i=1

bivi −

m∑
j=1

c jh j −

n∑
i=1

m∑
j=1

viωi jh j (9)

where ωi j is the connection weight of the i-th visible layer neuron and the j-th hidden layer neuron,
and θ = {b,ω, c}.

Based on Equation (9), the joint probability distribution of the visible neuron state and the hidden
neuron state is shown as:

P(v, h |θ ) =
e−E(v,h|θ)

Z
(10)

where normalization factor Z =
∑
v,h

e−E(v,h|θ), which represents the sum of the energy function negative

exponents under all possible values of visible layer neuron state variable v and hidden layer neuron
state variable h.

The probability distribution P(v) of v can be derived from Equation (10) as:

P(v |θ ) =
∑

h

e−E(v,h|θ)

Z
(11)

Thus, the objective function of RBM training can be expressed as a likelihood function of the
probability distribution of visible layer state variable v on the training set, and the likelihood function
can be derived from the Equation (11) as:

L(θ) =
∑
v∈T

log P(v |θ ) (12)

where T represents the set of sample inputs on the training set, and when the objective function takes
the maximum value, the energy function is the minimum.

According to the network structure in Figure 1, the activation probability of vi in a given hidden
layer neuron state h and the activation probability of h j in a given visible layer neuron state v can be
derived as:

P(vi = 1 |h ) = σ

bi +
m∑

j=1

ωi jh j

 (13)
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P
(
h j = 1 |v

)
= σ

ci +
n∑

i=1

ωi jvi

 (14)

where σ represents the sigmoid function, σ(x) = 1
1+e−x .

Since the gradient cannot be directly obtained when using stochastic gradient ascent algorithm to
seek the maximum of Equation (12), the training of RBM usually applies Contrastive Divergence (CD)
algorithm to approximate the gradient of likelihood function [30]. The specific steps of RBM training
are as follows:

Step 1: Substitute the input of the training set as v1 in Equation (14) to obtain P(h1 = 1|v1 ), then
employ random sampling to acquire the reconstructed value of h1.

Step 2: Substitute h1 in Equation (13) to obtain P(v2 = 1|h1 ) and then employ random sampling
to acquire the reconstructed value of v2.

Step 3: Substitute v2 in Equation (14) to obtain P(h2 = 1|v2 ).
Step 4: Update network parameters. The iteration algorithm of network parameters is as follows:

ω(k+1) =ω(k) + ε
(
h1vT

1 − P(h2 = 1|v2 )vT
2

)
b(k+1) = b(k) + ε(v1 − v2)

c(k+1) = c(k) + ε(h1 − P(h2 = 1|v2 ))

(15)

where ε is the learning rate, which takes the value of 0.8 in this paper, and the superscript k represents
the k-th iteration.

2.2.2. DBN based on Levenberg-Marquardt backpropagation (LMBP) Algorithm

Traditional DBN is formed by stacking multiple RBMs, in which the hidden layer of the previous
RBM is used as the visible layer of the next RBM. CD algorithm is used to determine the network
parameters layer by layer during pre-training, which is unsupervised learning. Then the pre-trained
network parameters are assigned to the neural network as the initial training value of network
parameters. The network parameters are fine-tuned by using the sample labels in the training set
combined with BP algorithm, which is supervised learning. The structure of a traditional DBN is
shown in Figure 2.
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In this paper, the LM (Levenberg-Marquardt) BP algorithm [31] is used to replace the traditional
BP algorithm to fine-tune the DBN. Compared with the traditional BP algorithm, the LMBP algorithm
has faster convergence speed and higher convergence reliability, and is more suitable for training
neural networks with many hidden layers and neurons.

