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Abstract: Dissolved gas analysis (DGA) is a widely used method for transformer internal fault
diagnosis. However, the traditional DGA technology, including Key Gas method, Dornenburg ratio
method, Rogers ratio method, International Electrotechnical Commission (IEC) three-ratio method,
and Duval triangle method, etc., suffers from shortcomings such as coding deficiencies, excessive
coding boundaries and critical value criterion defects, which affect the reliability of fault analysis. Grey
wolf optimizer (GWO) is a novel swarm intelligence optimization algorithm proposed in 2014 and it
is easy for the original GWO to fall into the local optimum. This paper presents a new meta-heuristic
method by hybridizing GWO with differential evolution (DE) to avoid the local optimum, improve
the diversity of the population and meanwhile make an appropriate compromise between exploration
and exploitation. A fault diagnosis model of hybrid grey wolf optimized least square support vector
machine (HGWO-LSSVM) is proposed and applied to transformer fault diagnosis with the optimal
hybrid DGA feature set selected as the input of the model. The kernel principal component analysis
(KPCA) is used for feature extraction, which can decrease the training time of the model. The proposed
method shows high accuracy of fault diagnosis by comparing with traditional DGA methods, least
square support vector machine (LSSVM), GWO-LSSVM, particle swarm optimization (PSO)-LSSVM
and genetic algorithm (GA)-LSSVM. It also shows good fitness and fast convergence rate. Accuracies
calculated in this paper, however, are significantly affected by the misidentifications of faults that
have been made in the DGA data collected from the literature.

Keywords: grey wolf optimizer; differential evolution; dissolved gas analysis; transformer fault
diagnosis; least square support vector machine; kernel principal component analysis

1. Introduction

Transformer is one of the most critical equipment for power transmission and transformation and
its safety and reliability is the basis to ensure continuous operation and power supply of power grid.
Failures of transformer may bring huge losses to the power grid, and the repair and maintenance of the
transformer is very expensive and difficult. Identifying the incipient faults of the transformer in time
becomes very important which may avoid power outages and economic losses. DGA is an important
and successful tool to detect incipient faults of oil-filled transformers. Based on the corresponding
relationship between the type of dissolved gas in oil and internal fault, the abnormal state of the
transformer can be identified by DGA method according to the composition and the content of various
gases, and the fault type, severity and development trend of the fault can be determined. Several
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DGA interpretation methods [1], including key gas method [2,3], IEC three-ratio method [4,5], Duval
triangle method [6], Rogers ratio method [7] and Dornenburg ratio method [8], Duval pentagon [9],
Mansour pentagon method [10,11], etc., are available to identify the different types of faults occurring in
operating transformers. Although the commonly used methods are simple and effective in transformer
fault diagnosis, they suffer from defects such as coding deficiencies, excessive coding boundaries and
critical value criterion defects, which will affect the reliability of fault analysis [12].

With the development of artificial intelligence (AI), machine learning and pattern recognition
methods have been widely used in power transformer fault diagnosis, including artificial neural
network (ANN) [13–15], support vector machine (SVM) [16–24], probabilistic neural network [25,26],
Bayesian neural network [27], fuzzy logic [28–30], deep belief network [31], expert system [32,33],
which make up for the shortcomings of the traditional DGA methods, directly or indirectly improve the
accuracy of transformer fault diagnosis, and provide a new idea for high-precision transformer fault
diagnosis. Although these methods have achieved good results, there are also some shortcomings. For
example, the training speed of ANN is slow, it is easy to fall into local optimization, and a large number
of training samples are needed, while it is very difficult to collect fault DGA sample of transformers.
Expert system relies on knowledge and experience of the expert, and most of the experience is difficult
to collect.

SVM is a new machine learning method proposed by Vapnik et al. in the 1990s [34], which is based
on statistical theory and structural risk minimization, and fully guarantees its good generalization ability
in theory. Compared with traditional machine learning methods, SVM can overcome the problems
of small samples, the curse of dimensionality, local minimum and over-fitting. By constructing the
optimal classification surface, the classification error of unknown samples is minimized, which means
high generalization ability. SVM have been widely used in the field of fault diagnosis, such as fault
diagnosis of analog circuits [35–39], fault diagnosis of rolling bearings [40–42], fault diagnosis of
generator sets [43–46], etc. The Least Square-Support Vector Machine (LSSVM) is an extension of
the SVM. It uses the least squares linear system as the loss function, and transforms the inequality
constraints in the SVM into equality constraints. The process becomes an understanding of a set of
equations, the solution speed is relatively faster. LSSVM has been applied to pattern recognition and
nonlinear function estimation, and achieved good results.

