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Abstract: This work continues the presentation commenced in Part I of the second-order sensitivity
analysis of nuclear data of a polyethylene-reflected plutonium (PERP) benchmark using the
Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM). This work reports the results
of the computations of the first- and second-order sensitivities of this benchmark’s computed leakage
response with respect to the benchmark’s 21,600 parameters underlying the computed group-averaged
isotopic scattering cross sections. The numerical results obtained for the 21,600 first-order relative
sensitivities indicate that the majority of these were small, the largest having relative values of O (10−2).
Furthermore, the vast majority of the (21600)2 second-order sensitivities with respect to the scattering
cross sections were much smaller than the corresponding first-order ones. Consequently, this work
shows that the effects of variances in the scattering cross sections on the expected value, variance, and
skewness of the response distribution were negligible in comparison to the corresponding effects
stemming from uncertainties in the total cross sections, which were presented in Part I. On the
other hand, it was found that 52 of the 21600× 180 mixed second-order sensitivities of the leakage
response with respect to the scattering and total microscopic cross sections had values that were
significantly larger than the unmixed second-order sensitivities of the leakage response with respect
to the group-averaged scattering microscopic cross sections. The first- and second-order mixed
sensitivities of the PERP benchmark’s leakage response with respect to the scattering cross sections
and the other benchmark parameters (fission cross sections, average number of neutrons per fission,
fission spectrum, isotopic atomic number densities, and source parameters) have also been computed
and will be reported in subsequent works.

Keywords: polyethylene-reflected plutonium sphere; first- and second-order sensitivities; microscopic
scattering and total cross sections; expected value; variance and skewness of leakage response

1. Introduction

In continuation of the results presented in Part I [1], this work presents the numerical results for
the first- and second-order sensitivities of the leakage response of the polyethylene-reflected plutonium
(PERP) benchmark described in [2] with respect to the benchmark’s group-averaged isotopic scattering
cross sections. This work also presents the results for the mixed second-order sensitivities to both the
scattering and total cross sections. As has been described in Part I [1], the numerical model of the PERP
benchmark includes 180 (Jσt = I ×G) imprecisely-known parameters for the group-averaged total
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microscopic cross sections and 21,600 (Jσs = (G×G) × I × (ISCT + 1)) imprecisely-known parameters
for group-averaged scattering microscopic cross sections, where I = 6, G = 30 and ISCT = 3 are
the number of isotopes, energy groups and Legendre expansion orders for the PERP benchmark,
respectively. Therefore, there are 21,600 first-order sensitivities, 21600× 21600 second-order sensitivities
of the PERP benchmark’s leakage response to the group-averaged microscopic scattering cross sections,
and 21600× 180 mixed second-order sensitivities to the scattering and total microscopic cross sections.
These sensitivities will be computed by specializing the general expressions derived by Cacuci [3] to the
PERP benchmark. Section 2 of this work presents computational results for the first- and second-order
sensitivities of the PERP benchmark’s leakage response with respect to the group-averaged microscopic
scattering cross sections. Section 3 reports the numerical results for the matrix of mixed second-order
leakage sensitivities to the group-averaged total and scattering microscopic cross sections. Section 4
presents the impact of the first- and second-order sensitivities on the uncertainties induced for the
leakage response by the imprecisely-known group-averaged scattering microscopic cross section.
Section 5 concludes this work. The computational results for the sensitivities of the PERP leakage
response to the remaining imprecisely-known model parameters (fission cross sections and number
of neutrons produced per fission, fission spectra, and isotopic number densities) will be reported in
subsequent publications.

2. Computation of First- and Second-Order Sensitivities of the PERP Leakage Response to
Scattering Cross Sections

The physical system considered in this work is the same polyethylene-reflected plutonium
(acronym that will be used in this work: PERP) metal sphere benchmark [2] as described in Part I [1].
As in Part I [1], the neutron flux is computed by solving numerically the neutron transport equation
using the PARTISN [4] multigroup discrete ordinates transport code. For the PERP benchmark under
consideration, PARTISN [4] solves the following multi-group approximation of the neutron transport
equation with a spontaneous fission source provided by the code SOURCES4C [5]:

Bg(α)ϕg(r, Ω) = Qg(r), g = 1, . . . , G, (1)

ϕg(rd, Ω) = 0, rd ∈ Sb, Ω · n < 0, g = 1, . . . , G, (2)

where

Bg(α)ϕg(r, Ω) , Ω·∇ϕg(r, Ω) + Σg
t (r)ϕ

g(r, Ω)

−

G∑
g′=1

∫
4π

Σg′→g
s

(
r, Ω

′

→ Ω
)
ϕg′

(
r, Ω

′
)
dΩ

′

− χg(r)
G∑

g′=1

∫
4π

(νΣ)g′

f (r)ϕ
g′
(
r, Ω

′
)
dΩ

′

; (3)

Qg(r) ,
N f∑
k=1

λkNk,1FSF
k ν

SF
k e−Eg/ak sinh

√
bkEg, g = 1, . . . , G, (4)

and where α denotes the “vector of imprecisely-known model parameters”, as defined in Part I [1].
The PARTISN [4] calculations used MENDF71X 618-group cross sections [6] collapsed to G = 30

energy groups, with group boundaries, Eg, as presented in Part I [1]. The MENDF71X library uses
ENDF/B-VII.1 Nuclear Data [7]. As has been discussed in [1], the fundamental quantities (i.e., system
responses) of interest for subcritical benchmarks (such as the PERP benchmark) are singles counting
rate, doubles counting rate, the leakage multiplication, and the total leakage. The total leakage is
physically more meaningful than count rates because it does not depend on the detector configuration.
For this reason, many systems are characterized for practical applications by their total leakage rather
than by the count rate that a particular detector would see at a particular distance. For this reason, this
work considers the total leakage from the PERP benchmark to be the paradigm response of interest for
sensitivity analysis; sensitivities analyses of counting rates and other responses can be performed in
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an analogous manner, i.e., by following the general ideas that will be presented in this work (and in
subsequent related works).

Mathematically, the total neutron leakage from the PERP sphere, denoted as L(α), will depend
(indirectly, through the neutron flux) on all of the imprecisely-known model parameters and is defined
as follows:

L(α) ,
∫
Sb

dS
G∑

g=1

∫
Ω·n>0

dΩ Ω · nϕg(r, Ω). (5)

Figure 1 shows the histogram plot of the leakage for each energy group for the PERP benchmark.
The total leakage computed using Equation (5) for the PERP benchmark is 1.7648× 106 neutrons/sec.
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark.

The scattering transfer cross section Σg′→g
s

(
r, Ω

′

→ Ω
)

from energy group g′, g′ = 1, . . . , G into

energy group g, g = 1, . . . , G, is computed in terms of the l-th order Legendre coefficient σg′→g
s,l,i , of the

Legendre-expanded microscopic scattering cross section from energy group g′ into energy group g
for isotope i. Since the cross-sections for every material are treated in the PARTISN [4] calculations
as being space-independent within the respective material, the variable r will henceforth no longer
appear in the arguments of the various cross sections. The coefficients σg′→g

s,l,i are tabulated parameters,

and the finite-order Legendre-expansion of Σg′→g
s

(
Ω
′

→ Ω
)

has the following expression:

Σg′→g
s

(
Ω
′

→ Ω
)
=

M=2∑
m=1

Σg′→g
s,m

(
Ω
′

→ Ω
)
,

Σg′→g
s,m

(
Ω
′

→ Ω
)
�

I=6∑
i=1

Ni,m
ISCT=3∑

l=0
(2l + 1) σg′→g

s,l,i Pl
(
Ω
′

·Ω
)
, m = 1, 2,

(6)

where ISCT = 3 denotes the order of the respective finite expansion in Legendre polynomial.
The total cross section Σg

t for energy group g, g = 1, . . . , G, and material m is computed for the
PERP benchmark using the following expression:

Σg
t =

M=2∑
m=1

Σg
t,m; Σg

t,m =
I∑
i

Ni,mσ
g
t,i =

I∑
i

Ni,m

σg
f ,i + σ

g
c,i +

G∑
g′=1

σ
g→g′

s,l=0,i

, m = 1, 2, (7)
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where σg
f ,i and σg

c,i denote, respectively, the tabulated group microscopic fission and neutron capture
cross sections for group g, g = 1, . . . , G. Other nuclear reactions, including (n,2n) and (n,3n) reactions
are not present in the PERP benchmark. The expressions in Equations (6) and (7) indicate that the
zeroth order (i.e., l = 0) scattering cross sections must be considered separately from the higher order
(i.e., l ≥ 1) scattering cross sections, since the l = 0 scattering cross sections contribute to the total cross
sections, while the l ≥ 1 scattering cross sections do not contribute to the total cross sections.

As discussed in Part I [1], the total cross section Σg
t → Σg

t (t) will depend on the vector of parameter
t, which is defined as follows:

t ,
[
t1, . . . , tJt

]†
,

[
t1, . . . , tJσt ; n1, . . . , nJn

]†
, [σt; N]†, Jt = Jσt + Jn, (8)

where
N ,

[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6. (9)

σt ,
[
t1, . . . , tJσt

]†
,

[
σ1

t,i=1, σ2
t,i=1, . . . , σG

t,i=1, . . . , σg
t,i, . . . , σ

1
t,i=I, . . . , σ

G
t,i=I

]†
,

i = 1, . . . , I; g = 1, . . . , G; Jσt = I ×G.
(10)

In Equations (8)–(10), the dagger denotes “transposition,” σg
t,i denotes the microscopic total cross

section for isotope i and energy group g, Ni,m denotes the respective isotopic number density, and Jn

denotes the total number of isotopic number densities in the model. Thus, the vector t comprises a
total of Jt = Jσt + Jn = 30× 6 + 6 = 186 imprecisely-known “model parameters” as its components.

In view of Equation. (6), the scattering cross section Σg′→g
s

(
Ω
′

→ Ω
)
→ Σg′→g

s

(
s; Ω

′

→ Ω
)

depends on the vector of parameters s, which is defined as follows:

s ,
[
s1, . . . , sJs

]†
,

[
s1, . . . , sJσs ; n1, . . . , nJn

]†
, [σs; N]†, Js = Jσs + Jn, (11)

σs ,
[
s1, . . . , sJσs

]†
,

[
σ

g′=1→g=1
s,l=0,i=1 , σg′=2→g=1

s,l=0,i=1 , . . . , σg′=G→g=1
s,l=0,i=1 , σg′=1→g=2

s,l=0,i=1 , σg′=2→g=2
s,l=0,i=1 , . . . , σg′→g

s,l,i , . . . , σG→G
s,ISCT,i=I

]†
,

l = 0, . . . , ISCT; i = 1, . . . , I; g, g′ = 1, . . . , G; Jσs = (G×G) × I × (ISCT + 1).
(12)

As stated above, the zeroth order (i.e., l = 0) scattering cross sections need to be separately
considered from the higher order (i.e., l ≥ 1) ones. Therefore, in σs, the total number of zeroth order
scattering cross section is denoted as Jσs,l=0, where Jσs,l=0 = G×G× I; and the total number of higher
order (i.e., l ≥ 1) scattering cross sections is denoted as Jσs,l≥1, where Jσs,l≥1 = G×G× I × ISCT, with
Jσs,l=0 + Jσs,l≥1 = Jσs. The vector s comprises a total of Jσs + Jn = 30 × 30 × 6 × (3 + 1) + 6 = 21606
imprecisely-known components (“model parameters”).

Recall from Part I [1] that the components of the vector of first-order sensitivities of the leakage
response with respect to the model parameters are denoted as S(1)(α), which is defined as follows:

S(1)(α) ,

[
∂L(α)
∂σt

;
∂L(α)
∂σs

;
∂L(α)
∂σ f

;
∂L(α)
∂ν

;
∂L(α)
∂p

;
∂L(α)
∂q

;
∂L(α)
∂N

]†
.
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The symmetric matrix of second-order sensitivities of the leakage response with respect to the
model parameters is denoted as S(2)(α), and is defined as follows:

S(2)(α) ,



∂2L(α)
∂σt∂σt

∗ ∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σs∂σt

∂2L(α)
∂σs∂σs

∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σ f ∂σt

∂2L(α)
∂σ f ∂σs

∂2L(α)
∂σ f ∂σ f

∗ ∗ ∗ ∗

∂2L(α)
∂ν∂σt

∂2L(α)
∂ν∂σs

∂2L(α)
∂ν∂σ f

∂2L(α)
∂ν∂ν ∗ ∗ ∗

∂2L(α)
∂p∂σt

∂2L(α)
∂p∂σs

∂2L(α)
∂p∂σ f

∂2L(α)
∂p∂ν

∂2L(α)
∂p∂p ∗ ∗

∂2L(α)
∂q∂σt

∂2L(α)
∂q∂σs

∂2L(α)
∂q∂σ f

∂2L(α)
∂q∂ν

∂2L(α)
∂q∂p

∂2L(α)
∂q∂q ∗

∂2L(α)
∂N∂σt

∂2L(α)
∂N∂σs

∂2L(α)
∂N∂σ f

∂2L(α)
∂N∂ν

∂2L(α)
∂N∂p

∂2L(α)
∂N∂q

∂2L(α)
∂N∂N



.

The results as well as their impact on the uncertainties induced in the leakage response by the
first- and second-order sensitivities ∂L(α)/∂σt and, respectively, ∂2L(α)/∂σt∂σt, were reported in
Part I [1]. This work will report the computational results for the first-order sensitivities ∂L(α)/∂σs

and the second-order sensitivities ∂2L(α)/∂σs∂σs and ∂2L(α)/∂σs∂σt, along with their effects on the
uncertainties induced in the leakage response.