Different from the traditional BP algorithm, the LMBP algorithm is based on the Gauss-Newton
method in the least square solution. The square of error v is taken as the objective function and the
second-order Taylor expansion of objective function is derived. After approximating the gradient of
the objective function (ignoring the high-order term), the correction of weightω is:

∆ω = −
[
JT(ω)J(ω) + µI

]−1
JT(ω)v(ω) (16)

where µ is the correction coefficient, which is set to prevent JT(ω)J(ω) from being irreversible; I is the
identity matrix; J(ω) is the Jacobian matrix of v(ω), which can be written as:

J(ω) =



∂v1
∂ω1

∂v1
∂ω2

· · ·
∂v1
∂ωa

∂v2
∂ω1

∂v2
∂ω2

· · ·
∂v2
∂ωa

...
...

. . .
...

∂va
∂ω1

∂va
∂ω2

· · ·
∂va
∂ωa


(17)

where ∂vi
∂ω j

represents the partial derivative of vi to ω j.

Similar to BP algorithm, the modifier expression of weightω(k+1) in the k-th iteration is:

ω(k+1) =ω(k) + ∆ω(k) (18)

µ needs to be adjusted in each iteration to obtain a better convergence effect. When µ is small, the
algorithm is standard Gauss-Newton method, which has higher convergence accuracy. However, if
the difference between the objective function and the approximate quadratic function is too large in
the iteration, the convergence effect will be poor. When µ is large, the algorithm becomes traditional
BP algorithm. When the Gauss-Newton method has a poor convergence performance, the gradient
descent BP algorithm can be used as an auxiliary solution.

3. PSR-DBN Forecasting Model

3.1. The Procedure of the PSR-DBN Model

For a list of bus load historical data time series p =
{
p1, p2 · · · pN

}
, the prediction process of the

PSR-DBN forecasting model is as follows:
Step 1 normalization: The load time series is normalized to prepare for the training of deep belief

network, and the maximum and minimum values of data are saved for subsequent denormalization of
the load predicted value to restore real value.

Step 2 PSR: The C-C method is adopted to process the load time series to find the optimal embedding
dimension m and the optimal delay t of time series. Then the load time series is reconstructed according
to the obtained embedding dimension m and delay t. The reconstructed load time series is as follows:

p1
p2
...

pM

 =


p1 p1+t · · · p1+(m−1)t
p2 p2+t · · · p2+(m−1)t
...

... · · ·
...

pM pM+t · · · pN

 (19)

where M = N − (m− 1)t.
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Step 3 DBN: The DBN is constructed by using the phase space matrix in step 2 as the training
set and employing cross-validation to optimize the hyperparameters of the network. The details of
hyperparameters tuning are introduced in Section 3.2. Finally, the trained DBN is adopted to predict
the load value of the future moment.

Step 4 denormalization: The load prediction value returned by the deep belief network in step 3 is
denormalized by applying the maximum and minimum values saved in step 1, then the actual load
forecasting value is obtained.

The flow chart corresponding to the above steps is shown in Figure 3:
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3.2. Determination of DBN Network Structure

Similar to the neural network, DBN also has many hyperparameters to be set. The rationality of
hyperparameters adjustment determines the prediction accuracy of the prediction model. Unreasonable
hyperparameters will lead to a significant increase in prediction error. The determination of the network
structure is an important part of DBN hyperparameters adjustment.

For the input layer of the DBN, since the original load data is input to DBN after passing through
PSR, the number of the input layer neurons of DBN does not need to be tuned and can be directly
set to embedding dimensions m, that is, one line of elements in Equation (19) is input each time. For
the DBN output layer, when the DBN input is a row of elements in Equation (19), it is equivalent to
inputting the position vector of the moving point in phase space at a certain moment. Then it needs to
output the predicted value of the moving point position vector at the next moment.