In the field of power transformer fault diagnosis, a multi-layer SVM classifier was proposed
and applied in power transformer fault diagnosis for the first time and showed fast training speed
and reliability [16]. Fei [17] et al. applied support vector machine with genetic algorithm (SVMG) to
power transformer fault diagnosis. The SVMG method showed higher diagnostic accuracy than the
IEC three-ratio method, conventional SVM classifier and ANN. Khmais Bacha et al. [18] proposed
a multi-layer SVM classifier for power transformer fault diagnosis which used combination ratios
and graphical representation as the gas features. Compared with other AI approaches, the proposed
method shows good performance. Wei [19] proposed a new approach for DGA feature prioritization
and classification and the new gas features were used to train SVM optimized by PSO, which achieved
the highest accuracy compared with other classification accuracies using different features. Selim
Koroglu and Akif Demircali [20] developed a multi-layer SVM model optimized by grid search (GS),
GA, DE, and PSO algorithms using Gaussian radial basis as kernel function and the result showed
that the PSO optimized SVM achieved the highest classification accuracy and less computation time.
The GA was used to perform DGA ratio selection from a total of 28 gas ratio combinations based
on IEC TC 10 DGA data, combined with the traditional DGA ratio and the gas ratio combination
proposed in [47,48] and optimize SVM parameter [21]. Nine feature ratios was selected as input vectors
of the SVM and the diagnostic accuracy of 87.18% was obtained, which verified the robustness and
generalization ability of optimal dissolved gas ratios (ODGR). Yuan et al. [22] proposed a transformer
fault diagnosis model based on chemical reaction optimization (CRO) and twin support vector machine
(TWSVM) which used restricted Boltzmann machine (RBM) for data preprocessing, cross-validation
(CV) to ensure the reliability and generalization ability of the diagnostic model and CRO algorithm to
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select the optimal training parameters of the TWSVM classifier, and finally, the actual fault samples and
random tests were used to verify the validity of the model. Hazlee Azil Illias and Wee Zhao Liang [23]
proposed a transformer fault diagnosis model based on hybrid SVM and improved evolutionary
particle swarm optimization (SVM-MEPSO), which used a stepwise regression approach for data
reduction and the results show that the hybrid SVM-MEPSO time-varying acceleration coefficient
(TVAC) technology can obtain the highest accuracy compared with other PSO algorithms. The
optimal hybrid DGA feature subset (OHFS) was selected from three feature sets by using genetic
algorithm-support vector machine-feature screen (GA-SVM-FS) model and used as input of the
improved social group optimization (ISGO) optimized multi-SVM classifier to develop a transformer
fault diagnosis model which achieved the highest fault diagnosis accuracy (92.86%) compared with
other diagnostic models [24]. In addition, other scholars also used the SVM [49], relevance vector
machine (RVM) [50] for transformer fault diagnosis and achieved good results.

The intelligent approaches mentioned above have directly or indirectly improved the accuracy
of the transformer fault diagnosis methods based on DGA. However, there are deficiencies in the
parameter optimization, the feature set selection and data preprocessing methods, which limit the
practical application of AI algorithm in transformer fault diagnosis. A novel swarm intelligence
algorithm proposed in 2014 by Mirjalili et al., the grey wolf optimization [51], which has the advantage
of superior performance, few parameters and easy to implement, has attracted the attention of many
scholars [52–54]. Compared with GA, PSO and DE, GWO shows superior performance in exploitation
and exploration, high local optima avoidance and fast convergence. Due to its competitive performance,
the GWO is employed for parameter optimization in this study. Because of a slow convergence rate
and easy to fall into local optimum of the original GWO, various improved strategies for the GWO
have been proposed, and achieved good results [55–58]. This paper proposes a hybrid grey wolf
optimization algorithm (HGWO), combining the DE algorithm with the GWO, which uses the powerful
search ability of the DE to update position of the grey wolf α, β, δ, and thus jump out stagnation
and makes the GWO not to fall into the local optimum, which accelerates the convergence speed and
improves the performance of the algorithm. In addition, the variation and selection of DE algorithm
are used to generate the initial population, which can improve the diversity of the population. Then,
the HGWO is applied as the optimizer of a transformer fault diagnosis model based on HGWO-LSSVM
with the optimal hybrid DGA feature set selected as the input. The KPCA method is used for feature
extraction. Finally, the proposed model is tested and compared with other models.

This paper is organized as follows: Section 2 introduces the basic theory of the HGWO-LSSVM
model. In Section 3, the HGWO-LSSVM model is proposed and in Section 4 the performance of
HGWO-LSSVM model is tested and compared with other diagnostic models, which proves the
effectiveness of the proposed model. Finally, the conclusion is summarized and potential future work
is discussed in Section 5.

2. Related Theory

2.1. Kernel Principal Component Analysis

Principal component analysis (PCA) is a linearly reduced method for data compression and can
be used to extract the main components from high-dimensional variables, by which the dimension and
complexity of the data are reduced. The extracted data, which can only characterize the linear state,
loses the nonlinear components in the original data, which leads to the lack of valid information. The
principle of KPCA is based on PCA. In the KPCA, the kernel function is used to realize the nonlinear
variation of mapping the original data to the high-dimensional linear feature space, and then PCA
is used to extract the features. The essence of KPCA is to perform PCA on the data mapped to the
feature space.



