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Abstract: Fast pyrolysis is envisioned as a promising technology for the utilization of forestry wood
waste (e.g., widely available from tree logging) as resources. In this study, the potential of an
innovative approach was explored to convert forestry wood waste of Vernicia fordii (VF) into energy
products based on fast pyrolysis combined with nano-catalysts. The results from fast pyrolysis using
three types of nano-catalysts showed that the distribution and composition of the pyrolytic product
were affected greatly by the type of nano-catalyst employed. The use of nano-Fe2O3 and nano-NiO
resulted in yields of light hydrocarbons (alkanes and olefins) as 38.7% and 33.2%, respectively.
Compared to the VF sample, the use of VF-NiO and VF-Fe2O3 led to significant increases in the
formation of alkanes (e.g., from 14% to 26% and 31%, respectively). In addition, the use of nano-NiO
and nano-Fe2O3 catalysts was found to promote the formation of acid, aromatics, and phenols that
can be used as chemical feedstocks. The NiO catalyst affected the bio-oil composition by promoting
lignin decomposition for the formation of aromatics and phenolics, which were increased from 9.52%
to 14.40% and from 1.65% to 4.02%, respectively. Accordingly, the combined use of nano-catalysts
and fast pyrolysis can be a promising technique for bio-energy applications to allow efficient recovery
of fuel products from forestry wood waste.
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1. Introduction

Due to the extensive exploitation and consumption of non-renewable fossil fuels, environmental
pollution, climate change, and ecological damage have become increasingly severe [1–3]. Therefore,
the development and extension of alternative energy resources are required [4–6]. Biomass is extremely
abundant in nature in various types as representative renewable resource [7]. It is generally present in
diverse forms such as agricultural crops, crop residues, woods, forest industry wastes, and aquatic
plants [8–10]. For a long time, biomass was directly burned as a fuel to obtain energy, which
inflicted severe environmental pollution. Therefore, the valorization of biomass into biofuels or fine
chemicals via chemical conversion technologies could lessen the dependence of modernization on
fossil resources [11], thereby alleviating the bottleneck associated with the shrinking fossil resource
reserves [12,13]. Furthermore, the efficient utilization of carbon-neutral biomass is vital to mitigate
the greenhouse effect provoked by the combustion and/or inappropriate handling of biomass. Hence,
an alternative technology is required to facilitate effective conversion of biomass into fuels or fine
chemicals of good quality [6,14–16].

Forestry waste can be referred to as the residues produced in the process of forestry production
and processing such as the residues of tree cutting and wood processing, urban landscaping waste,
forest tending and thinning residues, economic forest pruning waste, and waste wood materials.
According to the calculation of all the above waste, there were about 454.04 million tons of forestry
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waste in China in 2014 [17]. The pruning waste from commercial forests was about 141.74 million
tons [17]. Vernicia fordii is widely planted in China as an important economic tree species with high
utilization and economic value. A good amount of pruning waste is generated from Vernicia fordii trees
each year, which is often discarded or burned. Therefore, how to make full use of such waste has great
significance for the high value utilization of biomass waste.

The use of catalysts in fast pyrolysis can potentially improve the quality of bio-oil. These
catalysts could lead to an upgrade of the properties of bio-oil and enhance the formation of valuable
chemicals [18]. Banks et al. [19] investigated the bio-oils produced from fast pyrolysis of alkali metal
(potassium) impregnated biomass. The potassium promoted the pyrolytic decomposition biomass
(cellulose and hemicellulose) and the formation of levoglucosan and hydroxymethyl cyclopentene
derivatives. Chen et al. [20] studied fast pyrolysis of biomass with metal nitrides (TiN or GaN) for
furfural production, whereby direct decomposition of oligosaccharides was catalyzed to yield furfural.
Through catalysis, aromatics could also be obtained from lignin depolymerization during biomass
pyrolysis [21–24]. NiO and Fe2O3 have attracted extensive interest in recent years for their catalytic
and magnetic properties [25–27]. Nanometer-sized NiO and Fe2O3 have many improved properties
compared to their pristine (or bulk) forms. It was found that nano-NiO particles exerted more effective
catalytic effects than micro-NiO particles in biomass pyrolysis [24]. Khelfa et al. [28], using Fe2O3 as
catalyst, studied the catalytic pyrolysis and gasification of Miscanthus giganteus. Their results showed
that Fe2O3 as a catalyst was active in gasification and hydrogen production. In addition, Fe2O3 could
break down the tar produced and improved the partial oxidation of phenols during the thermal
degradation of the biomass. Despite the potential utility of these catalysts, no reports have been made
to describe the effects of the nano-NiO and nano-Fe2O3 catalysts on the fast pyrolysis of forestry
wood waste.