However, if the input of the model is pi(1 ≤ i ≤M) in the phase space matrix of Equation (19),
only pi+1+(m−1)t in the position vector pi+1 at the next moment is unknown, so the output layer only
needs to output the predicted value p̂i+1+(m−1)t of the load at time i + 1 + (m− 1)t. If i+1 is greater
than M, then the phase space matrix of Equation (19) needs to be extended downwards, pi+1 is added
as a new row, and pi+1 is taken as the input of the model to obtain the predicted value of pi+2+(m−1)t;
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Then the matrix is augmented and the predicted value of pi+3+(m−1)t is obtained, and so on until the
end of the forecasting. The expression of pi+1 in the augmented matrix is:

pi+1 =
[

pi+1 pi+1+t · · · pi+1+(m−1)t

]
(20)

where the value of pi+1+(m−1)t is determined by the forecasting horizons. If it is one-step forecasting,
pi+1+(m−1)t takes the real value of load measured at time i + 1 + (m− 1)t. If it is multi-step forecasting
and the number of forecasting steps is k, pi+1+(m−1)t = p̂i+1+(m−1)t is taken until the k-th step forecasting.
and then the predicted value in the augmented matrix is replaced by the real value of the measured load.

For the hidden layer of DBN, the number of hidden layers and neurons in each hidden layer
has a significant influence on the prediction result, and it is found that the effect of optimizing the
number of hidden layers is usually more obvious. Too few hidden layers will cause the under-fitting
to affect the forecasting performance, and too many hidden layers will lead to over-fitting and will
make forecasting performance worse. Therefore, in order to improve the prediction accuracy of the
PSR-DBN model, cross-validation is used to optimize the number of hidden layers and neurons in each
hidden layer. The flow is shown in the blue dotted line in Figure 3. The specific steps are as follows:

1. Cross-validation method: Considering that the load data is a time series, it is not appropriate to
use a K-fold cross-validation method to disrupt the order. Therefore, the last part of the training
set is eliminated and used as a verification set by hold-out cross-validation. The rest of the data is
kept as a training set.

2. Determine the optimal number of layers: The enumeration is used to determine the optimal
number of hidden layers. Many researchers find that a shallow network requires exponential
width (number of neurons in each layer) to implement a function that a deep network of
polynomial width could implement [32]. That is, compared with the number of layers, the
number of neurons in each layer has less influence on prediction, so it is fixed during the
enumeration. The number of neurons in each layer is set to be 2m, and the number of hidden
layers is increased layer by layer until a significant over-fitting occurs. Then the number of hidden
layers with the smallest forecasting error is selected.

3. Determine the number of neurons in each layer: Since the forecasting performance of DBN varies
with the initial value, the effect of changing the number of neurons one by one on forecasting
performance is easily submerged in the fluctuation of forecasting performance caused by different
initial values. Therefore, this paper uses a fixed step size to search for the superior number
of neurons roughly. After determining the number of hidden layers according to step 2, the
combination of the number of neurons with minimum prediction error is searched in steps of m
in each layer. Because too many neurons will make the training of network slow and bring the
risk of over-fitting, the selected search range of this paper is m to 5m, and a good combination of
the number of neurons is determined by testing.

In summary, the structure, input, and output of the proposed DBN are shown in Figure 4, in
which the number of the hidden layers and the number of neurons in each hidden layer are obtained
by cross-validation.
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4. Case Study

4.1. Bus Load Data

In order to test the validity of the model, the load data of a 220-kV substation bus in a city of China
from 1 May to 18 May 2017 are used in this paper. The bus is connected with a distributed photovoltaic
power station with an installed capacity of about 50 MW, and the sampling time interval of load data
is 5 min. During the period, the substation had no overhaul or fault shutdown. The reliability of
historical data is high, and 3σ criteria is used to detect that there is no abnormal data.

In this paper, the data of 1–14 May are selected as the training set of the PSR-DBN forecasting
model, and cross-validation is used to adjust the model hyperparameters. The data of 15–18 May are
selected as the forecasting test set. If only one-step forecasting of the load in the next 5 min is used
as given in Ref. [22], the prediction horizons are too short to meet the real-time safety analysis and
economic dispatching requirements of the power system. However, short-term load forecasting on an
hourly scale combined with the interpolation has poor forecasting accuracy. Therefore, the forecasting
horizons of very short-term load forecasting in this paper are from 5 min to 1 h, and the proposed
model is validated in the MATLAB (R2018a, MathWorks Inc., Massachusetts, USA) environment.