Energies 2019, 12, 4170 4 of 18

Let x1, x2, x3, . . . , xN ∈ R as the data sample, and it is used as the input data which is mapped
from the original space to the high-dimensional linear feature space F by the nonlinearity function
φ(·), and the covariance matrix C of φ

(
x j

)
is:

CF =
1
N

∑N

j=1
φ
(
x j

)
φ
(
x j

)T
, (1)

where the eigenvalue and eigenvector in the formula are: λV = CFV, and the eigenvalue λ ≥ 0, V is
the eigenvector.

Defining N × N dimension matrix Ki j = K
(
xi, x j

)
= φ

(
x j

)
φ
(
x j

)
, and the eigenvectors Vk is

normalized, that is
(
Vk, Vk

)
= 1. Then, the k(k = 1, 2, . . . , N) principal elements tk in the feature

space is:

tk =
(
Vk,φ(x)

)
=

∑N

i=1
ak

i K
(
x, x j

)
, (2)

As the same with the general principal component analysis algorithm, the input data needs to
satisfy zero-mean conditions. This work can be done by replacing K with the following:

K̃ = K − LK −KL + LKL, (3)

where Li, j =
1
N .

The KPCA has the same mathematical and statistical characteristics as the linear PCA in the
F space, such as each principal component is uncorrelated, the principal component can represent
the maximum variance of the sample data, and the principal component is used to reconstruct the
sample data, which can gain a minimum mean square error. In addition, it extracts more sample
information than linear PCA. Under the premise of achieving the same classification performance,
the number of principals required by KPCA is less than that of linear PCA. Compared with other
nonlinear feature extraction methods, it does not need to solve the nonlinear optimization problem
and only involves the eigenvalue decomposition calculation of the matrix. KPCA has been widely
used in feature extraction [42] and has achieved good results.

2.2. Differential Evolution

Storn and Price [59] proposed a powerful method for global optimization, differential evolution,
DE mainly produces a new population through the mechanisms of population variation, crossover
and selection to obtain the optimal solution, which can improve the diversity of population. Because
of its simple principle, few controlled parameters and strong robustness, DE has been widely used in
constrained optimization [60–62], nonlinear control optimization [63], feature selection [64] and other
optimization problems [65–68].

DE is used to solve the optimization problem, which mainly includes the following operations:

2.2.1. Initialization of Population

Like other swarm intelligence optimization algorithms, DE also needs to initialize the population:{
xi(0)

∣∣∣∣xL
i, j ≤ xi, j(0) ≤ xU

i, j; i = 1, 2, . . . , NP; j = 1, 2, . . . , D
}
, (4)

where xi(0) is the ith individual, j is the dimension.

xi, j(0) = xL
i, j + rand(0, 1)

(
xU

i, j − xL
i, j

)
, (5)

where xL
i, j and xU

i, j are the lower bound and the upper bound of the j dimension, respectively, rand(0, 1)
is a random number in the range of [0, 1].
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2.2.2. Mutation

DE realizes individual variation through differential strategy. The common differential strategy is
to randomly select two different individuals in the population, and scale the vector difference and
synthesize the vector with the individual to be mutated.

vi(g + 1) = xr1(g) + F(xr2(g) − xr3(g)), (6)

where r1, r2 and r3 are random numbers in the range of [0, NP], F is scaling factor, xi(g) represents the
ith individual in the g generation population.

2.2.3. Crossover

The crossover operation is carried out on the gth generation population
{
xi(g)

}
and its variant

intermediate
{
vi(g + 1)

}
.

ui, j(g + 1) =
{

vi, j(g + 1) i f rand(0, 1) ≤ CR
xi, j(g) otherwise

, (7)

where CR is crossover probability.

2.2.4. Selection

The strategy of greedy selection is adopted in DE, that is, the better individual is selected as the
new one.

xi(g + 1) =
{

ui(g + 1) i f f (ui(g + 1)) ≤ f (xi(g + 1))
xi(g)

, (8)

2.3. Grey Wolf Optimizer

Grey wolf optimizer, a newly swarm intelligence algorithm introduced by Mirjalili et al. [51], is a
powerful meta-heuristic algorithm, which has the ability to compete with other algorithms including
PSO, GA, DE and many other algorithms in terms of solution accuracy, minimum computational effort,
and aversion of premature convergence [69,70]. Because of these advantages, it has been gained a
very big research interest by tremendous audiences from several domains and successfully applied in
the fields of global optimization [71], control engineering [72,73], feature selection [74], scheduling
problems [75,76] in recent years.

Based on the physical behavior and social behavior of grey wolves, the mathematical model of
the GWO algorithm contains five parts, including social hierarchy, encircling, hunting, attacking and
searching, and a brief introduction is presented as follows.