In light of the high economical value and high availability of forestry wood waste (Vernicia fordii),
an integrated approach is proposed to combine fast pyrolysis with nano-catalysts (NiO and Fe2O3)
to convert forestry wood waste (Vernicia fordii) into energy products. Characterization of the wood
waste was first performed followed by pyrolysis using three types of nano-catalysts to investigate their
influence on the distribution and composition of the pyrolytic product. Thermogravimetric analysis
and pyrolysis gas chromatography–mass spectrometry were used to analyze the chemical components
of the bio-oil produced and to compare the catalytic effect of nano-catalysts on fast pyrolysis of Vernicia
fordii wood waste.

2. Materials and Methods

2.1. Materials

Forestry wood waste of Vernicia fordii wood (VF) was collected from Funiu Mountain, China.
The VF was ground and screened to a particle size range of 149–177 µm before its preservation at −3 ◦C
under vacuum conditions. Methanol, benzene, and ethanol of chromatographic grade were purchased
from Hunan Huihong Reagent Co., Ltd., China. The nano-catalysts (α-Fe2O3 (30 nm, spherical, 99.5%)
and NiO (60–120 nm, spherical, 99.5%)) used in this work were directly procured from Shanghai
Macklin Biochemical Co., Ltd. For the current study, the mass of VF was fixed as 20 g with and without
the addition of 1 wt% nano-catalysts either individually or as a mixture (NiO, Fe2O3, or NiO/Fe2O3

mixture (equal mass of NiO and Fe2O3)). Thus, there were four pyrolysis samples investigated, which
were designated as VF, VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3. The flow chart of forestry wood waste
procedure is shown in Figure 1.
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Figure 1. The flow chart of forestry wood waste pyrolysis procedure (Note: VF is the abbreviation of 
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2.2. Characterization of Forestry Wood Waste (Vernicia fordii Wood)  
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and ethanol/ether (1:1) solution for 12 h, respectively, to remove possible contaminants that possibly 
arose as interference. About 40 g of Vernicia fordii wood (VF) with a particle size range of 149–177 μm 
was parceled into three cotton bags, which were later tied and sewed with the cotton thread. 
Henceforth, the extraction of VF was conducted in the Soxhlet extractor for 6 h at 60 °C with 300 mL 
solvents such as methanol, ethanol/benzene, and ethanol/ether. After extraction, the solvents were 
removed via rotary evaporation (55 °C, 10–50 Pa) and desiccated with anhydrous sodium sulfate. 
Prior to any characterization, the resulting VF extracts were stored at −3 °C. Then, the VF extracts 
were subjected to FTIR and GC/MS for their functional groups and chemical compositions, 
individually. By using an FTIR spectrophotometer (IR100), the KBr discs containing 1 wt% finely 
ground sample were scanned with infrared radiation from 4000 to 500 cm−1. The GC/MS analysis 
was executed with a GC/MS (Agilent 7890B-5977A) equipped with an HP-5MS column (30 m × 25 
μm × 0.25 μm). The GC was initiated at 50 °C, heated to 250 °C with a ramping rate of 8 °C/min, and 
finally heated to 300 °C with a ramping rate of 5 °C/min. Meanwhile, the inlet temperature, column 
flow, split ratio, and carrier gas were 250 °C, 1.0 mL/min, 20:1, and helium, respectively. For the MS, 
the electrons of samples were ionized with electron energy of 70 eV from the ion source at 230 °C, 
while the temperature of the quadrupole was 150 °C. The MS program was capable of detecting 
compounds in the mass range of 30–600 amu. For qualitative spectrum matching, the Wiley 7n.1 
standard spectrum was used [29].  
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(VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3) were analyzed to scrutinize the effect of nano-catalyst 
addition. In this study, the catalyst-to-feed-ratio was 1 to 100. For TG analysis, about 5 mg of samples 
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examine the thermal decomposition of samples. The non-isothermal TG curves were obtained by 
heating the samples from ambient temperature to 850 °C under N2 atmosphere with two different 
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temperature of the pyrolysis product transfer line and injection valve was set to 300 °C to prevent the 
recondensation of vaporized bio-oil within the instrumentation. The GC was furnished with a 
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Figure 1. The flow chart of forestry wood waste pyrolysis procedure (Note: VF is the abbreviation of
Vernicia fordii).