4.2. Forecasting Evaluation Index

In order to more intuitively and accurately evaluate the forecasting performance of the model
and the accuracy of prediction, this paper adopts Mean Absolute Percentage Error (MAPE), Mean
Absolute Scaled Error (MASE), Symmetric Mean Absolute Error (sMAPE), Geometric Mean Absolute
Error (GMAE), and Root Mean Square Error (RMSE) [33] as evaluation indicators.

MAPE =
1
n

n∑
i=1

∣∣∣∣∣pi − p̂i

pi

∣∣∣∣∣× 100% (21)

MASE =
1
n

n∑
i=1


∣∣∣pi − p̂i

∣∣∣
1

n−1

n∑
j=2

∣∣∣p j − p j−1
∣∣∣
 (22)

sMASE =
100%

n

n∑
i=1

∣∣∣pi − p̂i
∣∣∣

0.5
(∣∣∣pi

∣∣∣+ ∣∣∣p̂i
∣∣∣) (23)
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GMAE = n

√√ n∏
i=1

∣∣∣pi − p̂i
∣∣∣ (24)

RMSE =

√√
1
n

n∑
i=1

(pi − p̂i)
2 (25)

where n represents the number of predicted samples, pi represents the real value of the load at time i,
and p̂i represents the predicted value of the load at time i.

The smaller the values of each metric, the higher the prediction accuracy of the model. However,
these indicators are relative values and need to be compared under the same data scale to be meaningful.

4.3. PSR Reconstruction Results

Based on the theoretical analysis of PSR in Section 2.1, the C-C method is employed to reconstruct
the phase space of the bus load data from 1 May to 14 May. The corresponding statistics of ∆S(t) and
Scor(t) are shown in Figure 5. It can be seen that the first minimum point of ∆S(t) is t = 18, while Scor(t)
cannot get the optimal embedding window tω without an obvious minimum point. However, from the
BDS statistics, when N > 3000, m ∈ {2, 3, 4, 5}, so the maximum value of m can only be 5. According to
Equation (8), the final optimal embedding dimension mopt = 5 and the optimal delay topt = 18.
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4.4. DBN Hyperparameter Setting

In Section 4.3, the optimal embedding dimension obtained by PSR is mopt = 5. The structure of
DBN is determined by the method described in Section 3.2. The number of neurons in the input layer
and output layer of DBN is 5 and 1, respectively.

To determine the hidden layer hyperparameter, 13–14 May of the training set is eliminated and
used as a verification set; the rest are reserved as the training set. The number of hidden layer neurons
of DBN is fixed to 10, the number of layers is increased one by one, and the MAPE of the prediction
result on the verification set is used as the criterion. The forecasting horizon is 1 h, and the MAPE of
different hidden layers models is shown in Table 1.

Table 1. Mean Absolute Percentage Error (MAPE) of models with various number of hidden layers.

Number of Hidden Layers 2 3 4 5 6 7 8

MAPE 1.0387 1.0129 0.9358 1.0443 1.0413 1.0857 1.1336
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In Table 1, when the number of hidden layers equals 8, the MAPE is significantly increased, and
it can be inferred that over-fitting occurs at this time, so the continuation of increasing the number
of layers is stopped. When the number of hidden layers is 4, MAPE is the smallest and is 0.9358.
Therefore, the optimal number of hidden layers equals 4.

Based on the four hidden layers, the optimal number of neurons was roughly searched by a fixed
step size, and the step size was set to 5 neurons. The MAPE of prediction result on the verification set
is used as the criterion, and the forecasting horizon is 1 h. The sample space of the search is 54 = 625.
When the MAPE is the smallest, the number of neurons in each hidden layer is [25, 15, 20, 15]. At this
time, the MAPE of predicted value on the verification set is 0.8447, which is obviously better than
the MAPE = 0.9358 of 4 hidden layers and the number of neurons in each layer is 10. Therefore, the
number of neurons in each hidden layer is [25, 15, 20, 15].

In summary, the hyperparameter setting of DBN in this paper is shown in Table 2.

Table 2. Hyperparameter setting of DBN.