2.3.1. Social Hierarchy

In GWO, a hierarchical model is constructed according to social hierarchy of the grey wolf, and the
fitness of each individual is calculated, and the three grey wolves with the best fitness are sequentially
labeled as α, β, δ, and the rest grey wolf is marked as ω. The optimization process of GWO is mainly
guided by the best three solutions in each generation (i.e., α, β, δ).

2.3.2. Encircling Prey

When the grey wolf hunts the prey, it gradually approaches the prey and surrounds it. The
mathematical model of this behavior is as follows:

D = C·Xp(t) −X(t), (9)

X(t + 1) = Xp(t) −A·D, (10)
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A = 2a·r1 − a, (11)

C = 2r2, (12)

where t is number of iterations, A and C are the coefficient vectors; Xp is the position vector of the prey,
X(t) is the position vector of the wolf, a is linearly reduced from 2 to 0 during the iteration; r1 and r2 is
a random vector in [0, 1].

2.3.3. Hunting

In order to simulate the search behavior of grey wolves, it is assumed that α, β, δ have strong ability
to identify the potential prey and during each iteration, the best three wolves (α, β, δ) are retained, and
then the locations of other search agents are updated based on their location. The mathematical model
can be expressed as follows:

Dα = C1·Xα −X, Dβ = C1·Xβ −X, Dδ = C1·Xδ −X, (13)

X1 = Xα −A1·Dα, X2 = Xβ −A2·Dβ, X3 = Xδ −A3·Dδ, (14)

X(t + 1) =
X1 + X2 + X3

3
(15)

where Xα, Xβ, Xδ are the positions of α, β, δ, X represents the position of the wolf, Dα, Dβ, Dδ respectively
represent the distance between the current candidate and the optimal three wolves, when |A| > 1, the
grey wolves are scattered among the regions to search for prey and when |A| < 1, the grey wolves will
focus on hunting for prey in the search areas.

2.3.4. Attacking Prey

According to the formula of encircling prey, the decrease of a causes a fluctuation of A accordingly.
And A is a random vector in [−2a, 2a], where a decreases linearly during the iteration. When A is in
the [−1, 1], the position of the search agent in next moment can be anywhere between the current grey
wolf and the prey. Parameter a is linearly updated in each iteration to range from 2 to 0 as follows:

a = 2− t×
2

MaxIter
(16)

where t is the iteration number and MaxIter is the total number of iterations allowed for the optimization.

2.3.5. Searching Prey

Grey wolves rely mainly on α, β, δ to find the prey. They search for prey location in the beginning
and then concentrate to attack prey. In the model, A > 1 makes the search agent far away from the
prey, enabling GWO to perform global search. C is another search coefficient of the GWO algorithm.
As can be seen from the formula of encircling prey, the C is a random vector in the range of [0, 2],
which provides a random weight for the prey to add (C > 1) or decrease (C < 1). This helps GWO to
exhibit random search behavior during the optimization process to avoid the algorithm falling into
local optimum. The pseudo-code of the GWO (Algorithm 1) is presented in the following form:

Although the GWO algorithm shows the superiority in many fields, when the training sample
is a big data, it will face problems of local optimum, slow computation speed, and low accuracy.
Therefore, this paper uses DE combined with the GWO to improve the performance of the original
GWO algorithm, which uses the DE with the powerful search ability to force the GWO to jump out
of the stagnation when attacking the prey to avoid the local optimum and achieve the appropriate
compromise between exploration and exploitation for further accelerating the convergence speed and
improving the accuracy of GWO. In addition, the variation and selection of DE algorithm are used to
generate the initial population, which can improve the diversity of the population.
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Algorithm 1. GWO pseudo-code

(1) Initialize the positions of grey wolf population Xi (i = 1,2,3 . . . , n) randomly.
(2) Initialize a, A, C.
(3) Find α, β, and δ as the first three best solutions based on their fitness values.
(4) t = 0.

while t ≤MaxIter do
for each Wolfi ∈ pack do

Update current wolf’s position according to Equation (15).
end

- Update a, A, and C as in Equations (16), (11) and (12).
- Evaluate the positions of individual wolves.
- Update α, β, and δ positions as the first best three solutions in the current population.
- t = t + 1.
end

(5) Select the optimal grey wolf position.

2.4. Least Square Support Vector Machine

SVM is a new machine learning theory based on V-dimensional theory and structural risk
minimization principle proposed by Bell Labs researcher Vapnik in the 1990s [34]. which has excellent
learning performance and generalization ability. Compared with other machine learning algorithms,
SVM has significant advantages in dealing with overfitting and local optimum. Since SVM was
proposed, it has been successfully applied in many fields, such as regression analysis, pattern
recognition and so on. Least squares support vector machine LS-SVM (Least Square-Support Vector
Machine) is an extension of standard SVM, which transforms quadratic programming problem into
linear equations and a much faster solution speed and strong real-time performance is obtained.