2.1. First-Order Sensitivities ∂L(α)/∂σs

The equations needed for deriving the expressions of the first-order sensitivities of ∂L/∂s j , j =
1, . . . , Jσs will differ from each other depending on whether the parameters s j correspond to the
zeroth-order (l = 0) or to the higher order (l ≥ 1) scattering cross sections. There are two distinct cases,
as follows:

(1)
(
∂L(α)
∂s j

)
(s=σs,l=0)

, j = 1, . . . , Jσs,l=0, where the quantities s j refer to the parameters underlying

the zeroth-order scattering microscopic cross sections; and

(2)
(
∂L(α)
∂s j

)
(s=σs,l≥1)

, j = 1, . . . , Jσs,l≥1 , where the quantities s j refer to the parameters underlying the

lth-order (l ≥ 1) scattering microscopic cross sections.

2.1.1. First-Order Sensitivities
(
∂L(α)
∂s j

)
(s=σs,l=0)

, j = 1, . . . , Jσs,l=0

The first-order sensitivities of the leakage response with respect to zeroth-order scattering
microscopic cross sections are computed by particularizing Equations (150) and (151) in [3], where
Equation (151) provides the contributions arising directly from the scattering cross sections, while
Equation (150) provides contributions arising indirectly through the total cross sections. The expression
obtained by particularizing Equation (151) in [3] to the PERP benchmark yields:(

∂L(α)
∂s j

)(1)
(s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π

dΩ ψ(1),g(r, Ω)
G∑

g′=1

∫
4π

dΩ
′ ∂Σg′→g

s (s;Ω
′

→Ω)
∂s j

ϕg′
(
r, Ω

′
)

,

f or j = 1, . . . , Jσs,l=0,
(13)

where the multigroup adjoint fluxes ψ(1),g(r, Ω), g = 1, . . . , G are the solutions of the following
first-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157) in [3]:

A(1),g(α)ψ(1),g(r, Ω) = Ω · nδ(r− rd), g = 1, . . . , G, (14)

ψ(1),g(rd, Ω) = 0, Ω · n > 0, g = 1, . . . , G, (15)
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where rd is the radius of the PERP sphere, and where the adjoint operator A(1),g(α) takes on the
following particular form of Equation (149) in [3]:

A(1),g(α)ψ(1),g(r, Ω)

, −Ω·∇ψ(1),g(r, Ω) + Σg
t (t; r)ψ(1),g(r, Ω) −

G∑
g′=1

∫
4π

dΩ
′

Σg→g′
s

(
s; r, Ω→ Ω

′
)
ψ(1),g′

(
r, Ω

′
)

−νΣg
f (f; r)

G∑
g′=1

∫
4π

dΩ
′

χg′(p; r)ψ(1),g′
(
r, Ω

′
)

, g = 1, . . . , G.

(16)

The contributions stemming from the total cross sections are computed using Equation (150) in [3]

in conjunction with the relations ∂L
∂t j

∂t j
∂s j

= ∂L
∂s j

and ∂Σt
g(t)
∂t j

∂t j
∂s j

=
∂Σt

g(t)
∂s j

to obtain:

(
∂L(α)
∂s j

)(2)
(s=σs,l=0)

= −
G∑

g=1

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂Σt
g(t)
∂s j

, j = 1, . . . , Jσs,l=0. (17)

Adding Equations (13) and (17) yields the following complete expression:(
∂L(α)
∂s j

)
(s=σs,l=0)

=
(
∂L(α)
∂s j

)(1)
(s=σs,l=0)

+
(
∂L(α)
∂s j

)(2)
(s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π

dΩ ψ(1),g(r, Ω)
G∑

g′=1

∫
4π

dΩ
′ ∂Σg′→g

s (s;Ω
′

→Ω)
∂s j

ϕg′
(
r, Ω

′
)

−

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂Σt
g(t)
∂s j

, f or j = 1, . . . , Jσs,l=0.

(18)

For the PERP benchmark, when the parameters s j correspond to the zeroth-order scattering

microscopic cross sections, i.e., s j ≡ σ
g′ j→g j

s,l j=0,i j
, the following relations hold:

∂Σg′→g
s (s;Ω

′

→Ω)
∂s j

=
∂Σg′→g

s (s;Ω
′

→Ω)

∂σ
g′ j→gj
s,l j ,i j

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g′→g
s,i (s;Ω→Ω

′

)

]
∂σ

g′ j→gj
s,l j ,i j

=
∂

[
M∑

m=1

I∑
i=1

ISCT∑
l=0

Ni,m(2l+1)σg′→g
s,l,i Pl(Ω

′

·Ω)
]

∂σ
g′ j→gj
s,l j ,i j

= δg j gδg′ j g′Ni j,m j

(
2l j + 1

)
Pl j

(
Ω
′

·Ω
)
,

(19)

∂Σg
t (t)
∂s j

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i(t)

]
∂σ

g′ j→gj
s,l j=0,i j

=

∂

 M∑
m=1

I∑
i=1

Ni,m

σg
f ,i(f)+σ

g
c,i(c)+

G∑
g′=1

σ
g→g′

s,l=0,i(s)




∂σ
g′ j→gj
s,l j=0,i j

=

∂

 M∑
m=1

I∑
i=1

G∑
g′=1

Ni,mσ
g→g′

s,l=0,i(s)


∂σ

g′ j→gj
s,l j=0,i j

= δg′ j gNi j,m j ,

(20)

where the subscripts i j, l j, g′ j,g j and m j refer to the isotope, order of Legendre expansion, energy
groups, and material associated with the parameter s j, respectively, and where δg′ j g and δg j g denote
the Kronecker-delta functionals (e.g., δg′ j g = 1 if g′ j = g; δg′ j g = 0 if g′ j , g). Inserting Equations (19)
and (20) into Equation (18), using the addition theorem for spherical harmonics in one-dimensional
geometry, performing the respective angular integrations, and finally setting l j = 0 in the resulting
expression yields the following expression:(

∂L(α)
∂s j

)
(s=σs,l=0)

= Ni j,m j

∫
V dVϕ

g′ j
0 (r)ξ

(1),g j
0 (r) −Ni j,m j

∫
V dV

∫
4π dΩψ(1),g′ j(r, Ω)ϕg′ j(r, Ω),

f or j = 1, . . . , Jσs,l=0,
(21)
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where the forward and adjoint flux moments ϕ
g′ j
0 (r) and ξ

(1),g j
0 (r) are defined as follows:

ϕ
g
0(r) ,

∫
4π

dΩϕg(r,Ω), (22)

ξ
(1),g
0 (r) ,

∫
4π

dΩψ(1),g(r,Ω). (23)

2.1.2. First-Order Sensitivities
(
∂L(α)
∂s j

)
(s=σs,l≥1)

, j = 1, . . . , σs,l≥1

The first-order sensitivities of the leakage response with respect to the lth-order (l ≥ 1) microscopic
scattering cross sections are computed by particularizing Equation (151) in [3]:(

∂L(α)
∂s j

)
(s=σs,l≥1)

=
G∑

g=1

∫
V dV

∫
4π

dΩ ψ(1),g(r, Ω)
G∑

g′=1

∫
4π

dΩ
′ ∂Σg′→g

s (s;Ω
′

→Ω)
∂s j

ϕg′
(
r, Ω

′
)

,

f or j = 1, . . . , σs,l≥1.
(24)

Inserting Equation (19) into Equation (24), using the addition theorem for spherical harmonics in
one-dimensional geometry and performing the respective angular integrations, yields the following
expression: (

∂L(α)
∂s j

)
(s=σs,l≥1)

= Ni j,m j

(
2l j + 1

)∫
V

dVϕ
g′ j
l j
(r)ξ

(1),g j

l j
(r), j = 1, . . . , Jσs,l≥1, (25)

where the forward and adjoint flux moments ϕ
g′ j
l j
(r) and ξ

(1),g j

l j
(r) are defined as follows:

ϕ
g
l (r) ,

∫
4π

dΩ Pl(Ω)ϕg(r,Ω), (26)

ξ
(1),g
l (r) ,

∫
4π

dΩ Pl(Ω)ψ(1),g(r,Ω). (27)

The numerical values of the first-order relative sensitivities, S(1)
(
σ

g→g
s,l=0,i

)
,(

∂L/∂σg→g
s,l=0,i

)(
σ

g→g
s,l=0,i/L

)
, i = 1, . . . , 6; g = 1, . . . , 30, of the leakage response with respect to the

zeroth-order self-scattering microscopic cross sections for the six isotopes contained in the
PERP benchmark will be presented in Section 2.3, in tables that will also include comparisons
with the numerical values of the corresponding second-order unmixed relative sensitivities
S(2)

(
σ

g→g
s,l=0,i, σ

g→g
s,l=0,i

)
,

(
∂2L/∂σg→g

s,l=0,i∂σ
g→g
s,l=0,i

)(
σ

g→g
s,l=0,iσ

g→g
s,l=0,i/L

)
, i = 1, . . . , 6; g = 1, . . . , 30.

2.2. Second-Order Sensitivities ∂2L(α)/∂σs∂σs

As has already been mentioned, it is important to note that the equations needed for deriving the
expressions of the second-order sensitivities of ∂2L/∂s j∂sm2 , j = 1, . . . , Jσs; m2 = 1, . . . , Jσs will differ
from each other depending on whether the parameters s j and sm2 correspond to the zeroth-order
(l = 0) or to the higher order (l ≥ 1) scattering cross sections. There are four distinct cases, which will
be presented in this Section’s four sub-sections, as follows:

A.
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l=0)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l=0, where both parameters s j and sm2

correspond to the zeroth-order scattering cross sections;
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B.
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l≥1)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l≥1, where parameters s j correspond

to the zeroth-order scattering cross sections, and sm2 correspond to the lth-order (l ≥ 1) scattering
cross sections;

C.
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l=0)

, j = 1, . . . , Js,l≥1; m2 = 1, . . . , Js,l=0, where parameters s j correspond

to the lth-order (l ≥ 1) scattering cross sections, and sm2 correspond to the zeroth-order scattering
cross sections;

D.
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l≥1)

, j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσs,l≥1, where both parameters s j and sm2

correspond to the lth-order (l ≥ 1) scattering cross sections.

2.2.1. Second-Order Sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l=0)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l=0

For this case, both parameters s j and sm2 correspond to the zeroth-order scattering cross sections,

and are therefore denoted as s j ≡ σ
g′ j→g j

s,l j=0,i j
and sm2 ≡ σ

g′m2
→gm2

s,lm2=0,im2
, respectively. The subscripts im2 , lm2 , g′m2

and gm2 refer to the isotope, order of Legendre expansion, and energy groups associated with the

parameter sm2 , respectively. When both parameters s j ≡ σ
g′ j→g j

s,l j=0,i j
and sm2 ≡ σ

g′m2
→gm2

s,lm2=0,im2
correspond to

the zeroth-order scattering cross sections, the expression of
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l=0)

must include the

respective contributions stemming from the total cross sections, since the definition of the total cross
sections comprises the zeroth-order scattering cross sections. The contributions from the total cross
section due to the zeroth-order scattering cross section parameters s j and sm2 are computed using

Equation (158) in [3] in conjunction with the relations ∂2L
∂t j∂tm2

∂t j
∂s j

∂tm2
∂sm2

= ∂2L
∂s j∂sm2

,∂Σt
g(t)

∂tm2

∂tm2
∂sm2

=
∂Σt

g(t)
∂sm2

, and
∂2Σt

g(t)
∂t j∂tm2

∂t j
∂s j

∂tm2
∂sm2

=
∂2Σt

g(t)
∂s j∂sm2

, which gives:

(
∂2L

∂s j∂sm2

)(1)
(s=σs,l=0,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂s j∂sm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂sm2

,

f or j = 1, . . . , Jσs,l=0 , m2 = 1, . . . , Jσs,l=0 ,

(28)

where the second-level adjoint functions ψ(2),g
1, j , j = 1, . . . , Jσs,l=0, g = 1, . . . , G, and ψ

(2),g
2, j , j =

1, . . . , Jσs,l=0; g = 1, . . . , G, are the solutions of the following particular form of the second-level
adjoint sensitivity system (2nd-LASS) presented in Equations (164)–(166) of [3]:

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −ϕg(r, Ω)

∂Σt
g(t)
∂s j

, j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (29)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (30)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g(t)
∂s j

, j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (31)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσs,l=0; g = 1, . . . , G. (32)

The expressions of the various derivatives appearing in Equations (28), (29), and (31) are obtained
as follows:

∂2Σt
g(t)

∂s j∂sm2

=
∂2Σt

g(t)

∂σ
g j
′→g j

s,l j,i j
∂σ

gm2
′→gm2

s,lm2 ,im2

= 0, (33)
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∂Σg
t (t)

∂sm2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i(t)

]
∂σ

g′m2
→gm2

s,lm2=0,im2

=

∂

 M∑
m=1

I∑
i=1

G∑
g′=1

Ni,mσ
g→g′

s,l=0,i(s)


∂σ

g′m2
→gm2

s,lm2=0,im2

= δg′m2
gNim2 ,mm2

, (34)

inserting Equations (33), (34) and (20) into Equations (28)–(31) yields the following simplified expression:

(
∂2L

∂s j∂sm2

)(1)
(s=σs,l=0,s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) +ψ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
, (35)

where the second-level adjoint functions ψ(2),g
1, j , j = 1, . . . , Jσs,l=0, g = 1, . . . , G, and ψ

(2),g
2, j , j =

1, . . . , Jσs,l=0; g = 1, . . . , G, are the solutions of the following simplified second-level adjoint sensitivity
system (2nd-LASS):

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −δg′ j gNi j,m jϕ

g(r, Ω), j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (36)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg′ j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (37)

subject to the boundary conditions shown in Equations (30) and (32), respectively.
Additional contributions stem from Equation (159) in [3], in conjunction with the relation

∂2L
∂t j∂sm2

∂t j
∂s j

= ∂2L
∂s j∂sm2

, which takes on the following particular form:

(
∂2L

∂s j∂sm2

)(2)
(s=σs,l=0,s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂sm2

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l=0 .