Hyperparameter Value

DBN Network structure [5, 25, 15, 20, 15]
learning rate 0.8

Maximum epochs of RBM 100
NN Network structure [5, 25, 15, 20, 15, 1]

LMBP(µ) 0.001
Maximum epochs of NN 150

4.5. Forecasting Result

4.5.1. One Hour Ahead Load Forecasting

In order to verify the forecasting performance of the proposed method, the ARIMA model, NN
model, PSR-NN model, LSTM model, PSR-DBN model (without tuning), and DBN model are adopted
to predict the load of 15–18 May after training with 1–14 May as historical data. The forecasting horizon
is 1 h, and the corresponding evaluation indicators of each model are calculated. The ARIMA model
employs the Akaike Information Criterion (AIC) to determine the optimal autoregressive model (AR
model) order p and moving average model (MA model) order q. The hyperparameter of the NN model,
LSTM model, and DBN model are also optimized by cross-validation. The PSR-DBN model (without
tuning) has four hidden layers and 10 neurons per layer. The curves of the load predicted value and
the load measured value corresponding to different models on 15–18 May are shown in Figure 6.Energies 2019, 12, x FOR PEER REVIEW 13 of 18 
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The solid black line in Figure 6 is the measured value. It can be inferred that the active output
of the photovoltaic power station has large fluctuations, and the bus load curve is severely distorted
by the general saddle type, showing irregular fluctuations. If short-term load forecasting is used at
this time, it will cause a large error and waste a lot of information. The remaining curves are the
forecasting values of the ARIMA model, NN model, PSR-NN model, LSTM model, PSR-DBN model
(no tuning), and DBN model. It can be clearly seen that the predicted curves of the ARIMA model with
the golden dashed line and the NN model with the blue dashed line deviate significantly from the
black measured values, while the forecasting performance of other models cannot be directly judged
by curves. In order to more intuitively see the prediction accuracy of each model, the forecasting
evaluation indicators and training time of each model are calculated as shown in Table 3.

Table 3. Forecasting performance of each model.

Model MAPE (%) RMSE MASE sMASE GMAE Training Time (s)

PSR-DBN 0.9892 3.2316 2.5403 0.9856 1.2027 12.3397
PSR-NN 1.0125 3.2310 2.6098 1.0126 1.2259 18.9233

DBN 1.1322 3.4684 2.9353 1.1358 1.3815 7.2980
ARIMA 1.5929 4.8657 4.0986 1.5922 Inf 20.0625

NN 1.6222 4.6757 4.2132 1.6333 Inf 15.1189
LSTM 1.0736 3.3266 2.7877 1.0799 Inf 17.2867

PSR-DBN (no tuning) 1.0380 3.2792 2.6737 1.0358 1.3279 10.2336

In Table 3, it is seen that the training time of all models meet the requirements of VSTLF. The
PSR-DBN model proposed in this paper has the smallest indicators, except for the second smallest
RMSE in all seven models. The RMSE of the PSR-DBN model proposed in this paper is only 0.0006
more than the minimum RMSE from the PSR-NN model. The ‘Inf’ of GAME indicates that the product
of local error exceeds the upper limit of double type. It can be seen that the prediction accuracy of the
DBN pre-trained by the CD method is better than that of the ordinary NN. The forecasting evaluation
indicators of the PSR-DBN model and PSR-NN model, which adds PSR link to reconstruct original
data, are also significantly less compared with the DBN model and the NN model. Compared with
the PSR-DBN model without tuning, the tuned PSR-DBN model also has less evaluation indicators.
Therefore, it can be inferred that the proposed method has higher prediction accuracy and better
forecasting performance in the one-hour very short-term prediction of bus load with high distributed
energy permeability and large fluctuation.