Let D =
{
(xi, yi)

∣∣∣i = 1, 2, 3, . . . , N
}

be the training sample set, where xi is the input and yi is the
output. For nonlinear regression, LS-SVM is modeled as follows:

y(x) = ωTϕ(xi) + b + ei, (17)

where ω represents the weight vector, ϕ(xi) is a nonlinear function, which is used to complete the
mapping from the input space to the high dimensional feature space. b is the deviation, and ei represents
the fitting error, which is the error between the actual training output and the estimated output of the
data group i. ω and b can be obtained from the following optimization problems:

minJ(w, e) =
1
2
ωTω+ γ

1
2

∑
i=1

e2
i , (18)

Equation (18) satisfies the equation constraint:

yi = ωTϕ(xi) + b + ei, i = 1, 2, 3, . . . , N, (19)

In the Equation (18), the first part is to adjust the weight and punish the large weight, and the
second part represents the training error. For Equation (18), define the Lagrange function L:

L(w, b, e,α) = J(w, e) −
N∑

i=1

αi
{
ωTϕ(xi) + b + ei − yi

}
, (20)

In Equation (20), αi is the Lagrange multiplier and γ is the penalty parameter, which balances
the complexity of the LS-SVM model, such as y(x) and training error. According to the KKK
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(Karush-Kuhn-Tucker) optimization condition, Equation (20) is used to obtain the partial derivatives
of w, b, e and αi respectively and make them all 0, and the optimization conditions are obtained.

∂L
∂w = 0→ w =

N∑
i=1

αiϕ(xi)

∂L
∂b = 0→

N∑
i=1

αi = 0

∂L
∂ei

= 0→ αi = λei
∂L
∂αi

= 0→ ωTϕ(xi) + b + ei − yi = 0

(21)

The ω is eliminated and the LS-SVM regression model was obtained.

y(x) =
N∑

i=1

αiK(x, xi) + b, (22)

where K(x, xi) is the kernel function, x represents the input vector of the training sample, and xi is the
center of the kernel function. α and b is the solution of Equation (21). Because there is a nonlinear
relationship between the transformer fault and the DGA data, the radial basis kernel function (RBF),
which is suitable to solve the nonlinear problem and has few kernel parameters, is selected as the
kernel function for the research.

K(x, xi) = exp
(
−
‖x− x2‖

2

2σ2

)
, (23)

where σ2 is the kernel parameter. Penalty parameter γ and kernel parameter σ2 have great effect on the
accuracy of LS-SVM model. The generalization ability of the model increases with the decrease of γ,
while the training error increases. The smaller of kernel parameter, the higher of the model complexity,
and a larger kernel parameter is easy to lead to lack of learning. So reasonable γ and σ2 values are the
key to the success of the model.

3. Fault Diagnosis Model Based on HGWO-LSSVM

In the proposed fault diagnosis method based on HGWO-LSSVM model, the HGWO is used to
optimize the parameter of LSSVM algorithm. The construction of the model includes the following parts:

(1) Sample collection. The DGA data of various fault modes are collected to form the fault sample
set, which is used as the training set of the fault diagnosis model.

(2) Feature set selection. Select commonly used feature set and optimal hybrid feature set as the
input of the model, respectively.

(3) Sample division. The sample is divided into two groups: training data and test data. The
training data is used in the simulation to establish the mathematical model, and the test data is used to
validate the model.

(4) Sample normalization. After normalization, all the sample data values are in the range of [0,1],
which makes the calculation speed of the model faster. The conversion function of normalization is as
follows:

x∗i =
xi − xmin

xmax − xmin
, (24)

where: xi represents the actual value; xmax and xmin represent the maximum and minimum
value, respectively.

(5) Feature extraction. The KPCA method is used for feature extraction to reduce the dimensions
of the sample data and the number of principal components is selected with a cumulative contribution
rate greater than 90%.

(6) Model construction. The steps of the transformer fault diagnosis algorithm based on
HGWO-LSSVM model are as follows:
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Step 1: Set each initial parameter including population size, maximum number of iterations,
dimension, the scaling factors and the crossover probability factor CR.

Step 2: Initialize the population according to Equation (4), where X consists of a kernel width
parameter σ and a regularization parameter C of the least squares vector machine.

Step 3: Calculate the individual fitness values and arrange them in descending order, with the top
three individual Xα, Xβ, Xδ as the upper wolves.

Step 4: Update the position of the parent population individual using Equation (15).
Step 5: According to Equations (6) and (7), the differential algorithm is used to perform mutation

and cross-update to generate new children.
Step 6: Update the parent population according to Equation (8), and then update C, A, and a

according to Equations (11) and (12).
Step 7: Update the parental Pα, Pβ, Pδ, and sort the grey wolf father population again. The

algorithm termination condition is judged. When the condition is satisfied, the parents Pα and f (Pα)
are returned, and the obtained optimal solutions C and σ are output.