(38)

Noting that

∂Σg→g′
s (s; Ω→ Ω

′

)

∂sm2

=
∂Σg→g′

s (s; Ω→ Ω
′

)

∂σ
g′m2
→gm2

s,lm2 ,im2

= δg′m2
gδgm2 g′Nim2 ,mm2

(2lm2 + 1)Plm2

(
Ω
′

·Ω
)
, (39)

∂Σg′→g
s (s; Ω

′

→ Ω)

∂sm2

=
∂Σg′→g

s (s; Ω
′

→ Ω)

∂σ
g′m2
→gm2

s,lm2 ,im2

= δgm2 gδg′m2
g′Nim2 ,mm2

(2lm2 + 1)Plm2

(
Ω
′

·Ω
)
, (40)

inserting the results obtained in Equations (39) and (40) into Equation (38), using the addition
theorem for spherical harmonics in one-dimensional geometry and performing the respective angular
integrations, yields the following simplified expression for Equation (38):

(
∂2L

∂s j∂sm2

)(2)
(s=σs,l=0,s=σs,l=0)

= Nim2 ,mm2
(2lm2 + 1)

∫
V dV

[
ξ
(1),gm2
lm2

(r)ξ
(2),g′m2
1, j;lm2

(r) + ϕ
g′m2
lm2

(r)ξ
(2),gm2
2, j;lm2

(r)
]
, (41)

where the flux moments ξ
(2),gm2

′

1, j;lm2
(r) and ξ

(2),gm2
2, j;lm2

(r) are defined as follows:

ξ
(2),g
1, j;l (r) ,

∫
4π

dΩ Pl(Ω)ψ
(2),g
1, j (r,Ω), (42)

ξ
(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)ψ
(2),g
2, j (r,Ω). (43)
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Further contributions stem from Equation (167) in [3] in conjunction with the relations ∂2L
∂s j∂tm2

∂tm2
∂sm2

=

∂2L
∂s j∂sm2

and ∂Σt
g(t)

∂tm2
=

∂Σt
g(t)

∂tm2

∂tm2
∂sm2

=
∂Σt

g(t)
∂sm2

, as follows:

(
∂2L

∂s j∂sm2

)(3)
(s=σs,l=0,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂sm2

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l=0 ,
(44)

where the second-level adjoint functions, θ(2),g1, j , j = 1, . . . , Jσs; g = 1, . . . , G and θ(2),g2, j , j = 1, . . . , Jσs; g =

1, . . . , G, in Equation (44) are the solutions of the following second-level adjoint sensitivity system
(2nd-LASS):

Bg
(
α0

)
θ
(2),g
1, j (r, Ω) =

G∑
g′=1

∫
4π

dΩ
′ ∂Σg′→g

s (s; Ω
′

→ Ω)

∂s j
ϕg′

(
r, Ω

′
)
, j = 1, . . . , Jσs; g = 1, . . . , G; (45)

θ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσs; g = 1, . . . , G, (46)

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) =

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂s j

, j = 1, . . . , Jσs; g = 1, . . . , G; (47)

θ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσs; g = 1, . . . , G. (48)

Noting that

∂Σg→g′
s (s; Ω→ Ω

′

)

∂s j
=
∂Σg→g′

s (s; Ω→ Ω
′

)

∂σ
g′ j→g j

s,l j,i j

= δg′ j gδg j g′Ni j,m j

(
2l j + 1

)
Pl j

(
Ω
′

·Ω
)
, (49)

and inserting the results obtained in Equations (49), (19), and (34), into Equations (45), (47), and (44)
reduces the latter equation to the following expression:

(
∂2L

∂s j∂sm2

)(3)
(s=σs,l=0,s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
θ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + θ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
, (50)

where the second-level adjoint functions, θ(2),g1, j , j = 1, . . . , Jσs; g = 1, . . . , G and θ(2),g2, j , j = 1, . . . , Jσs; g =

1, . . . , G are the solutions of the following simplified form of the second-level adjoint sensitivity system
(2nd-LASS) shown in Equations (45)–(48):

Bg
(
α0

)
θ
(2),g
1, j (r, Ω) = δg j gNi j,m j

(
2l j + 1

)
Pl j(Ω)φ

g′ j
l (r), j = 1, . . . , Jσs; g = 1, . . . , G; l = 0, . . . , ISCT, (51)

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) = δg′ j gNi j,m j

(
2l j + 1

)
Pl j(Ω)ξ

(1),g j

l j
(r), j = 1, . . . , Jσs; g = 1, . . . , G; l = 0, . . . , ISCT. (52)

Finally, contributions to the expression of
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l=0)

also arise from Equation (168)

of [3], namely:(
∂2L

∂s j∂sm2

)(4)
(s=σs,l=0,s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂2Σg′→g

s (s;Ω
′

→Ω)
∂s j∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂sm2

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l=0.

(53)
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Noting that
∂2Σg′→g

s (s; Ω
′

→ Ω)

∂s j∂sm2

=
∂2Σg′→g

s (s; Ω
′

→ Ω)

∂σ
g′ j→g j

s,l j,i j
∂σ

g′m2
→gm2

s,lm2 ,im2

= 0, (54)

inserting the above result together with the results obtained in Equations (39) and (40) into Equation
(53), using the addition theorem for spherical harmonics in one-dimensional geometry, and performing
the respective angular integrations, yields the following expression:

(
∂2L

∂s j∂sm2

)(4)
(s=σs,l=0,s=σs,l=0)

= Nim2 ,mm2
(2lm2 + 1)

∫
V dV

[
ξ
(1),g′m2
lm2

(r)Θ
(2),g′m2
1, j;lm2

(r) + ϕ
g′m2
lm2

(r)Θ
(2),gm2
2, j;lm2

(r)
]
, (55)

where

Θ(2),g
1, j;l (r) ,

∫
4π

dΩ Pl(Ω)θ
(2),g
1, j (r,Ω), (56)

Θ(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)θ
(2),g
2, j (r,Ω). (57)

Collecting the partial contributions obtained in Equations (35), (41), (50) and (55), and setting
lm2 = 0 yields the following result:

(
∂2L

∂s j∂sm2

)
(s=σs,l=0,s=σs,l=0)

=
4∑

i=1

(
∂2L

∂s j∂sm2

)(i)
(s=σs,l=0,s=σs,l=0)

= Nim2 ,mm2

{∫
V dVξ

(1),gm2
0 (r)

[
ξ
(2),g′m2
1, j;0 (r) + Θ

(2),g′m2
1, j;0 (r)

]
+

∫
V dVϕ

g′m2
0 (r)

[
ξ
(2),gm2
2, j;0 (r) + Θ

(2),gm2
2, j;0 (r)

]
−

∫
V dV

∫
4π dΩ

[
ψ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) +ψ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]

−

∫
V dV

∫
4π dΩ

[
θ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + θ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]}

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l=0 ,

(58)

where the zeroth-order moments of the forward and adjoint fluxes moments

ϕ
g′m2 m2

lm2=0 (r), ξ
(1),gm2
lm2=0 (r), ξ

(2),g′m2 m2

1, j;lm2=0 (r), ξ
(2),gm2
2, j;lm2=0(r), Θ

(2),g′m2 m2

1, j;lm2=0 (r) and Θ
(2),gm2
2, j;lm2=0(r) are the special

cases when l = 0 of the general definitions for ϕg
l (r), ξ

(1),g
l (r), ξ(2),g1, j;l (r), ξ

(2),g
2, j;l (r), Θ(2),g

1, j;l (r), and

Θ(2),g
2, j;l (r) presented in Equations (26), (27), (42), (43), (56) and (57), respectively.

2.2.2. Second-Order Sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l≥1)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l≥1

For computing the second-order sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l≥1)

, the parameters s j ≡ σ
g′ j→g j

s,l j=0,i j

correspond to the zeroth-order scattering cross sections, and the parameters sm2 ≡ σ
g′m2
→gm2

s,lm2 ,im2
correspond

to the lth-order (l ≥ 1) scattering cross sections. Since the lth-order (l ≥ 1) scattering cross sections do

not contribute to the total cross sections, the final expression of
(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l≥1)

is obtained by

particularizing Equations (159) and (168) in [3] to the PERP benchmark, and by performing the same
sequence of operations as that leading to the expression shown in Equation (58). The final expression
thus obtained is:(

∂2L
∂s j∂sm2

)
(s=σs,l=0,s=σs,l≥1)

= Nim2 ,mm2
(2lm2 + 1)

{∫
V dVξ

(1),gm2
lm2

(r)
[
ξ
(2),g′m2
1, j;lm2

(r) + Θ
(2),g′m2
1, j;lm2

(r)
]

+
∫

V dVϕ
g′m2
lm2

(r)
[
ξ
(2),gm2
2, j;lm2

(r) + Θ
(2),gm2
2, j;lm2

(r)
]}

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσs,l≥1; l = 1, . . . , ISCT.
(59)



Energies 2019, 12, 4114 12 of 33

2.2.3. Second-Order Sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l=0)

, j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσs,l=0

For computing the second–order sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l=0)

, the parameters s j ≡

σ
g′ j j→g j

s,l j,i j
correspond to the lth-order (l ≥ 1) scattering cross sections and the parameters sm2 ≡

σ
g′m2 m2→gm2

s,lm2=0,im2
correspond to the zeroth-order scattering cross sections. Thus, the final expression

of
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l=0)

is obtained by particularizing Equations (167) and (168) in [3] to the PERP

benchmark. Performing the same sequence of operations as the sequence that produced the expression
shown in Equation (58) yields the following result:(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l=0)

= Nim2 ,mm2

{∫
V dV

[
ξ
(1),gm2
lm2=0 (r)Θ

(2),g′m2
1, j;lm2=0(r) + ϕ

g′m2
lm2=0(r)Θ

(2),gm2
2, j;lm2=0(r)

]
−

∫
V dV

∫
4π dΩ

[
θ
(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + θ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]}

,

f or j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσs,l=0 .

(60)

In view of the symmetry of the mixed second-order sensitivities, the sensitivities(
∂2L

∂s j∂sm2

)
(s=σs,l=0,s=σs,l≥1)

computed using Equation (59) must be equal to the sensitivities(
∂2L

∂s j∂sm2

)
(s=σs,l≥1,s=σs,l=0)

computed using Equation (60). The second-level adjoint functions used in

Equation (59) correspond to the zeroth-order scattering cross sections indexed by j = 1, . . . , Jσs,l=0,
whereas the second-level adjoint functions used in Equation (60) correspond to the lth-order (l ≥ 1)
scattering cross sections indexed by j = 1, . . . , Jσs,l≥1.

2.2.4. Second-Order Sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l≥1)

, j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσs,l≥1

For computing the second-order sensitivities
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l≥1)

, both parameters s j ≡ σ
g′ j→g j

s,l j,i j

and sm2 ≡ σ
g′m2
→gm2

s,lm2 ,im2
correspond to the lth-order (l ≥ 1) scattering cross sections. Thus, the final

expression for
(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l≥1)

is obtained by particularizing Equation (168) in [3] only to the

PERP benchmark. Performing the same sequence of operations as the sequence that produced the
expression shown in Equation (58) yields the following result:(

∂2L
∂s j∂sm2

)
(s=σs,l≥1,s=σs,l≥1)

= Nim2 ,mm2
(2lm2 + 1)

∫
V dV

[
ξ
(1),gm2
lm2

(r)Θ
(2),g′m2
1, j;lm2

(r)

+ϕ
g′m2
lm2

(r)Θ
(2),gm2
2, j;lm2

(r)
]
, j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσs,l≥1; l = 1, . . . , ISCT.

(61)

2.3. Numerical Results for ∂2L/∂s j∂sm2 , j = 1, . . . , Js; m2 = 1, . . . , Js

The dimensions of the sensitivity matrix ∂2L/∂s j∂sm2 , j = 1, . . . , Js; m2 = 1, . . . , Js, of the leakage
response with respect to the scattering cross sections of all isotopes for the PERP benchmark, are
Jσs × Jσs (= 21600 × 21600), where Jσs = (G×G) × I × (ISCT + 1). The elements of ∂2L/∂s j∂sm2 , j =
1, . . . , 21600; m2 = 1, . . . , 21600 were computed using Equations (58), (59), (60) and (61). The remainder
of this section will present the numerical results for the relative second-order sensitivities, denoted as

S(2)
(
σ

g′→g
s,l,i , σh′→h

s,l′,k

)
, which correspond to the generic elements ∂2L/∂s j∂sm2 , and which are defined as

follows:
S(2)

(
σ

g′→g
s,l,i , σh′→h

s,l′,k

)
,

(
∂2L/∂σg′→g

s,l,i ∂σh′→h
s,l′,k

)(
σ

g′→g
s,l,i σh′→h

s,l′,k /L
)
,

f or l, l′ = 0, . . . , 3; i, k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30.
(62)



Energies 2019, 12, 4114 13 of 33

While computing the sensitivities S(2)
(
σ

g′→g
s,l,i , σh′→h

s,l′,k

)
, it has been verified, within the first

five significant digits, that the numerical values obtained using Equation (59) are the same as
the corresponding numerical values obtained using Equation (60). The numerical values of the
second-order relative sensitivities of the leakage response with respect to the scattering cross
sections are small by comparison to the corresponding leakage sensitivities to the total cross
sections presented in Part I [1], the largest of them being of the order of 10−2. The results for
the second-order sensitivities of the leakage response with respect to the 0th-order scattering
cross sections of isotope 1 (239Pu) and to the second–order scattering cross sections of all of

the other isotopes, i.e., S(2)
(
σ

g′→g
s,l=0,i=1, σh′→h

s,l′=0,k

)
=

(
∂2L/∂σg′→g

s,l=0,i=1∂σ
h′→h
s,l′=0,k

)(
σ

g′→g
s,l=0,i=1σ

h′→h
s,l′=0,k/L

)
for

k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30, are summarized in Table 1. The dimensions of each of the
submatrices presented in Table 1 are 900 × 900. As shown in the table, these second-order relative
sensitivities are all much smaller than 1.0.