Figure 7 is a bar graph of the relative error of the predicted values of each model on 17 May. It can
be seen from Figure 7 that the prediction errors of the ARIMA model and NN model are larger than
those of the other five models, and the time with large prediction errors is concentrated in the noon
period. At this time, the power output of the photovoltaic power station is large and vulnerable to
clouds and other weather factors, resulting in great fluctuations of output and difficulties in prediction.
Although the prediction accuracy of the noon period is not improved after adding the PSR algorithm,
the reconstruction of the data reduces the influence of the fluctuation of the historical load data at
noontime on the load forecasting of other time periods, thus effectively reducing the relative error of
other time periods and improving the prediction accuracy of the model.
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4.5.2. Prediction of Different Forecasting Horizons (5 min to 1 h ahead)

In order to verify the adaptability of the proposed PSR-DBN model to different forecasting
horizons, the DBN and NN models are still employed in this paper, and the load of 15–18 May is
forecasted by using historical data of 1–14 May. The forecasting horizons are 5 min to 1 h, and the
corresponding MAPE is calculated, respectively. The MAPE curves of different models vary with
forecasting horizons (shown in Figure 8).
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As can be seen in Figure 8, MAPE generally increases with increase of the forecasting horizon.
The model proposed in this paper has higher prediction accuracy in most of the forecasting horizon,
while the forecasting performance of the NN model is not ideal. When the forecasting horizon is 5
min to half an hour, the DBN model and PSR-DBN model do not have much difference in prediction
accuracy. However, when the forecasting horizon is further increased from half an hour to one hour,
the advantage of reconstructing data by PSR begins to appear. At this time, the MAPE of the PSR-DBN
model is obviously less than that of the pure DBN model. Therefore, the model proposed in this
paper can also have a small prediction error within the forecasting horizon of 5 min to 1 h and better
adaptability in different forecasting horizons.

As can be seen in Figure 8, MAPE generally increases with increase of the forecasting horizon.
The model proposed in this paper has higher prediction accuracy in most of the forecasting horizon,
while the forecasting performance of the NN model is not ideal. When the forecasting horizon is
5 min to half an hour, the DBN model and PSR-DBN model do not have much difference in prediction
accuracy. However, when the forecasting horizon is further increased from half an hour to one hour,
the advantage of reconstructing data by PSR begins to appear. At this time, the MAPE of the PSR-DBN
model is obviously less than that of the pure DBN model. Therefore, the model proposed in this
paper can also have a small prediction error within the forecasting horizon of 5 min to 1 h and better
adaptability in different forecasting horizons.

5. Conclusions

In this paper, aiming at the adaptability of forecasting horizons, the time series characteristics
of the load, and the fluctuation caused by large amounts of distributed power access in bus load
forecasting, a very short-term bus load forecasting model based on phase space reconstruction and
deep belief network is proposed. The time series is projected by phase space reconstruction as the
trajectory of a moving point in phase space, then the excellent non-linear fitting ability of DBN network
is applied to fit the trajectory, so as to realize bus load forecasting. This paper also employs a practical
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method based on cross-validation to optimize the DBN network structure, and the real bus load data
are employed to verify that:

• The PSR-DBN forecasting model proposed in this paper can still maintain relatively high prediction
accuracy under the condition of high distributed power penetration and large fluctuation of bus
load. The prediction accuracy of the proposed model is greatly improved, when compared to the
ARIMA model of traditional time series models and the general neural network model.

• The proposed practical tuning method, which is based on cross-validation, can effectively improve
prediction accuracy of the model compared with the random structure selection strategy.

• Under different forecasting horizons (5 min to 1 h), the PSR-DBN model proposed in this paper
can still have a small prediction error. Compared with the model only using DBN, the phase-space
reconstruction technique improves the adaptability of the model to long forecasting horizons.
Therefore, the PSR-DBN model in this paper can maintain a small prediction error even in long
forecasting horizons.

In this paper, the hyperparameters, such as the network structure of DBN, are only optimized by
a roughly tuning method, and it is difficult to find the optimal value of hyperparameters. In practice,
the corresponding load regular pattern will change greatly with the change of bus operation mode.
The temperature elements also have an impact on load forecasting. Therefore, there are several factors
of the bus load very short-term prediction model proposed in this paper that need to be considered
and improved upon in the future.
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