Step 8: Establish an LSSVM model based on σ and C.
The fault diagnosis model based on LSSVM integrated with KPCA and HGWO is shown in

Figure 1. It includes two main parts. One is that the transformer DGA data is preprocessed by KPCA.
The other is that the parameter of LSSVM model is optimized by HGWO.
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4. Case study and Analysis

The MATLAB toolkit (R2018b, MathWorks, Natick, Massachusetts, USA) is used to implement
the LSSVM fault diagnosis model using HGWO optimization mentioned above. At the same time, a
large number of transformer DGA data were collected, and the data was preprocessed and classified to
verify the effectiveness of the fault diagnosis model.

4.1. Fault Sample Collection

During the operation of the power transformer, internal heat or discharge failure will cause the
transformer oil to decompose and generate gases, mainly including H2, C2H4, C2H6, C2H4, C2H2, CO
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and CO2. When faults of different type and degrees occur, the content of the seven gases will vary
significantly. Therefore, the content of these seven gases can be selected as the feature set.

In this paper, transformer DGA data have been collected from many literatures. These literatures
analyze the transformer fault condition and the processing process, and finally determine the specific
fault cause and fault type through the disintegration inspection. The fault types of the transformer
include low temperature overheating T1 (<300 ◦C), medium and low overheating T2 (300~700 ◦C), and
high temperature overheating T3 (> 700 ◦C), low energy discharge (D1), high energy discharge (D2),
partial discharge (PD), including normal mode (N). The distribution of the sample DGA data used in
this study are shown in Table 1. In addition, part of the field DGA data with actual faults and the fault
type diagnosed by the IEC ratio method are shown in Table 2.

Table 1. Distribution of transformer sample data.

Voltage Level

Fault Type
Total N T1 T2 T3 PD D1 D2

110 kV 244 56 0 16 121 1 8 42
220 kV 734 184 2 63 222 55 63 145
500 kV 191 30 1 12 54 8 57 29
750 kV 112 10 2 1 0 0 5 94
Total 1281 280 5 92 397 64 133 310

Table 2. Partial field dissolved gas analysis (DGA) data with actual faults.

No. H2 CH4 C2H2 C2H4 C2H6 CO CO2 Actual Fault IEC Ratio

1 96 20.61 38.57 15.82 5.4 367 854 D1 D2
2 89 20.01 39.4 16.36 6.16 354 874 D1 D2
3 134.78 34.7 94.1 40.54 4.5 53.1 89.76 D2 D2
4 207.6 44.14 139 80.9 3.8 29.62 331.7 D2 D2
5 292.58 38.39 0 0.84 3.87 161.54 523.68 PD N
6 522.2 43.21 1.01 1.02 16.73 158.6 2251.3 PD D2
7 529.75 58.96 1.27 5.06 18.12 160.5 2263.98 PD D2
8 2525.3 130.55 0 1.53 14.25 612.17 2687.13 PD PD
9 3417.62 131.42 0 1.22 14.36 428.03 2770.29 PD PD

10 5869.58 175.21 0 1.45 16.45 624.47 3684.56 PD PD
11 4966.14 145.66 0 1.28 15.33 503.42 3397.51 PD PD
12 6.82 10.13 0 74.85 3.81 662.43 5871.86 T2 T3
13 14 33.3 0 20.1 8 101 654 T2 T2
14 87 223.6 0 121.1 49.6 62 498 T2 T2
15 78 196.3 0 109.3 46.1 51 384 T2 T2
16 22.04 171.05 0 182.04 91.29 1651.57 16,390.39 T2 T2
17 82.74 108.92 3.91 249.8 28.06 809.04 2053.72 T3 T3
18 3.11 6.61 0.26 36.43 3.23 296.54 2367.99 T3 T3
19 3.05 5.84 0.27 37.28 3.38 256.61 2970.88 T3 T3
20 3.82 7.93 0.13 52.68 3.37 406.24 2770.54 T3 T3

Considering that the fault sample data of the low temperature overheating is relatively few, the
two types of faults, low temperature overheating and medium temperature overheating, are regarded
as one category. Thus, the failure types involved in this paper include five categories, namely, low
to medium temperature overheating (T2), high temperature overheating (T3), low energy discharge
(D1), high energy discharge (D2) and partial discharge (PD), including normal mode (N), a total of
6 categories.

4.2. Feature Set Selection

Feature selection is crucial for a classification mathematical model. It is necessary to select features
that reflect the core characteristics of the sample and consider reducing the computational errors caused
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during the model training. In a transformer fault diagnosis model, the DGA data are used as inputs
of the diagnostic model. The feature sets that have been widely used so far include two categories:
dissolved gases concentration and dissolved gas ratios [77], as shown in Table 3.

Table 3. Common feature set of transformer fault diagnosis.