Table 1. Overview of second-order relative sensitivities of the leakage response with respect to the
zeroth-order (l = 0) scattering cross sections of isotope 1 (239Pu) and to the zeroth-order (l′ = 0)
scattering cross sections of all isotopes, S(2)

(
σ

g′→g
s,l=0,i=1, σh′→h

s,l′=0,k

)
, k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=0,k=1


Max. value =

3.58× 10−2

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=0,k=2


Max. value =

2.56× 10−3

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s′ ,l=0,k=3


Max. value =

1.39× 10−4

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=0,k=4


Max. value =

1.03× 10−4

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=0,k=5


Max. value =

1.75× 10−2

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=0,k=6


Max. value =

3.45× 10−2

The largest of all of the sensitivities summarized in Table 1 are included among the elements

of the submatrix S(2)
(
σ

g′→g
s,l=0,i=1, σh′→h

s,l=0,k=1

)
, g, g′, h, h′ = 1, . . . , 30, which comprises the second-order

relative sensitivities in submatrix of the leakage response with respect to the zeroth-order scattering
cross sections of isotope 1 (239Pu). Moreover, the largest 10 relative sensitivities comprised in

S(2)
(
σ

g′→g
s,l=0,i=1, σh′→h

s,l=0,k=1

)
, g, g′, h, h′ = 1, . . . , 30, are listed in Table 2. All of these sensitivities are with

respect to the zeroth-order self-scattering cross sections, rather than the in-scattering or out-scattering
cross sections. In particular, the largest second-order sensitivity is S(2)

(
σ12→12

s,l=0,i=1, σ13→13
s,l=0,k=1

)
= 3.579×

10−2, which corresponds to the second-order sensitivity of the leakage response with respect to the
self-scattering cross section parameters of σ12→12

s,l=0,i=1 and σ13→13
s,l=0,k=1.

Table 2. Largest ten relative sensitivities comprised in S(2)
(
σ

g′→g
s,l=0,i=1, σh′→h

s,l=0,k=1

)
; g, g′, h, h′ = 1, . . . , 30

(second-order sensitivities of the leakage with respect to the zeroth-order scattering cross sections
of 239Pu).

Rank Relative Sensitivity Rank Relative Sensitivity

1 S(2)
(
σ12→12

s,l=0,i=1, σ13→13
s,l=0,k=1

)
= 3.579× 10−2 6 S(2)

(
σ12→12

s,l=0,i=1, σ12→12
s,l=0,k=1

)
= 2.602× 10−2

2 S(2)
(
σ7→7

s,l=0,i=1, σ12→12
s,l=0,k=1

)
= 3.131× 10−2 7 S(2)

(
σ8→8

s,l=0,i=1, σ12→12
s,l=0,k=1

)
= 2.487× 10−2

3 S(2)
(
σ7→7

s,l=0,i=1, σ13→13
s,l=0,k=1

)
= 2.712× 10−2 8 S(2)

(
σ10→10

s,l=0,i=1, σ12→12
s,l=0,k=1

)
= 2.476× 10−2

4 S(2)
(
σ12→12

s,l=0,i=1, σ14→14
s,l=0,k=1

)
= 2.653× 10−2 9 S(2)

(
σ13→13

s,l=0,i=1, σ14→14
s,l=0,k=1

)
= 2.323× 10−2

5 S(2)
(
σ9→9

s,l=0,i=1, σ12→12
s,l=0,k=1

)
= 2.604× 10−2 10 S(2)

(
σ9→9

s,l=0,i=1, σ13→13
s,l=0,k=1

)
= 2.257× 10−2

Tables 3–5 present an overview of the second-order relative sensitivities of the leakage
response with respect to the zeroth-order scattering cross sections of isotope 1 (239Pu) and

to the lth-order scattering cross sections of all isotopes, defined as S(2)
(
σ

g′→g
s,l=0,i=1, σh′→h

s,l′,k

)
,(

∂2L/∂σg′→g
s,l=0,i=1∂σ

h′→h
s,l′,k

)(
σ

g′→g
s,l=0,i=1σ

h′→h
s,l′,k /L

)
, k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30, for l′ = 1, 2, 3,
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respectively. The results presented in these tables indicate that the higher the order of scattering cross
sections, the smaller the mixed second-order sensitivities.

Table 3. Overview of the second-order mixed relative sensitivities of the leakage response with respect
to the zeroth-order (l = 0) scattering cross sections of 239Pu and to the first-order (l′ = 1) scattering
cross sections of all other isotopes: S(2)

(
σ

g′→g
s,l=0,i=1, σh′→h

s,l′=1,k

)
; k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=1,k=1


Min. value =
−2.70× 10−2

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=1,k=2


Min. value =
−1.62× 10−3

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=1,k=3


Min. value =
−5.45× 10−5

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=1,k=4


Min. value =
−3.31× 10−5

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=1,k=5


Min. value =
−6.60× 10−3

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=1,k=6


Min. value =
−2.64× 10−2

Table 4. Overview of second-order mixed relative sensitivities of the leakage response with respect to
the zeroth-order (l = 0) scattering cross sections of 239Pu and to the second-order (l′ = 2) scattering
cross sections of all other isotopes: S(2)

(
σ

g′→g
s,l=0,i=1, σh′→h

s,l′=2,k

)
; k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=2,k=1


Min. value =
−2.32× 10−3

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=2,k=2


Min. value =
−1.42× 10−4

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=2,k=3


Min. value =
−4.25× 10−6

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=2,k=4


Min. value =
−2.64× 10−6

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=2,k=5


Min. value =

2.13× 10−3

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=2,k=6


Min. value =

6.71× 10−3

Table 5. Overview of second-order mixed relative sensitivities of the leakage response with respect
to the zeroth-order (l = 0) scattering cross sections of 239Pu and to the third-order (l′ = 3) scattering
cross sections of all other isotopes: S(2)

(
σ

g′→g
s,l=0,i=1, σh′→h

s,l′=3,k

)
; k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=3,k=1


Max. value =

3.44× 10−5

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=3,k=2


Max. value =

2.12× 10−6

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=3,k=3


Max. value =

6.02× 10−8

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=3,k=4


Max. value =

3.77× 10−8

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=3,k=5


Max. value =
−5.47× 10−4

S(2)

 σ
g′→g
s,l=0,i=1,
σh′→h

s,l′=3,k=6


Max. value =
−1.38× 10−3

The first-order sensitivities of the leakage response with respect to the zeroth-order self-scattering
cross sections can be compared directly to the corresponding unmixed second-order sensitivities. These
comparisons are presented in Tables 6–11 for all six of the isotopes contained in the PERP benchmark.
The main conclusions that can be drawn from these comparisons are as follows:

(i) both the first- and second-order unmixed sensitivities of the leakage response with respect to the
zeroth-order self-scattering cross sections are very small; and

(ii) the absolute values of the second-order unmixed relative sensitivities are much smaller, by
at least an order of magnitude, than the corresponding first-order sensitivities (except for the
second-order unmixed sensitivity of the leakage with respect to the self-scattering cross section of
isotopes C and 1H in their respective lowest-energy group).
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Table 6. Comparison of first-order relative sensitivities
(
∂L/∂σg→g

s,l=0,i=1

)(
σ

g→g
s,l=0,i=1/L

)
, g = 1, . . . , 30

and second-order relative sensitivities
[
∂2L/

(
∂σ

g→g
s,l=0,i=1

)2
][(
σ

g→g
s,l=0,i=1

)2
/L

]
, g = 1, . . . , 30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 1 (239Pu).

g 1st Order 2nd Order g 1st Order 2nd Order

1 4.586 × 10−5
−3.230 × 10−6 16 4.104 × 10−2

−5.637 × 10−3

2 9.107 × 10−5
−6.176 × 10−6 17 6.790 × 10−3

−2.328 × 10−3

3 2.603 × 10−4
−1.726 × 10−5 18 −2.449 × 10−3 4.478 × 10−4

4 1.205 × 10−3
−7.814 × 10−5 19 −5.053 × 10−3 2.048 × 10−3

5 6.195 × 10−3
−3.836 × 10−4 20 −6.677 × 10−3 3.413 × 10−3

6 1.866 × 10−2
−9.125 × 10−4 21 −7.081 × 10−3 3.863 × 10−3

7 1.026 × 10−1 1.129 × 10−2 22 −4.171 × 10−3 1.791 × 10−3

8 8.174 × 10−2 4.572 × 10−3 23 −2.227 × 10−3 5.661 × 10−4

9 8.556 × 10−2 6.099 × 10−3 24 −9.434 × 10−4 2.124 × 10−4

10 8.143 × 10−2 5.782 × 10−3 25 −5.436 × 10−4 4.436 × 10−5

11 7.336 × 10−2 4.378 × 10−3 26 −1.421 × 10−3 2.785 × 10−4

12 1.344 × 10−1 2.602 × 10−2 27 −4.065 × 10−4 8.741 × 10−5

13 1.156 × 10−1 1.524 × 10−2 28 2.812 × 10−5
−3.808 × 10−7

14 8.538 × 10−2 3.317 × 10−3 29 −1.201 × 10−5 4.457 × 10−8

15 5.069 × 10−2
−3.971 × 10−3 30 −3.721 × 10−4 2.490 × 10−6

Table 7. Comparison of first-order relative sensitivities
(
∂L/∂σg→g

s,l=0,i=2

)(
σ

g→g
s,l=0,i=2/L

)
, g = 1, . . . , 30 and

second-order relative sensitivities
[
∂2L/

(
∂σ

g→g
s,l=0,i=2

)2
][(
σ

g→g
s,l=0,i=2

)2
/L

]
, g = 1, . . . , 30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 2 (240Pu).

g 1st Order 2nd Order g 1st Order 2nd Order

1 2.663 × 10−6
−1.089 × 10−8 16 2.861 × 10−3

−2.739 × 10−5

2 5.126 × 10−6
−1.956 × 10−8 17 4.633 × 10−4

−1.084 × 10−5

3 1.459 × 10−5
−5.419 × 10−8 18 −1.664 × 10−4 2.068 × 10−6

4 6.664 × 10−5
−2.389 × 10−7 19 −3.487 × 10−4 9.756 × 10−6

5 3.452 × 10−4
−1.191 × 10−6 20 −5.301 × 10−4 2.151 × 10−5

6 1.064 × 10−3
−2.971 × 10−6 21 −5.338 × 10−4 2.196 × 10−5

7 5.996 × 10−3 3.859 × 10−5 22 −3.748 × 10−4 1.446 × 10−5

8 4.910 × 10−3 1.650 × 10−5 23 −5.268 × 10−4 3.168 × 10−5

9 5.255 × 10−3 2.300 × 10−5 24 −1.825 × 10−4 7.949 × 10−6

10 5.078 × 10−3 2.249 × 10−5 25 −2.841 × 10−5 1.212 × 10−7

11 4.775 × 10−3 1.855 × 10−5 26 −1.084 × 10−4 1.619 × 10−6

12 8.897 × 10−3 1.141 × 10−4 27 −1.745 × 10−4 1.611 × 10−5

13 8.253 × 10−3 7.773 × 10−5 28 9.535 × 10−5
−4.379 × 10−6

14 6.287 × 10−3 1.799 × 10−5 29 −1.568 × 10−8 7.604 × 10−14

15 3.561 × 10−3
−1.960 × 10−5 30 −2.615 × 10−6 1.229 × 10−10
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Table 8. Comparison of first-order relative sensitivities
(
∂L/∂σg→g

s,l=0,i=3

)(
σ

g→g
s,l=0,i=3/L

)
, g = 1, . . . , 30

and second-order relative sensitivities
[
∂2L/

(
∂σ

g→g
s,l=0,i=3

)2
][(
σ

g→g
s,l=0,i=3

)2
/L

]
, g = 1, . . . , 30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 3 (69Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 1.163 × 10−7
−2.079 × 10−11 16 1.546 × 10−4

−7.993 × 10−8

2 2.625 × 10−7
−5.132 × 10−11 17 2.689 × 10−5

−3.652 × 10−8

3 8.420 × 10−7
−1.806 × 10−10 18 −1.069 × 10−5 8.538 × 10−9

4 4.462 × 10−6
−1.071 × 10−9 19 −2.932 × 10−5 6.897 × 10−8

5 2.349 × 10−5
−5.518 × 10−9 20 −4.056 × 10−5 1.259 × 10−7

6 6.060 × 10−5
−9.631 × 10−9 21 −3.308 × 10−5 8.430 × 10−8

7 2.595 × 10−4 7.230 × 10−8 22 −1.335 × 10−5 1.833 × 10−8

8 1.755 × 10−4 2.108 × 10−8 23 −6.505 × 10−6 4.831 × 10−9

9 1.936 × 10−4 3.123 × 10−8 24 −3.084 × 10−6 2.269 × 10−9

10 2.151 × 10−4 4.035 × 10−8 25 −2.099 × 10−6 6.614 × 10−10

11 2.328 × 10−4 4.409 × 10−8 26 −7.099 × 10−6 6.951 × 10−9

12 5.141 × 10−4 3.811 × 10−7 27 −1.872 × 10−6 1.854 × 10−9

13 4.495 × 10−4 2.306 × 10−7 28 1.104 × 10−7
−5.872× 10−12

14 3.241 × 10−4 4.779 × 10−8 29 −5.239 × 10−8 8.486 × 10−13

15 1.876 × 10−4
−5.436 × 10−8 30 −2.162 × 10−6 8.410 × 10−11

Table 9. Comparison of first-order relative sensitivities
(
∂L/∂σg→g

s,l=0,i=4

)(
σ

g→g
s,l=0,i=4/L

)
, g = 1, . . . , 30

and second-order relative sensitivities
[
∂2L/

(
∂σ

g→g
s,l=0,i=4

)2
][(
σ

g→g
s,l=0,i=4

)2
/L

]
, g = 1, . . . , 30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 4 (71Ga).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 7.828 × 10−8
−9.413 × 10−12 16 1.008 × 10−4