2.2. Characterization of Forestry Wood Waste (Vernicia fordii Wood)

Three pairs of cotton bags and cotton thread were soaked in methanol, ethanol/benzene (1:1),
and ethanol/ether (1:1) solution for 12 h, respectively, to remove possible contaminants that possibly
arose as interference. About 40 g of Vernicia fordii wood (VF) with a particle size range of 149–177
µm was parceled into three cotton bags, which were later tied and sewed with the cotton thread.
Henceforth, the extraction of VF was conducted in the Soxhlet extractor for 6 h at 60 ◦C with 300 mL
solvents such as methanol, ethanol/benzene, and ethanol/ether. After extraction, the solvents were
removed via rotary evaporation (55 ◦C, 10–50 Pa) and desiccated with anhydrous sodium sulfate.
Prior to any characterization, the resulting VF extracts were stored at −3 ◦C. Then, the VF extracts were
subjected to FTIR and GC/MS for their functional groups and chemical compositions, individually.
By using an FTIR spectrophotometer (IR100), the KBr discs containing 1 wt% finely ground sample
were scanned with infrared radiation from 4000 to 500 cm−1. The GC/MS analysis was executed with a
GC/MS (Agilent 7890B-5977A) equipped with an HP-5MS column (30 m × 25 µm × 0.25 µm). The GC
was initiated at 50 ◦C, heated to 250 ◦C with a ramping rate of 8 ◦C/min, and finally heated to 300 ◦C
with a ramping rate of 5 ◦C/min. Meanwhile, the inlet temperature, column flow, split ratio, and carrier
gas were 250 ◦C, 1.0 mL/min, 20:1, and helium, respectively. For the MS, the electrons of samples were
ionized with electron energy of 70 eV from the ion source at 230 ◦C, while the temperature of the
quadrupole was 150 ◦C. The MS program was capable of detecting compounds in the mass range of
30–600 amu. For qualitative spectrum matching, the Wiley 7n.1 standard spectrum was used [29].

2.3. Catalytic Fast Pyrolysis of Forestry Wood Waste (Vernicia fordii Wood) Using Nano-Catalyst

The fast pyrolysis of forestry wood waste (Vernicia fordii wood, VF) using nano-catalysts was
investigated by TG and Py-GC/MS analysis. One pristine VF and three amended VF samples (VF-NiO,
VF-Fe2O3, and VF-NiO/Fe2O3) were analyzed to scrutinize the effect of nano-catalyst addition.
In this study, the catalyst-to-feed-ratio was 1 to 100. For TG analysis, about 5 mg of samples were
loaded on the platinum pan inside a thermal gravimetric analyzer (TA Instruments Q50) to examine
the thermal decomposition of samples. The non-isothermal TG curves were obtained by heating the
samples from ambient temperature to 850 ◦C under N2 atmosphere with two different heating rates
(20 ◦C/min and 55 ◦C/min) [30].