Feature Set Content

DGA gases Total H2, CH4, C2H2, C2H4, C2H6, CO, CO2

Common H2, CH4, C2H2, C2H4, C2H6

DGA gas ratios

Doernenberg CH4/H2, C2H2/C2H4, C2H2/CH4, C2H6/C2H2

Roger C2H6/CH4, C2H2/C2H4, CH4/H2, C2H4/C2H6

IEC 60599 C2H2/C2H4, CH4/H2, C2H4/C2H6

CIGRE gas ratio C2H2/C2H6, H2/CH4, C2H4/C2H6, C2H2/H2, CO/CO2

Studies have shown that [24,47,48,78], using a hybrid feature set including DGA gas and gas
ratios as input is preferred over using only DGA gas or gas ratios. The optimal hybrid feature set
selected in this paper consists of CH4/H2, CH4/C2H4, CH4/C2H6, CH4/CO2, H2/C2H2, H2/CO, H2/CO2,
H2/TH, C2H2/CO, C2H2/TH, C2H4/TH, C2H6/TH, C2H2 and C2H6, which has been proved that high
diagnostic accuracy can be obtained [24].

4.3. Multi-Class Classification Model

The fault diagnosis process of the transformer is essentially a multi-class classification problem.
As a two-classifier, LS-SVM cannot be directly used for multi-class classification. In the diagnosis
model proposed in this paper, a multi-class binary tree based on LS-SVM is developed.

The model includes a total of 5 sub-classifiers, which are proposed to identify the six fault types:
low to medium temperature overheating (T2), high temperature overheating (T3), low energy discharge
(D1), high energy discharge (D2), partial discharge (PD) and normal mode. LS-SVM1 separates the
normal state from the fault state while LS-SVM2 separates discharge faults from thermal faults. The
third and fourth LS-SVM classify the thermal faults as either low to medium temperature overheating or
high temperature overheating, and discharge faults as either partial discharge or low energy discharge
and high energy discharge, respectively, while the fifth LS-SVM is used to classify the low energy
discharge and high energy discharge. Meanwhile, to improve training and diagnostic efficiency, the
input of each sub-classifier contains the most effective feature parameters for identifying the fault,
which are optimized by HGWO. The multi-class binary tree constructed in this paper is shown in
Figure 2.

4.4. Results and Discussion

HGWO is used to optimize the parameters of the LS-SVM in the multi-classification model.
The relevant initial parameters of the HGWO algorithm are set as: population size is 50, maximum
iteration number is 200, and variable dimension is 2. In the differential evolution algorithm, the scaling
factors Mmax and Mmin are 0.8 and 0.2, respectively, and the crossover probability factor CR is 0.2. The
HGWO-LSSVM fault diagnosis model has been implemented by the MATLAB simulation platform
on an 8-core Lenovo laptop (T470P, Lenovo, Beijing, China) with 8 GB memory and 2.8 GHz clock,
running Windows 10 enterprise operating system (64-bit).
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4.4.1. Example 1

The training and test results of the proposed model are summarized in Table 4. The diagnostic
accuracy of the transformer fault diagnosis model proposed in this paper is 97.45%, and the diagnostic
time is 2225 ms.

Table 4. Training results HGWO-LSSVM fault diagnosis model.

Model Training Sample Test Sample Classification
Accuracy (%) C σ Training Time (ms)

LS-SVM1 900 381 98.7 5.8263 1.8523 3264
LS-SVM2 700 299 97.0 2.3560 2.6530 2646
LS-SVM3 346 148 96.62 3.6382 1.8635 2235
LS-SVM4 355 152 97.37 1.8693 0.9685 2024
LS-SVM5 310 123 97.56 1.0635 0.8625 1956

Traditional DGA methods, including the IEC three-ratio method, Rogers ratio method, Duval
triangle method, Dornenburg ratio method, are adopted to diagnose the testing data set for comparison.
Table 5 shows the fault diagnosis accuracy for different methods using the same sample. The
Dornenburg ratio method shows the lowest accuracy. The accuracy of Rogers ratio method is 63.84%,
lower than the three ratio method and Duval triangle method. The accuracy of three ratio method is
better than Duval triangle method. Because three-ratio and Duval triangle methods are obtained from
typical faults, they will fail in dealing with some complex faults. The accuracy of the proposed method
is 97.45%. Compared with the traditional DGA methods, the LSSVM method shows a relatively good
diagnosis accuracy rate. When the LSSVM parameters are optimized by HGWO, the accuracy of the
fault diagnosis improves substantially. However, misclassifications of the original DGA data collected
from the literatures may lead to errors in the accuracy in this paper.

Table 5. Accuracy rate for the different diagnostic methods.

Method IEC
Three-Ratio

Rogers
Ratio

Duval
Triangle

Dornenburg
Ratio LSSVM HGWO-LSSVM

Accuracy Rate 75.41% 63.84% 73.73% 53.26% 88.75% 97.45%

4.4.2. Example 2

In order to verify the superiority of the proposed method, the sample data is used to construct
the fault diagnosis model by using LSSVM, GWO-LSSVM, PSO-LSSVM, GA-LSSVM, etc. The results
are compared with the method in this paper, as shown in Table 6 and Figure 3. To further verify the
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improvement of using the optimal hybrid feature set to the model accuracy, we applied dissolved
gases concentration and the optimal hybrid feature set as inputs, respectively. And the results are
shown in Table 7.