−3.401 × 10−8

2 1.789 × 10−7
−2.383 × 10−11 17 1.741 × 10−5

−1.531 × 10−8

3 5.712 × 10−7
−8.311 × 10−11 18 −6.772 × 10−6 3.424 × 10−9

4 3.004 × 10−6
−4.855 × 10−10 19 −1.725 × 10−5 2.387 × 10−8

5 1.586 × 10−5
−2.514 × 10−9 20 −2.506 × 10−5 4.806 × 10−8

6 4.095 × 10−5
−4.398 × 10−9 21 −2.106 × 10−5 3.417 × 10−8

7 1.626 × 10−4 2.837 × 10−8 22 −2.414 × 10−4 5.999 × 10−6

8 1.041 × 10−4 7.408 × 10−9 23 −6.918 × 10−6 5.465 × 10−9

9 1.177 × 10−4 1.153 × 10−8 24 −1.236 × 10−6 3.644 × 10−10

10 1.344 × 10−4 1.576 × 10−8 25 −8.839 × 10−7 1.173 × 10−10

11 1.491 × 10−4 1.807 × 10−8 26 −3.037 × 10−6 1.272 × 10−9

12 3.299 × 10−4 1.569 × 10−7 27 −8.052 × 10−7 3.429 × 10−10

13 2.943 × 10−4 9.885 × 10−8 28 4.757 × 10−8
−1.090 × 10−12

14 2.191 × 10−4 2.184 × 10−8 29 −2.259 × 10−8 1.578 × 10−13

15 1.272 × 10−4
−2.502 × 10−8 30 −9.317 × 10−7 1.562 × 10−11
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Table 10. Comparison of first-order relative sensitivities
(
∂L/∂σg→g

s,l=0,i=5

)(
σ

g→g
s,l=0,i=5/L

)
, g = 1, . . . , 30

and second-order relative sensitivities
[
∂2L/

(
∂σ

g→g
s,l=0,i=5

)2
][(
σ

g→g
s,l=0,i=5

)2
/L

]
, g = 1, . . . , 30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 5 (C).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 8.999 × 10−6
−2.379 × 10−7 16 4.322 × 10−2

−4.681 × 10−3

2 1.603 × 10−5
−3.693 × 10−7 17 2.231 × 10−2

−3.523 × 10−3

3 5.392 × 10−5
−1.410 × 10−6 18 1.355 × 10−2

−2.419 × 10−3

4 2.362 × 10−4
−5.666 × 10−6 19 9.436 × 10−3

−1.810 × 10−3

5 1.040 × 10−3
−2.240 × 10−5 20 6.954 × 10−3

−1.444 × 10−3

6 2.637 × 10−3
−4.103 × 10−5 21 5.184 × 10−3

−1.174 × 10−3

7 2.401 × 10−2 3.824 × 10−4 22 3.997 × 10−3
−9.374 × 10−4

8 1.644 × 10−2
−2.327 × 10−5 23 3.105 × 10−3

−7.736 × 10−4

9 1.407 × 10−2 5.068 × 10−5 24 2.858 × 10−3
−6.495 × 10−4

10 1.761 × 10−2 8.554 × 10−5 25 2.103 × 10−3
−5.637 × 10−4

11 1.939 × 10−2 4.351 × 10−5 26 1.859 × 10−3
−4.938 × 10−4

12 6.645 × 10−2 4.252 × 10−3 27 2.093 × 10−3
−4.318 × 10−4

13 6.257 × 10−2 1.441 × 10−3 28 2.042 × 10−3
−3.829 × 10−4

14 4.959 × 10−2
−1.655 × 10−3 29 9.596 × 10−4

−2.858 × 10−4

15 3.184 × 10−2
−2.609 × 10−3 30 2.301 × 10−3

−3.293 × 10−3

Table 11. Comparison of first-order relative sensitivities
(
∂L/∂σg→g

s,l=0,i=6

)(
σ

g→g
s,l=0,i=6/L

)
, g = 1, . . . , 30

and second-order relative sensitivities
[
∂2L/

(
∂σ

g→g
s,l=0,i=6

)2
][(
σ

g→g
s,l=0,i=6

)2
/L

]
, g = 1, . . . , 30 of the leakage

response with respect to the zeroth-order self-scattering cross sections of isotope 6 (1H).

g 1st-Order 2nd-Order g 1st-Order 2nd-Order

1 8.168 × 10−7
−1.961 × 10−9 16 1.012 × 10−1

−2.564 × 10−2

2 1.627 × 10−6
−3.805 × 10−9 17 6.699 × 10−2

−3.177 × 10−2

3 8.710 × 10−6
−3.681 × 10−8 18 4.644 × 10−2

−2.843 × 10−2

4 6.054 × 10−5
−3.722 × 10−7 19 3.433 × 10−2

−2.396 × 10−2

5 3.873 × 10−4
−3.106 × 10−6 20 2.584 × 10−2

−1.993 × 10−2

6 1.272 × 10−3
−9.542 × 10−6 21 1.945 × 10−2

−1.653 × 10−2

7 1.362 × 10−2 1.230 × 10−4 22 1.504 × 10−2
−1.327 × 10−2

8 8.486 × 10−3
−6.197 × 10−6 23 1.170 × 10−2

−1.099 × 10−2

9 1.197 × 10−2 3.672 × 10−5 24 1.077 × 10−2
−9.225 × 10−3

10 1.535 × 10−2 6.502 × 10−5 25 7.931 × 10−3
−8.013 × 10−3

11 1.721 × 10−2 3.427 × 10−5 26 7.022 × 10−3
−7.049 × 10−3

12 6.573 × 10−2 4.160 × 10−3 27 7.917 × 10−3
−6.180 × 10−3

13 6.483 × 10−2 1.547 × 10−3 28 7.829 × 10−3
−5.629 × 10−3

14 5.767 × 10−2
−2.238 × 10−3 29 3.773 × 10−3

−4.418 × 10−3

15 4.284 × 10−2
−4.722 × 10−3 30 2.720 × 10−2

−4.602 × 10−1

The results presented in Tables 6–11 indicate that the largest values for both the first- and
second-order relative sensitivities for the isotopes 239Pu, 240Pu, 69Ga, and 71Ga, are for the energy
group 12. For the isotope C, the largest values for the first- and second-order relative sensitivities are
for the 12th energy group and the 16th energy group, respectively. For the isotope 1H, the largest
values for the first- and second-order relative sensitivities are for the 12th energy group and the 30th
energy group, respectively. It is noteworthy that all of the first-order relative sensitivities of the leakage
response with respect to the zeroth-order scattering cross sections of isotopes C and 1H are positive,
signifying that an increase in the corresponding microscopic cross sections will cause an increase in the
value of the response L (i.e., more neutrons will leak out of the sphere). These sensitivities indicate that
an increase in low energy scattering moderates and reflects slow neutrons into the plutonium, which
increases the induced fission rate in 239Pu, thus increasing the neutron flux, which in turn increases the
neutron leakage.
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3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with respect to the
Parameters Underlying the Benchmark’s Scattering and Total Cross Sections

This section presents the computation and analysis of the numerical results for the second-order
mixed sensitivities of the leakage response with respect to the group-averaged scattering and total
microscopic cross sections of all isotopes of the PERP benchmark. As has been shown by Cacuci [3], these
mixed sensitivities can be computed using two distinct expressions, involving distinct second-level
adjoint systems and the corresponding adjoint functions, by considering either the computation of
∂2L/∂s j∂tm2 , j = 1, . . . , Jσs; m2 = 1, . . . , Jσt or the computation of ∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 =

1, . . . , Jσs. These two distinct paths for computing the 2nd-order sensitivities with respect to the
group-averaged scattering and total microscopic cross sections will be presented in Sections 3.1 and 3.2,
respectively. Of course, the end results produced by these two distinct paths must be identical, thus
providing a mutual “solution verification” that the respective computations were performed correctly.

3.1. Second-Order Sensitivities ∂2L/∂s j∂tm2 , j = 1, . . . , Jσs; m2 = 1, . . . , Jσt

The equations needed for deriving the expressions of the second-order sensitivities
∂2L/∂s j∂tm2 , j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt when the parameters s j correspond to the zeroth-order
(l = 0) scattering cross sections will differ from the equations needed for deriving the expressions
of the second-order sensitivities ∂2L/∂s j∂tm2 , j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσt when the parameters s j
correspond to the higher-order (l ≥ 1) scattering cross sections. There are two cases, as follows:

(1)
(

∂2L
∂s j∂tm2

)
(s=σs,l=0,t=σt)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt, where the quantities s j enumerate the

parameters underlying the zeroth-order scattering cross sections, and the quantities tm2 enumerate the
parameters underlying the total cross sections;

(2)
(

∂2L
∂s j∂tm2

)
(s=σs,l≥1,t=σt)

, j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσt, where the quantities s j enumerate the

parameters underlying the lth-order (l ≥ 1) scattering cross sections, and the quantities tm2 enumerate
the parameters underlying the total cross sections.

3.1.1. Second-Order Sensitivities
(

∂2L
∂s j∂tm2

)
(s=σs,l=0,t=σt)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt

The direct expression for computing
(

∂2L
∂s j∂tm2

)
(s=σs,l=0,t=σt)

is obtained by particularizing Equation

(167) in [3] to the PERP benchmark, which yields:

(
∂2L

∂s j∂tm2

)(1)
(s=σs,l=0,t=σt)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂tm2

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt.
(63)

The expression of
(

∂2L
∂s j∂tm2

)
(s=σs,l=0,t=σt)

must also include the contributions stemming from the

total cross sections, since the total cross sections comprises the zeroth-order scattering cross sections.
The contributions are computed by particularizing Equation (158) in [3] to the PERP benchmark and

by noting that ∂2L
∂t j∂tm2

∂t j
∂s j

= ∂2L
∂s j∂tm2

and ∂2Σt
g(t)

∂t j∂tm2

∂t j
∂s j

=
∂2Σt

g(t)
∂s j∂tm2

, to obtain:

(
∂2L

∂s j∂tm2

)(2)
(s=σs,l=0,t=σt)

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂s j∂tm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂tm2

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt.

(64)
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Adding Equations (63) and (64) yields the following expression:(
∂2L

∂s j∂tm2

)
(s=σs,l=0,t=σt)

=
(

∂2L
∂s j∂tm2

)(1)
(s=σs,l=0,t=σt)

+
(

∂2L
∂s j∂tm2

)(2)
(s=σs,l=0,t=σt)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂tm2

−

G∑
g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂s j∂tm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂tm2

,

f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt.

(65)

In Equation (65), the parameters s j correspond to the zeroth-order scattering cross sections, so that

s j ≡ σ
g′ j→g j

s,l j=0,i j
, while the parameters tm2 correspond to the total cross sections, so that tm2 ≡ σ

gm2
t,im2

, where

the subscripts im2 and gm2 denote the isotope and energy group associated with tm2 , respectively.
Noting that

∂2Σt
g(t)

∂s j∂tm2

=
∂2Σt

g(t)

∂σ
g′ j j→g j

s,l j,i j
∂σ

gm2
t,im2

= 0, (66)

∂Σt
g(t)

∂tm2

=
∂Σt

g(t)

∂σ
gm2
t,im2

=

∂

(
M∑

m=1

I∑
i=1

Ni,m∂σ
g
t,i

)
∂σ

gm2
t,im2

= δgm2 gNim2 ,mm2
, (67)

and inserting the results obtained in Equations (66) and (67) into Equation (65), yields:(
∂2L

∂s j∂tm2

)
(s=σs,l=0,t=σt)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

{
ψ(1),gm2 (r, Ω)

[
ψ
(2),gm2
1, j (r, Ω) + θ

(2),gm2
1, j (r, Ω)

]
+ϕgm2 (r, Ω)

[
ψ
(2),gm2
2, j (r, Ω) + θ

(2),gm2
2, j (r, Ω)

]}
, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jσt.

(68)

3.1.2. Second-Order Sensitivities
(

∂2L
∂s j∂tm2

)
(s=σs,l≥1,t=σt)

, j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσt

When considering the higher-order scattering cross sections, s j ≡ σ
g′ j j→g j

s,l j,i j
enumerates the

parameters underlying the lth-order (l ≥ 1) scattering cross sections, while the tm2 ≡ σ
gm2
t,im2

enumerates

the parameters underlying the total cross sections. For this case, the contributions to
(

∂2L
∂s j∂tm2

)
(s=σs,l≥1,t=σt)

stem just from the right side of the general expression shown in Equation (63), which gives:(
∂2L

∂s j∂tm2

)
(s=σs,l≥1,t=σt)

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω)

+θ
(2),g
2, j (r, Ω)ϕg(r, Ω)

∂Σt
g(t)

∂tm2

]
, f or j = 1, . . . , Jσs,l≥1; m2 = 1, . . . , Jσt.

(69)

Using the result obtained in Equation (67) in Equation (69) transforms the latter into the following
form: (

∂2L
∂s j∂tm2

)
(s=σs,l≥1,t=σt)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
θ
(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω)

+θ
(2),gm2
2, j (r, Ω)ϕgm2 (r, Ω)

]
, j = 1, . . . , J σs,l≥1; m2 = 1, . . . , J σt.

(70)
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3.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσs

The mixed second-order sensitivities ∂2L/∂s j∂tm2 , j = 1, . . . , Jσs; m2 = 1, . . . , Jσt can also be
computed using the alternative expressions for ∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσs. The
numerical results obtained from both expressions must be equal to each other, thus providing a mutual
“solution verification” of the correctness of the numerical solution procedure employed for solving the
respective second-level adjoint systems. As in Section 3.1, there will be two cases, as follows:

(1)
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l=0)

, j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l=0, where the quantities t j enumerate the

parameters underlying the total cross sections, and the quantities sm2 denote the parameters underlying
the zeroth-order scattering cross sections;

(2)
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l≥1)

, j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l≥1, where the quantities t j enumerate the

parameters underlying the total cross sections, and the quantities sm2 denote the parameters underlying
the lth-order (l ≥ 1) scattering cross sections.