In order to conduct in-situ analysis of the bio-oil contents, the samples were further analyzed via
Py-GC/MS analysis by using integrated pyrolysis-GC/MS instrumentation (CDS Pyroprobe 5000-Agilent
7890B-5977A). In the pyrolyzer, the samples were subjected to fast pyrolysis via heating under inert
helium flow to 850 ◦C at a high heating rate of 250 ◦C/s, whereby the maximum pyrolysis temperature
was maintained for 15 s. Apart from creating an inert environment, the helium also acted as a carrier
gas that delivered the vaporized bio-oil from the pyrolyzer to the GC/MS. The temperature of the
pyrolysis product transfer line and injection valve was set to 300 ◦C to prevent the recondensation
of vaporized bio-oil within the instrumentation. The GC was furnished with a capillary column
(TR-5MS) and operated in split mode, wherein the split ratio and total flow rate used were 50:1 and
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50 mL/min, respectively. The GC oven initial temperature was 40 ◦C (holding 2 min), heated to
120 ◦C (ramping rate of 5 ◦C/min), and then increased to 200 ◦C (holding 15 min at ramping rate of
10 ◦C/min). For MS, the temperature of electron ionization and scanning range were fixed as 230 ◦C
and 28–500 amu, respectively.

It is known that the GC/MS technique cannot quantify the chemical compounds. However,
there is a considered linear relationship between the chromatographic peak area of a compound and
its quantity. Therefore, in this study, the peak area and peak area % values with different catalysts were
calculated and used to reveal the different yields for each product [31,32].

3. Results and Discussion

3.1. Characterization of Forestry Wood Waste (Vernicia fordii Wood) Extracts

Through GC/MS analysis, the total ion chromatograph of VF extracts from Soxhlet extraction
with different solvents (methanol, ethanol/benzene, or ethanol/ether) were acquired. Supplementary
Materials Figures S2–S4 depict the total ion chromatographs while the chemical composition of VF
extracts are tabulated in Tables S2–S4. The compositional difference of VF extracts was rendered
by the different affinity of solvents towards the extractable components of different polarities in VF.
From Figures S2–S4 and Tables S2–S4 in Supplementary Materials, a total of 77 distinct chemical
compounds were identified from the GC/MS analysis of VF extracts. For ease of discussion, these
compounds were classified in terms of common functional groups (e.g., acids, alcohols, aldehydes,
esters, amines, phenols, ketones, aromatics, olefins, and saccharides). In Supplementary Materials,
Figure S5 presents the chemical composition of Vernicia fordii wood (VF) extracts that had been sorted
into the aforementioned functional groups.

The GC/MS analysis confirmed that the VF extracts contained high value chemical constituents,
which have widely promising and potential applications. For instance, linoleic acid has several
medical applications such as lowering blood lipids, softening blood vessels, lowering blood pressure,
and reducing cardiovascular diseases. In a few reports, a high potential of linoleic acid was suggested
for the prevention of cancer, inflammation, and arthritis [33]. In addition, the n-hexadecanoic acid
in VF could serve as a renewable feedstock for the production of soaps, cosmetics, and industrial
mold release agents. Sitosterol can lower serum cholesterol while butorphanol can act as a pain
reliever [34,35]. The esters of VF can be used as the precursors for emulsifiers, wetting agents, stabilizers,
and plasticizers. The aromatics of VF could be utilized for the synthesis of more complex compounds
through substitution reactions of simple aromatics. In brief, VF possesses a wide range of useful
chemical compounds, which could be used as feedstocks in medical and industrial applications.

3.2. Catalytic Fast Pyrolysis of Forestry Wood Waste (Vernicia fordii Wood)

Lignocellulosic biomass can be divided into three major components: cellulose, hemicellulose, and
lignin [36,37]. Cellulose is a polymer formed by the polymerization of glucose through β-1,4-glycosidic
bonds. Hemicellulose is a polymer formed by the polymerization of hexose and pentose sugars. Lignin
is mainly composed of guaiacol, syringyl, and para-hydroxy-phenyl alcohol, which are relatively
complex and difficult to depolymerize [38]. As a biomass, the VF is also mainly composed of three
lignocellulosic components called cellulose, hemicellulose, and lignin. The thermal decomposition of
VF is very complex owing to the different reactivity and stability of these lignocellulosic components
as well as the interactions between them. Based on the thermogravimetric (TG) analysis, the thermal
decomposition of Vernicia fordii wood samples (e.g., VF, VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3) was
elucidated with fast pyrolysis at two specified heating rates (25 ◦C/min and 55 ◦C/min). Figure 2
presents TG and the first derivative of thermogravimetric (DTG) curves of VF samples.