Table 6. Comparison of different fault diagnosis model.

Model Average Classification Accuracy Training Time (ms)
Upper Limit(%) Lower Limit(%)

LSSVM 88.75 90.25 86.75 3654
PSO-LSSVM 89.38 91.6 87.16 3562
GA-LSSVM 92.25 92.6 91.9 4526

GWO-LSSVM 94.6 95.25 93.95 2615
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Table 7. Comparison of using dissolved gases concentration and optimal hybrid DGA feature subset
(OHFS) as input, respectively.

Model
Classification Accuracy (%)

Dissolved Gases Concentration OHFS

LSSVM 80.35 90.25
PSO-LSSVM 82.63 91.6
GA-LSSVM 83.55 92.6

GWO-LSSVM 85.28 95.25
HGWO-LSSVM 87.53 98.7

It can be seen from Table 6:
(1) The average training time of the classifier in the proposed method is far less than the training

time of the classifiers constructed by several other methods, indicating that training time of the
transformer fault diagnosis model can be greatly shortened according to the method of this paper,
which can improve the efficiency of fault diagnosis and increase the online diagnostic capabilities.

(2) Under the same fault sample set, the proposed method achieves a higher average classification
accuracy in the diagnosis of various types of faults. In addition, compared with other optimization
algorithms, GWO-LSSVM achieves higher classification accuracy and fast convergence speed, which
proves that the good performance of GWO algorithm in parameter optimization.
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(3) Compared with GWO-LSSVM, the fault diagnosis model proposed by HGWO-LSSVM achieves
higher fault classification accuracy and faster training speed, indicating that after the combined with
DE algorithm, population diversity is improved through operations such as crossover and mutation.
At the same time, the DE algorithm forces GWO to jump out of the stagnation state when attacking the
prey, thus improving the local optimum avoidance.

It can be seen from Table 7 that while using the optimal hybrid feature set as the inputs, the
accuracy of the fault diagnosis model can be significantly improved, which means data preprocessing
and feature selection play an important role in the construction of fault diagnosis model.

According to the results above, the fault diagnosis model proposed in this paper not only has higher
diagnostic accuracy, but also consumes less time and has higher efficiency. However, misclassifications
of the raw data may affect the accuracies in this paper.

5. Conclusions

In this paper, a transformer fault diagnosis model based on HGWO-LSSVM is proposed. First,
transformer DGA data from many literatures are collected and the optimal hybrid feature set is selected
as the input of the model. KPCA is used for feature selection. The hybrid grey wolf optimizer,
combined GWO with DE, is proposed to optimize the LSSVM to develop a fault diagnosis model.
The proposed model is compared with traditional DGA methods and other models such as LSSVM,
GWO-LSSVM, PSO-LSSVM and GA-LSSVM. The major conclusions in this paper are listed as follows:

(1) Compared with traditional DGA methods, the model proposed in this paper has achieved
better performance on transformer fault diagnosis, indicating the effectiveness of the proposed model.

(2) Compared with other optimization algorithms, GWO-LSSVM achieves higher classification
accuracy and fast convergence speed, which proves that the good performance of GWO algorithm in
parameter optimization than PSO and GA.

(3) The model proposed by HGWO-LSSVM achieves higher fault classification accuracy and faster
training speed than GWO-LSSVM, which verifies the effectiveness of combining DE with GWO.

(4) The dissolved gases and hybrid DGA features are used as DGA feature sets, respectively. The
accuracy of the fault diagnosis model based on the optimal hybrid feature set has been improved by
nearly 10% than DGA gases. It is proved that the optimal hybrid feature set can indeed improve the
accuracy of fault diagnosis model.

(5) Accuracies calculated in this paper, however, are significantly affected by the misidentifications
of faults that have been made in the DGA data collected from the literature. Therefore, in order to
ensure the reliability of the accuracy for the model, it is very important to ensure the accuracy of the
raw data.

At present, most of the transformer fault diagnosis model are rarely taking the correlation between
transformer faults and other factors other than DGA data into consideration, which lead to a low
generalization ability of the model and the accuracy of fault diagnosis will decrease for a new data set.
In fact, the failure of the transformer, in addition to the relationship with the DGA data, may also be
related to insulating oil type [79], voltage levels, operating oil temperature, load, operating years, and
so on [80]. In this paper, the DGA data are arranged according to the voltage level, including four
voltage levels of 110 kV, 220 kV, 500 kV, and 750 kV. Therefore, in the future work, the DGA data will be
classified by the voltage level to develop fault diagnosis models, from which the relationship between
the voltage level and the fault type of the DGA data can be analyzed. Based on the results of the study,
a more generalized model can be proposed which can further improve the accuracy of transformer
fault diagnosis.
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