3.2.1. Second-Order Sensitivities
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l=0)

, j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l=0

Contributions to the second-order sensitivities
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l=0)

stem from Equation (159)

in [3], which takes the following form for the PERP benchmark:(
∂2L

∂t j∂sm2

)(1)
(t=σt,s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂sm2

,

f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l=0;

(71)

Contributions to the second-order sensitivities
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l=0)

, in addition to those shown

in Equation (71), also arise from the zeroth-order scattering cross sections. These contributions

are computed by particularizing Equation (158) in [3], and by noting that ∂2L
∂t j∂tm2

∂tm2
∂sm2

= ∂2L
∂t j∂sm2

,
∂2Σt

g(t)
∂t j∂tm2

∂tm2
∂sm2

=
∂2Σt

g(t)
∂t j∂sm2

and ∂2Σt
g(t)

∂tm2

∂tm2
∂sm2

=
∂2Σt

g(t)
∂sm2

, to obtain:

(
∂2L

∂t j∂sm2

)(2)
(t=σt,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂t j∂sm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂sm2

,

f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l=0.

(72)

In Equations (71) and (72), the adjoint functions ψ(2),g
1, j , j = 1, . . . , Jσt; g = 1, . . . , G and ψ(2),g

2, j , j =
1, . . . , Jσt; g = 1, . . . , G are the solutions of the second-level adjoint sensitivity system (2nd-LASS) as
presented in Equations (32), (24), (39) and (40) of Part I [1], which are reproduced below for convenient
reference:

Bg
(
α0

)
ψ
(2),g
1, j (r,Ω) = −δg j gNi j,m jϕ

g(r,Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (73)

ψ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jσt; g = 1, . . . , G, (74)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (75)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσt; g = 1, . . . , G. (76)
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Adding Equations (71) and (72) yields the following expression:(
∂2L

∂t j∂sm2

)
(t=σt,s=σs,l=0)

=
(

∂2L
∂t j∂sm2

)(1)
(t=σt,s=σs,l=0)

+
(

∂2L
∂t j∂sm2

)(2)
(t=σt,s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂t j∂sm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂sm2

,

f or j = 1, . . . , J σt; m2 = 1, . . . , J σs,l=0.

(77)

Noting that
∂2Σt

g(t)
∂t j∂sm2

=
∂2Σt

g(t)

∂σ
g j

t,i j
∂σ

g′m2 j→gm2

s,lm2 ,im2

= 0, (78)

inserting the results obtained in Equations (78), (34), (39) and (40) into Equation (77), using the addition
theorem for spherical harmonics in one-dimensional geometry, performing the respective angular
integrations, and setting lm2 = 0 in the resulting expression yields:(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l=0)

= Nim2 ,mm2

∫
V dV

[
ξ
(1),gm2
0 (r)ξ

(2),g′m2
1, j;0 (r) + ϕ

g′m2
0 (r)ξ

(2),gm2
2, j;0 (r)

]
−Nim2 ,mm2

∫
V dV

∫
4π dΩ

[
ψ
(2),g′m2
1, j (r, Ω)ψ

(1), g′m2 (r, Ω) +ψ
(2),g′m2
2, j (r, Ω)ϕ

g′m2 (r, Ω)
]
,

f or j = 1, . . . , J σt; m2 = 1, . . . , J σs,l=0.

(79)

3.2.2. Second-Order Sensitivities
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l≥1)

, j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l≥1

The contributions to
(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l≥1)

, j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l≥1 stem only from the

right side of the general expression shown in Equation (71), which takes on the following specific form
in this case:(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l≥1)

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂sm2

,

j = 1, . . . , J σt; m2 = 1, . . . , J σs,l≥1.

(80)

For this case, t j ≡ σ
g j

t,i j
enumerates the parameters underlying the total cross sections, while

sm2 ≡ σ
g′m2
→gm2

s,lm2 ,im2
enumerates the parameters underlying the lth-order (l ≥ 1) scattering cross sections.

Using the result obtained in Equations (39) and (40) in Equation (80) transforms the latter into the
following form:(

∂2L
∂t j∂sm2

)
(t=σt,s=σs,l≥1)

= Nim2 ,mm2
(2lm2 + 1)

∫
V dV

[
ξ
(1),gm2
lm2

(r)ξ
(2),g′m2
1, j;lm2

(r) + ϕ
g′m2
lm2

(r)ξ
(2),gm2
2, j;lm2

(r)
]
,

f or j = 1, . . . , Jσt; m2 = 1, . . . , Jσs,l≥1; l = 1, . . . , ISCT.
(81)



Energies 2019, 12, 4114 22 of 33

3.3. Numerical Results for ∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσs

The second-order absolute sensitivities, ∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσs, of the leakage
response with respect to the total cross sections and the scattering cross sections for all isotopes of the
PERP benchmark have been computed using Equations (79) and (81), and have been independently
verified by re-computing them using Equations (68) and (70), respectively. The dimensions of the matrix
∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσs is Jσt × Jσs (= 180× 21600), where Jσt = G× I = 30× 6 = 180
and Jσs = G × G × (ISCT + 1) × I = 30 × 30 × 4 × 6 = 21 600. For convenient comparisons, the
numerical results presented in this sub-section are displayed in unit-less values of the relative

sensitivities corresponding to ∂2L/∂t j∂sm2 , which are denoted as S(2)
(
σ

g
t,i, σ

g′→h
s,l,k

)
and are defined

as follows:

S(2)
(
σ

g
t,i, σ

g′→h
s,l,k

)
,

∂2L

∂σ
g
t,i∂σ

g′→h
s,l,k

σ
g
t,iσ

g′→h
s,l,k

L

, l = 0, . . . , 3; i, k = 1, . . . , 6; g, g′, h = 1, . . . , 30. (82)

To facilitate the presentation and interpretation of the numerical results, the Jσt× Jσs (= 180× 21600)

matrix S(2)
(
σ

g
t,i, σ

g′→h
s,l,k

)
was partitioned into I × I × (ISCT + 1) = 6 × 6 × 4 submatrices, each of

dimensions G× (G ·G) = 30× 900; the respective results are summarized in following four subsections,
which present the results for scattering orders l = 0, l = 1, l = 2, and l = 3, respectively.

3.3.1. Results for the Relative Sensitivities S(2)
(
σ

g
t,i, σ

g′→h
s,l=0,k

)
The results for second-order relative sensitivities of the leakage response with respect to the total

cross sections and the zeroth-order scattering cross sections between all isotopes, S(2)
(
σ

g
t,i, σ

g′→h
s,l=0,k

)
,(

∂2L/∂σg
t,i∂σ

g′→h
s,l=0,k

)(
σ

g
t,iσ

g′→h
s,l=0,k/L

)
, l = 0; i, k = 1, . . . , 6; g, g′, h = 1, . . . , 30, are presented in Table 12.

For every submatrix in Table 12 that comprises components having absolute values greater than 1.0,
the total number of such elements are counted and shown in the table. Otherwise, if the absolute
values of all elements in such a submatrix are less than 1.0, only the value of the largest element of
the respective submatrix is shown in Table 12. It is noteworthy that most of the largest elements of

S(2)
(
σ

g
t,i, σ

g′→h
s,l=0,k

)
,

(
∂2L/∂σg

t,i∂σ
g′→h
s,l=0,k

)(
σ

g
t,iσ

g′→h
s,l=0,k/L

)
are negative, and the vast majority of them are

very small. For example, of the 30× 900 elements in the submatrix S(2)
(
σ

g
t, 1, σg′→h

s,l= 0,1

)
, 7658 elements are

negative, 2482 elements are positive, and the rest are zero.
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Table 12. Summary of second-order relative sensitivities of the leakage response with respect to the total

cross sections and the zeroth-order (l = 0) scattering cross sections for all isotopes: S(2)
(
σ

g
t,i, σ

g′→h
s,l=0,k

)
,(

∂2L/∂σg
t,i∂σ

g′→h
s,l=0,k

)(
σ

g
t,iσ

g′→h
s,l=0,k/L

)
, l = 0; i, k = 1, . . . , 6; g, g′, h = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 0,1


Min. value =
−6.44 × 10−1

g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 0,2


Min. value =
−4.26 × 10−2

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 0,3


Min. value =
−2.46 × 10−3

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 0,4


Min. value =
−1.58 × 10−3

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 0,5


Min. value =
−2.65 × 10−1

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 0,6


Min. value =
−3.48 × 10−1

at g=12,
g′=12, h=13

i = 2
(240Pu)

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 0,1


Min. value =
−4.08 × 10−2

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 0,2


Min. value =
−2.70 × 10−3

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 0,3


Min. value =
−1.56 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 0,4


Min. value =
−1.01 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 0,5


Min. value =
−1.69 × 10−2

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 0,6


Min. value =
−2.20 × 10−2

at g=12,
g′=12, h=13

i = 3
(69Ga)

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 0,1


Min. value =
−1.83 × 10−3

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 0,2


Min. value =
−1.27 × 10−4

at g=13,
g′=13, h=13

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 0,3


Min. value =
−7.01 × 10−6

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 0,4


Min. value =
−4.54 × 10−6

at g=13,
g′=13, h=13

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 0,5


Min. value =
−7.57 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 0,6


Min. value =
−1.03 × 10−3

at g=16,
g′=16, h=16

i = 4
(71Ga)

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 0,1


Min. value =
−1.24 × 10−3

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 0,2


Min. value =
−8.58 × 10−5

at g=13,
g′=13, h=13

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 0,3


Min. value =
−4.75 × 10−6

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 0,4


Min. value =
1.93 × 10−5

at g=22,
g′=22, h=22

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 0,5


Min. value =
−5.13 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 0,6


Min. value =
1.03 × 10−3

at g=22,
g′=22, h=23

i = 5
(C)

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 0,1


Min. value =
−1.71 × 10−1

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 0,2


Min. value =
−1.13 × 10−2

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 0,3


Min. value =
−6.54 × 10−4

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 0,4


Min. value =
−4.20 × 10−4

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 0,5


Min. value =
−1.13 × 10−1

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 0,6


Min. value =
−9.03 × 10−1

at g=30,
g′=30, h=30

i = 6
(1H)

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 0,1


g8 elements

with absolute
values >1.0

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 0,2


Min. value =
−1.35 × 10−1

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 0,3


Min. value =
−7.80 × 10−3

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 0,4


Min. value =
−5.01 × 10−3

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 0,5


3 elements with
absolute values

>1.0

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 0,6


26 elements with
absolute values

>1.0

As shown in Table 12, the largest absolute values of the mixed second-order sensitivities mostly
involve the zeroth-order self-scattering cross sections in the 12th energy group of the isotopes, and
either the total cross sections for the 12th energy group for isotopes 239Pu,240 Pu,69 Ga and 71Ga, or the
total cross sections for the 30th energy group for isotopes C and 1H.

Additional information regarding the three submatrices in Table 12 that have elements with
absolute values greater than 1.0 is provided below:

(1) The eight elements in the submatrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=1

)
, g, g′, h = 1, . . . , 30 (of second-order

sensitivities of the leakage response with respect to the total cross sections of 1H and to the
zeroth-order scattering cross sections of 239Pu) that have values greater than 1.0 are presented
in Table 14. All of these relative sensitivities are with respect to the same total cross section
parameter σg=30

t,6 and to the zeroth-order self-scattering cross sections. The relative sensitivities
with respect to the 0th-order in-scattering and out-scattering cross sections are all smaller than 1.0.
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(2) The sensitivity matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=5

)
, g, g′, h = 1, . . . , 30, comprising the second-order

mixed sensitivities of the leakage response with respect to the total cross sections of 1H and to
the zeroth-order scattering cross sections of C, includes 3 elements that have values greater than
1.0: S(2)

(
σ30

t,i=6, σ12→12
s,l=0,k=5

)
= −1.346, S(2)

(
σ30

t,i=6, σ13→13
s,l=0,k=5

)
= −1.284, and S(2)

(
σ30

t,i=6, σ14→14
s,l=0,k=5

)
=

−1.031. These three sensitivities are with respect to the same total cross section parameter σg=30
t,6

and to the zeroth-order self-scattering cross sections, just as the sensitivities presented in Table 14.

(3) The sensitivity matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=6

)
, g, g′, h = 1, . . . , 30, comprising the second-order

sensitivities of the leakage response with respect to the total cross sections of 1H and to the
zeroth-order scattering cross sections of 1H, includes 26 elements that have values greater than
1.0, as listed in Table 13. All these 26 relative sensitivities are with respect to the total cross section
σ

g=30
t,6 . The element having the largest absolute value is S(2)

(
σ30

t,i=6, σ30→30
s,l=0,k=6

)
= −10.77.

Table 13. Elements of S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=6

)
, g, g′, h = 1, . . . , 30 with absolute values greater than 1.0.

g′ → h
11→ 12

g′ → h
12→ 12

g′ → h
12→ 13

g′ → h
13→ 13

g′ → h
12→ 14

g′ → h
13→ 14

g′ → h
14→ 14

g′ → h
12→ 15

g′ → h
13→ 15

g=30 −1.205 −1.332 −2.338 −1.329 −1.609 −2.252 −1.170 −1.076 −1.539

g′ → h
14→ 15

g′ → h
12→ 16

g′ → h
13→ 16

g′ → h
14→ 16

g′ → h
15→ 16

g′ → h
16→ 16

g′ → h
15→ 17

g′ → h
16→ 17

g′ → h
17→ 17

g=30 −1.967 −1.152 −1.677 −2.198 −2.618 −2.157 −1.099 −3.087 −1.485

g′ → h
16→ 18

g′ → h
17→ 18

g′ → h
18→ 18

g′ → h
18→ 19

g′ → h
19→ 20

g′ → h
20→ 21

g′ → h
29→ 30

g′ → h
30→ 30

g=30 −1.266 −2.023 −1.089 −1.496 −1.243 −1.039 −1.205 −10.77

Table 14. Elements of S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=1

)
, g, g′, h = 1, . . . , 30, with absolute values greater than 1.0.

g′ → h
7→ 7

g′ → h
8→ 8

g′ → h
9→ 9

g′ → h
10→ 10

g′ → h
11→ 11

g′ → h
12→ 12

g′ → h
13→ 13

g′ → h
14→ 14

g=30 −1.598 −1.262 −1.313 −1.244 −1.118 −2.039 −1.739 −1.268

3.3.2. Results for the Relative Sensitivities S(2)
(
σ

g
t,i, σ

g′→h
s,l=1,k

)
The numerical results for S(2)

(
σ

g
t,i, σ

g′→h
s,l=1,k

)
,

(
∂2L/∂σg

t,i∂σ
g′→h
s,l=1,k

)(
σ

g
t,iσ

g′→h
s,l=1,k/L

)
, l = 1; i, k = 1, . . . , 6,

g, g′, h = 1, . . . , 30, comprising the second-order relative sensitivities of the leakage response with
respect to the total cross sections and the first-order scattering cross sections between all isotopes, are

summarized in Table 15. Only 15 components of S(2)
(
σ

g
t,i, σ

g′→h
s,l=1,k

)
have relative sensitivities greater

than 1.0.



Energies 2019, 12, 4114 25 of 33

Table 15. Summary of second-order relative sensitivities of the leakage response with respect to the total

cross sections and the first-order (l = 1) scattering cross sections for all isotopes: S(2)
(
σ

g
t,i, σ

g′→h
s,l=1,k

)
,(

∂2L/∂σg
t,i∂σ

g′→h
s,l=1,k

)(
σ

g
t,iσ

g′→h
s,l=1,k/L

)
, l = 1; i, k = 1, . . . , 6; g, g′, h = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 1,1


Max. value =

3.34 × 10−1

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 1,2


Max. value =

2.07 × 10−2

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 1,3


Max. value =

6.84 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 1,4


Max. value =

4.10 × 10−4

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l=1,5


Max. value =

1.10 × 10−1

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 1,6


Max. value =

3.46 × 10−1

at g=12,
g′=12, h=12

i = 2
(240Pu)

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 1,1


Max. value =

2.10 × 10−2

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 1,2


Max. value =

1.31 × 10−3

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 1,3


Max. value =

4.33 × 10−5

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 1,4


Max. value =

2.57 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 1,5


Max. value =

6.98 × 10−5

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 1,6


Max. value =

2.20 × 10−2

at g=12,
g′=12, h=12

i = 3
(69Ga)

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 1,1


Max. value =

9.42 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 1,2


Max. value =

5.90 × 10−5

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 1,3


Max. value =

1.95 × 10−6

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 1,4


Max. value =

1.09 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 1,5


Max. value =

3.14 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 1,6


Max. value =

1.02 × 10−3

at g=16,
g′=16, h=16

i = 4
(71Ga)

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 1,1


Max. value =

6.39 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 1,2


Max. value =

4.00 × 10−5

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 1,3


Max. value =

1.32 × 10−6

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 1,4


Max. value =

7.24 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 1,5


Max. value =

2.13 × 10−4

at g=12,
g′=12, h=12

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 1,6


Max. value =

6.71 × 10−4

at g=13,
g′=12, h=13

i = 5
(C)

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 1,1


Max. value =

1.12 × 10−1

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 1,2


Max. value =

6.74 × 10−3

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 1,3


Max. value =

2.26 × 10−4

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 1,4


Max. value =

1.37 × 10−4

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 1,5


Max. value =

4.34 × 10−2

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 1,6


Max. value =

5.86 × 10−1

at g=30,
g′=30, h=30

i = 6
(1H)

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 1,1


2 elements with
absolute values

>1.0

S(2)

 σ
g
t, 6,

σ
g′→h
s,l=1,2


Max. value =

8.04 × 10−2

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 1,3


Max. value =

2.70 × 10−3

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 1,4


Max. value =

1.64 × 10−3

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 1,5


Max. value =

5.18 × 10−1

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 1,6


13 elements with
absolute values

>1.0

As shown in Table 15, the largest absolute values of the mixed second-order sensitivities involve
mostly the first-order self-scattering cross sections in the 7th, 12th, or 30th energy groups of the
isotopes, along (mostly) with either the total cross sections for the 7th or 12th energy group for isotopes
239Pu,240 Pu,69 Ga and 71Ga, or (occasionally) the total cross sections for the 30th energy group for
isotopes C and 1H.

Additional details regarding the two submatrices in Table 15 that comprise several elements with
absolute values greater than 1.0, are provided below:
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(1) The matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=1,k=1

)
,

(
∂2L/∂σg

t,i=6∂σ
g′→h
s,l=1,k=1

)(
σ

g
t,i=6σ

g′→h
s,l=1,k=1/L

)
, g, g′, h = 1, . . . , 30,

of second-order sensitivities of the leakage response with respect to the total cross sections of 1H
and to the first-order scattering cross sections of 239Pu, comprises two elements that have values
greater than 1.0, namely S(2)

(
σ30

t,i=6, σ7→7
s,l=1,k=1

)
= 1.337 and S(2)

(
σ30

t,i=6, σ12→12
s,l=1,k=1

)
= 1.018. Both are

related to the total cross section parameter σg=30
t,i=6 and the first-order self-scattering cross sections.

(2) The matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=1,k=6

)
=

(
∂2L/∂σg

t,i=6∂σ
g′→h
s,l=1,k=6

)(
σ

g
t,i=6σ

g′→h
s,l=1,k=6/L

)
, g, g′, h = 1, . . . , 30,

of second-order sensitivities of the leakage response with respect to the total cross sections of 1H
and the first-order scattering cross sections of 1H, comprises 13 elements that have values greater
than 1.0 which are listed in Table 16. All the 13 sensitivities presented in this table are with respect
to the total cross section parameter σg=30

t,i=6 . The largest sensitivity is S(2)
(
σ30

t,i=6, σ30→30
s,l=1,k=6

)
= 6.996.

Table 16. Elements of S(2)
(
σ

g
t,i=6, σg′→h

s,l=1,k=6

)
, g, g′, h = 1, . . . , 30, having values greater than 1.0.

g′ → h
11→ 12

g′ → h
12→ 12

g′ → h
12→ 13

g′ → h
13→ 13

g′ → h
13→ 14

g′ → h
14→ 14

g′ → h
14→ 15

g=30 1.212 1.628 2.003 1.522 1.779 1.289 1.448

g′ → h
15→ 16

g′ → h
16→ 16

g′ → h
16→ 17

g′ → h
17→ 17

g′ → h
17→ 18

g′ → h
30→ 30

g=30 1.631 1.979 1.642 1.312 1.096 6.996

3.3.3. Results for the Relative Sensitivities S(2)
(
σ

g
t,i, σ

g′→h
s,l=2,k

)
Table 17 summarizes the results obtained for the second-order relative sensitivities of the leakage

response with respect to the total cross sections and the second-order scattering cross sections between all

isotopes, S(2)
(
σ

g
t,i, σ

g′→h
s,l=2,k

)
=

(
∂2L/∂σg

t,i∂σ
g′→h
s,l=2,k

)(
σ

g
t,iσ

g′→h
s,l=2,k/L

)
, l = 2; i, k = 1, . . . , 6; g′, g, h = 1, . . . , 30.

All components of this matrix have absolute values smaller than 1.0. The largest negative value is
S(2)

(
σ30

t,i=6, σ12→12
s,l=2,k=6

)
= −4.258× 10−1.

As shown in Table 17, the largest values of the mixed second-order sensitivities in each of the
respective submatrix involve the second-order self-scattering cross sections in the 7th or 12th energy
groups of the isotopes, and the total cross sections corresponding either to the 7th energy group for
isotopes 239Pu,240 Pu,69 Ga and 71Ga, or to the 30th energy group for isotopes C and 1H, respectively.



Energies 2019, 12, 4114 27 of 33

Table 17. Summary of second-order relative sensitivities of the leakage response with respect to the total

cross sections and the second-order (l = 2) scattering cross sections for all isotopes: S(2)
(
σ

g
t,i, σ

g′→h
s,l=2,k

)
=(

∂2L/∂σg
t,i∂σ

g′→h
s,l=2,k

)(
σ

g
t,iσ

g′→h
s,l=2,k/L

)
, l = 2; i, k = 1, . . . , 6; g, g′, h = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 2,1


Min. value =
−2.51 × 10−2

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 2,2


Min. value =
−1.54 × 10−3

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 2,3


Min. value =
−4.61 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 2,4


Min. value =
−2.86 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l=2,5


Min. value =
−2.63 × 10−2

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 2,6


Min. value =
−1.23 × 10−1

at g=12,
g′=12, h=12

i = 2
(240Pu)

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 2,1


Min. value =
−1.58 × 10−3

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 2,2


Min. value =
−9.66 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 2,3


Min. value =
−2.90 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 2,4


Min. value =
−1.79 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 2,5


Min. value =
−1.65 × 10−3

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 2,6


Min. value =
−7.77 × 10−3

at g=12,
g′=12, h=12

i = 3
(69Ga)

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 2,1


Min. value =
−6.71 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 2,2


Min. value =
−4.10 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 2,3


Min. value =
−1.23 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 2,4


Min. value =
−7.64 × 10−8

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 2,5


Min. value =
−7.01 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 2,6


Min. value =
−3.49 × 10−4

at g=12,
g′=12, h=12

i = 4
(71Ga)

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 2,1


Min. value =
−4.45 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 2,2


Min. value =
−2.72 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 2,3


Min. value =
−8.16 × 10−8

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 2,4


Min. value =
−5.06 × 10−8

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 2,5


Min. value =
−4.65 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 2,6


Min. value =
−2.37 × 10−4

at g=12,
g′=12, h=12

i = 5
(C)

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 2,1


Min. value =
−4.86 × 10−3

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 2,2


Min. value =
−2.97 × 10−4

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 2,3


Min. value =
−8.91 × 10−6

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 2,4


Min. value =
−5.53 × 10−6

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 2,5


Min. value =
−1.02 × 10−2

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 2,6


Min. value =
−3.57 × 10−2

at g=30,
g′=12, h=12

i = 6
(1H)

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 2,1


Min. value =
−5.79 × 10−2

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 2,2


Min. value =
−3.55 × 10−3

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 2,3


Min. value =
−1.06 × 10−4

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 2,4


Min. value =
−6.60 × 10−5

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 2,5


Min. value =
−1.22 × 10−1

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 2,6


Min. value =
−4.26 × 10−1

at g=30,
g′=12, h=12

3.3.4. Results for the Relative Sensitivities S(2)
(
σ

g
t,i, σ

g′→h
s,l=3,k

)
Table 18 summarizes the results for the matrix S(2)

(
σ

g
t,i, σ

g′→h
s,l=3,k

)
=(

∂2L/∂σg
t,i∂σ

g′→h
s,l=3,k

)(
σ

g
t,iσ

g′→h
s,l=3,k/L

)
, l = 3; i, k = 1, . . . , 6; g′, g, h = 1, . . . , 30, comprising the second-order

relative sensitivities of the leakage response with respect to the total cross sections and the
third-order scattering cross sections for all isotopes. The largest absolute values of these mixed
second-order sensitivities involve the third-order self-scattering cross sections in the 6th or 7th or
12th energy group, and either the total cross sections for the 7th or 12th energy group for isotopes
239Pu,240 Pu,69 Ga and 71Ga, or the total cross sections for the 30th energy group for isotopes C and 1H,
respectively. All of these relative sensitivities have values much smaller than 1.0; the largest value is
S(2)

(
σ30

t,i=6, σ12→12
s,l=3,k=6

)
= 7.13× 10−2.
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Table 18. Summary of the second-order relative sensitivities of the leakage response with respect
to the total cross sections and the third-order (l = 3) scattering cross sections between all isotopes:

S(2)
(
σ

g
t,i, σ

g′→h
s,l=3,k

)
=

(
∂2L/∂σg

t,i∂σ
g′→h
s,l=3,k

)(
σ

g
t,iσ

g′→h
s,l=3,k/L

)
, i, k = 1, . . . , 6; g′, g, h = 1, . . . , 30.

k = 1
(239Pu)

k = 2
(240Pu)

k = 3
(69Ga)

k = 4
(71Ga)

k = 5
(C)

k = 6
(1H)

i = 1
(239Pu)

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 3,1


Max. value =

9.12 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 3,2


Max. value =

5.61 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 3,3


Max. value =

1.59 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 3,4


Max. value =

1.00 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l=3,5


Max. value =

7.12 × 10−3

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 1,

σ
g′→h
s,l= 3,6


Max. value =

2.76 × 10−2

at g=12,
g′=12, h=12

i = 2
(240Pu)

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 3,1


Max. value =

5.73 × 10−6

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 3,2


Max. value =

3.52 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 3,3


Max. value =

1.00 × 10−8

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 3,4


Max. value =

6.28 × 10−9

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l=3,5


Max. value =

4.47 × 10−4

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 2,

σ
g′→h
s,l= 3,6


Max. value =

1.75 × 10−3

at g=12,
g′=12, h=12

i = 3
(69Ga)

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 3,1


Max. value =

2.43 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 3,2


Max. value =

1.50 × 10−8

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 3,3


Max. value =
4.25 × 10−10

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 3,4


Max. value =
2.67 × 10−10

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l=3,5


Max. value =

1.90 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 3,

σ
g′→h
s,l= 3,6


Max. value =

7.85 × 10−5

at g=12,
g′=12, h=12

i = 4
(71Ga)

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 3,1


Max. value =

1.61 × 10−7

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 3,2


Max. value =

9.93 × 10−9

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 3,3


Max. value =
2.82 × 10−10

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 3,4


Max. value =
1.77 × 10−10

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l=3,5


Max. value =

1.26 × 10−5

at g=7,
g′=7, h=7

S(2)

 σ
g
t, 4,

σ
g′→h
s,l= 3,6


Max. value =

5.32 × 10−5

at g=12,
g′=12, h=12

i = 5
(C)

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 3,1


Max. value =
−3.67 × 10−6

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 3,2


Max. value =
−2.34 × 10−7

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 3,3


Max. value =
−3.63 × 10−9

at g=30,
g′=10, h=10

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 3,4


Max. value =

2.14 × 10−9

at g=30,
g′=6, h=6

S(2)

 σ
g
t, 5,

σ
g′→h
s,l=3,5


Max. value =

2.39 × 10−3

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 5,

σ
g′→h
s,l= 3,6


Max. value =

5.98 × 10−3

at g=30,
g′=12, h=12

i = 6
(1H)

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 3,1


Max. value =
−4.38 × 10−5

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 3,2


Max. value =
−2.79 × 10−6

at g=30,
g′=12, h=12

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 3,3


Max. value =
−4.33 × 10−8

at g=30,
g′=10, h=10

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 3,4


Max. value =

2.56 × 10−8

at g=30,
g′=6, h=6

S(2)

 σ
g
t, 6,

σ
g′→h
s,l=3,5


Max. value =

2.85 × 10−2

at g=30,
g′=7, h=7

S(2)

 σ
g
t, 6,

σ
g′→h
s,l= 3,6


Max. value =

7.13 × 10−2

at g=30,
g′=12, h=12

Comparing the results for the matrices S(2)
(
σ

g
t,i, σ

g′→h
s,l,k

)
, for scattering orders l = 0, l = 1, l = 2,

and l = 3, as summarized in Tables 12, 15, 17 and 18, respectively, indicates that for a submatrix that is
located in the same position in these tables, the higher the scattering order, the smaller the absolute value

of the second-order mixed sensitivities. For example, for the submatrix S(2)
(
σ

g
t, i=6, σg′→h

s,l,k=6

)
located at the

lower right corner in each table, the largest absolute values decrease as the scattering order increases, i.e.,
S(2)

(
σ30

t,i=6, σ30→30
s,l=0,k=6

)
= −10.77, S(2)

(
σ30

t,i=6, σ30→30
s,l=1,k=6

)
= 6.996, S(2)

(
σ30

t,i=6, σ12→12
s,l=2,k=6

)
= −4.258 × 10−1,

and S(2)
(
σ30

t,i=6, σ12→12
s,l=3,k=6

)
= 7.13× 10−2, respectively.

4. Uncertainties in the PERP Leakage Response Induced by Uncertainties in Scattering Cross
Sections

Since correlations among the group cross sections are not available for the PERP benchmark, the
maximum entropy principle (see, e.g., [8]) indicates that neglecting them minimizes the inadvertent
introduction of spurious information into the computations of the various response moments. As has
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been discussed in Part I [1], up to second-order response sensitivities, the expected value of the PERP
benchmark’s leakage response has the following expression:

[E(L)]s = L
(
α0

)
+ [E(L)](2,U)

s , (83)

where the subscript “s” indicates contributions solely from the group-averaged uncorrelated scattering
microscopic cross sections, and where the second-order contributions, [E(L)](2,U)

s , to the expected
value, [E(L)]s, of the leakage response L(α), is given by the following expression:

[E(L)](2,U)
s =

1
2

G∑
g=1

G∑
g′=1

I∑
i=1

ISCT∑
l=0

∂2L(α)

∂σ
g′→g
s,l,i ∂σ

g′→g
s,l,i

(
sg′→g

s,l,i

)2
, G = 30, I = 6, ISCT = 3. (84)

In Equation (84), the quantity sg′→g
s,l,i denotes the standard deviation associated with the imprecisely

known model parameter σg′→g
s,l,i .

Taking into account contributions solely from the group-averaged uncorrelated and
normally-distributed scattering microscopic cross sections (which will be indicated by using the
superscript “(U,N)” in the following equations), the expression for computing the variance, denoted as
[var(L)](U,N)

s , of the leakage response of the PERP benchmark takes on the following form:

[var(L)](U,N)
s = [var (L)](1,U,N)

s + [var (L)](2,U,N)
s , (85)

where the first-order contribution term, [var (L)](1,U,N)
s , to the variance [var(L)](U,N)

s is defined as

[var (L)](1,U,N)
s ,

G∑
g=1

G∑
g′=1

I∑
i=1

ISCT∑
l=0

 ∂L(α)

∂σ
g′→g
s,l,i


2(

sg′→g
s,l,i

)2
, G = 30, I = 6, ISCT = 3, (86)

while the second-order contribution term, [var (L)](2,U,N)
s , to the variance [var(L)](U,N)

s is defined as

[var (L)](2,U,N)
s ,

1
2

G∑
g=1

G∑
g′=1

I∑
i=1

ISCT∑
l=0

 ∂2L(α)

∂σ
g′→g
s,l,i ∂σ

g′→g
s,l,i

(
sg′→g

s,l,i

)2


2

, G = 30, I = 6, ISCT = 3. (87)

Again, taking into account contributions solely from the group-averaged uncorrelated scattering
microscopic cross sections, the third-order moment, [µ3(L)]

(U,N)
s , of the leakage response for the PERP

benchmark takes on the following form:

[µ3(L)]
(U,N)
s = 3

G∑
g=1

G∑
g′=1

I∑
i=1

ISCT∑
l=0

 ∂L(α)

∂σ
g′→g
s,l,i


2

∂2L(α)

∂σ
g′→g
s,l,i ∂σ

g′→g
s,l,i

(
sg′→g

s,l,i

)4
, G = 30, I = 6, ISCT = 3. (88)

As Equation (88) indicates, if the second-order sensitivities were unavailable, the third moment
[µ3(L)]

(U,N)
s would vanish and the response distribution would by default be assumed to be Gaussian.

The skewness, [γ1(L)]
(U,N)
s , induced by the variances of microscopic scattering cross sections in the

leakage response, L, is defined as follows:

[γ1(L)]
(U,N)
s = [µ3(L)]

(U,N)
s /

{
[var(L)](U,N)

s

}3/2
. (89)

The effects of the first- and, respectively, second-order sensitivities on the response’s expected
value, variance and skewness can be quantified by considering typical values for the standard deviations
for the uncorrelated group-averaged isotopic scattering cross sections, using these values together with
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the respective sensitivities computed in Section 2 in Equations (84)–(89). The results thus obtained
are presented in Table 19, considering uniform parameter standard deviations of 1%, 5%, and 10%,
respectively. These results indicate that the effects of both the first- and second-order sensitivities on the
expected response value, its standard deviation and skewness are negligible, which is not surprising in
view of the values for the first- and second-order sensitivities already presented in Tables 6–11.

Table 19. Comparison of Response Moments for Different Relative Standard Deviations of the
Uncorrelated Scattering Cross Section Parameters.

Relative Standard Deviation 10% 5% 1%

L
(
α0

)
1.7648× 106 1.7648× 106 1.7648× 106

[E(L)](2,U)
s −1.3473× 104 −3.3682× 103

−1.3473× 102

[E(L)]s = L
(
α0

)
+ [E(L)](2,U)

s 1.7513× 106 1.7614× 106 1.7647× 106

[var (L)](1,U,N)
s 1.2379× 108 3.0947× 109 102379× 108

[var (L)](2,U,N)
s 4.3207× 107 2.7004× 106 4.3207× 103

[var (L)](U,N)
s = [var (L)](1,U,N)

s + [var (L)](2,U,N)
s 1.2422× 1010 3.0974× 109 1.2379× 108

[µ3(L)]
(U,N)
s −4.9281× 1012

−3.0800× 1011 −4.9281× 108

[γ1(L)]
(U,N)
s = [µ3(L)]

(U,N)
s /

{
[var(L)](U,N)

s

}3/2
−3.5595× 10−3

−1.7868× 10−3
−3.5780× 10−4

The contributions to the leakage response moments stemming from the group-averaged
uncorrelated microscopic scattering cross sections are much smaller than the corresponding
contributions stemming from the group-averaged uncorrelated microscopic total cross sections. This
fact can be readily illustrated by considering standard deviations of 10% for all of the group-averaged
uncorrelated microscopic scattering and total cross sections, and by comparing the corresponding
results in Table 19 and Table 25 of Part I [1], which reveals that:

[E(L)](2,U)
s = −1.3473× 104

� [E(L)](2,U)
t = 4.5980× 106,

[var (L)](1,U,N)
s = 1.2379× 1010

� [var (L)](1,U,N)
t = 3.4196× 1012,

[var (L)](2,U,N)
s = 4.3207× 107

� [var (L)](2,U,N)
t = 2.8789× 1013,∣∣∣∣[γ1(L)]

(U,N)
s

∣∣∣∣ = 3.5595× 10−3
� [γ1(L)]

(U,N)
t = 0.3407.

It is noteworthy that several mixed second-order sensitivities of the leakage response with respect
to the total and scattering cross sections, as shown in Section 3, have values that are significantly larger
(by several orders of magnitude) than the values of the unmixed sensitivities. Recall that the following
sensitivities have absolute values larger than 1.0:

(a) 8 elements of the matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=1

)
, g, g′, h = 1, . . . , 30, presented in Table 14;

(b) 3 elements of the matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=5

)
, g, g′, h = 1, . . . , 30, as listed in Table 12;

(c) 26 elements of the matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=0,k=6

)
, g, g′, h = 1, . . . , 30, as listed in Table 13;

(d) 2 elements of the matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=1,k=1

)
, g, g′, h = 1, . . . , 30, as listed in Table 15;

(e) 13 elements of the matrix S(2)
(
σ

g
t,i=6, σg′→h

s,l=1,k=6

)
, g, g′, h = 1, . . . , 30, as listed in Table 16.

The above results indicate that it would be very important to obtain correlations among the
various model parameter, since these correlations could contribute, in conjunction with the mixed
second-order sensitivities, to the ultimate values of the response moments. Since the mixed second-order
sensitivities of the leakage response to the group-averaged total and scattering microscopic cross
sections are significantly larger than the unmixed second-order sensitivities of the leakage response to
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the group-averaged scattering microscopic cross sections, it is likely that the correlations among the
respective total and scattering cross sections could provide significantly larger contributions to the
response moments than just the standard deviations of the scattering cross sections.

5. Conclusions

This work has presented results for the first- and second-order sensitivities of the PERP total
leakage response with respect to the benchmark’s group-averaged microscopic scattering and total
cross sections.

1. The first-order sensitivities of the leakage response with respect to the zeroth-order self-scattering
cross sections can be compared directly to the corresponding unmixed second-order sensitivities.
For all six of the isotopes contained in the PERP benchmark, both the first- and the second-order
unmixed relative sensitivities of the leakage response with respect to the zeroth-order
self-scattering cross sections are small, and the second-order relative sensitivities are much
smaller, by at least an order of magnitude, than the corresponding first-order relative sensitivities.

2. For the second-order mixed sensitivities ∂2L/∂s j∂sm2 , j = 1, . . . , Jσs; m2 = 1, . . . , Jσs, the numerical
values of the corresponding relative sensitivities are very small, the largest of them being of the
order of 10−2. The largest second-order relative sensitivity is S(2)

(
σ12→12

s,l=0,i=1, σ13→13
s,l=0,k=1

)
= 3.579×

10−2. The largest relative sensitivities in each of the respective submatrix S(2)
(
σ

g′→g
s,l,i , σh′→h

s,l′,k

)
, l, l′ =

0, . . . , 3; i, k = 1, . . . , 6; g, g′, h, h′ = 1, . . . , 30 are mostly with respect to the self-scattering cross
sections, rather than to the in-scattering or out-scattering cross sections.

3. For the second-order mixed sensitivities ∂2L/∂t j∂sm2 , j = 1, . . . , Jσt; m2 = 1, . . . , Jσs, the
corresponding relative sensitivities are generally very small, with a few exceptions. Among
all the Jσt × Jσs = 180 × 21600 elements, only 52 of them have absolute values of the relative

sensitivities greater than 1.0; most of these elements belong to the submatrices S(2)
(
σ

g
t,6, σg′→h

s,l=0,1

)
,

S(2)
(
σ

g
t,6, σg′→h

s,l=0,6

)
, S(2)

(
σ

g
t,6, σg′→h

s,l=1,1

)
and S(2)

(
σ

g
t,6, σg′→h

s,l=1,6

)
, where g, g′, h = 1, . . . , 30. All of these

large values are related to the total cross section parameter σ30
t,6 of isotope 6 (1H). Also, the largest

absolute values in each of those submatrices are mostly related to the self-scattering cross sections
in the 12th or 30th energy groups of isotope 1 (239Pu) and isotope 6 (1H), respectively. The overall
largest mixed relative sensitivity is S(2)

(
σ30

t,6, σ30→30
s,l=0,6

)
= −10.77.

4. In each submatrix of S(2)
(
σ

g
t,i, σ

g′→h
s,l,k

)
, l = 0, . . . , 3; i, k = 1, . . . , 6; g, g′, h = 1, . . . , 30, most of

the largest absolute value of the 2nd-order relative sensitivities are negative when involving
odd-order (l = 1, 3) scattering cross sections; in contradistinction, most of these large sensitivities
are positive when involving even-order (l = 0, 2) scattering cross sections. Furthermore, the larger
the Legendre expansion order (l = 0, . . . , 3), the smaller the absolute values of the corresponding
second-order mixed relative sensitivities.

5. This work has not taken into consideration the effects of the mixed second-order sensitivities of
the leakage response with respect to the scattering and total microscopic cross section parameters
since no correlations among these parameters are available. However, several mixed second-order
sensitivities of the leakage response to the group-averaged microscopic total and scattering
cross sections are significantly larger than the unmixed second-order sensitivities of the leakage
response with respect to the group-averaged microscopic scattering cross sections. Therefore, it
would be very important to obtain correlations among the respective total and scattering cross
sections, since these correlations could provide, through the mixed second-order sensitivities,
significantly larger contributions to the response moments than just the contributions from the
standard deviations of the scattering cross sections.
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Subsequent works will report the values and effects of the first- and second-order sensitivities of the
PERP’s leakage response with respect to the group-averaged isotopic fission cross sections and average
number of neutrons per fission [9], source parameters [10], isotopic number densities and fission
spectrum [11]. The overall conclusions and implications of this pioneering and uniquely comprehensive
second-order sensitivity and uncertainty analysis of a paradigm reactor physics benchmark will also
be presented in [11].
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