All the VF samples went through three stages during pyrolysis (Figure 2). During the first
stage, when the temperature increased from room temperature to 35 ◦C to 200 ◦C, the weight loss
of all samples mainly involved the evaporation of water and small molecular weight components.
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The second decomposition stage occurred in the temperature range of 200–400 ◦C, when all DTG
curves (Figure 2) showed that there was a primary peak of weight loss, which could be due to the
process of decomposition of cellulose, hemicellulose, and part of lignin [39–41]. According to a report
by Yu et al. [24], with increasing temperature, the decomposition of cellulose increased rapidly and
was almost completed at 400 ◦C. According to Biagini’s report, the onset temperature of hemicellulose
(xylan as model compound) was 253 ◦C. The cellulose exhibited the maximum weight loss in the range
of 200–400 ◦C. The onset and maximum weight loss were 319 and 354 ◦C [42]. At around 200 ◦C,
the decomposition of lignin can be attributed to the dehydration reactions. Then, the cleavage of α-
and β-aryl–alkyl-ether linkages occurred at around 300 ◦C. Meanwhile, the aliphatic side chains started
to split off from the aromatic ring of lignin [43,44]. These results are consistent with our observation
made in this work.
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Compared to cellulose and lignin, hemicellulose is the most unstable component in
Vernicia fordii wood. The onset of its decomposition at about 200 ◦C is assumed to reflect a lower degree
of polymerization compared to cellulose and lignin [45]. The primary weight loss occurred in the
temperature range of 320–400 ◦C. In addition, due to the complex stable aromatic rings with various
branch structures, the pyrolysis of lignin has been proven to occur continuously through a range of
200–900 ◦C [46]. At the third stage, above 400 ◦C, the weight loss was slower and relatively small due
to the pyrolysis of lignin and the residues of char [41,47–49].

The thermal decomposition of wood biomass could be influenced by various factors such as
temperature, chemical composition, heating rate, etc. [50]. In order to investigate the effect of heating
rate on the thermal decomposition of VF and nano-VF samples, the heating rate of 25 ◦C and 55 ◦C
were recorded, as shown in Figures 2 and 3. It can be seen that the heating rate had significant
influence on the thermal decomposition of VF and nano-VF samples. With the increase of heating rate,
the peak temperatures of all samples were increased from around 354 ◦C to around 368 ◦C. In addition,
the weight loss of all the different decomposition stages also obviously was changed as the heating rate
increased. Comparing the influence of nano-catalysts, it can be seen that both the TG and DTG curves
only experienced slight changes when nano-NiO catalyst and nano-NiO/Fe2O3 were added. During
the second stage (200–400 ◦C), only one peak was observed in the DTG curves of Vernicia fordii (VF).
The peak temperature was almost the same with the addition of nano-Fe2O3, while the weight loss
rate increased from 0.9%/◦C to 1.25%/◦C. This indicated that the nano-Fe2O3 catalyst can promote the
pyrolysis of cellulose and hemicellulose during this range of temperature, causing the production
of more acids and ketone compounds. In the third stage, the varying DTG values indicated that the
introduction of the nano-Fe2O3 catalyst has a significant effect on the decomposition of VF. As seen in
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Figure 3c, in the range of 200–400 ◦C, the weight loss of VF, VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3

were 69.03%, 68.07%, 80.60%, and 69.31%, respectively. Meanwhile, the VF-Fe2O3 sample had the
highest weight loss rate (1.06%/min, Figure 3, SZ-D2). These indicated that the catalyst of nano-Fe2O3

improved the decomposition of cellulose and lignin in VF. At 400–800 ◦C, the weight loss of VF, VF-NiO,
VF-Fe2O3, and VF-NiO/Fe2O3 were 6.18%, 6.41%, 7.39%, and 6.70%, respectively. The VF-Fe2O3 sample
had the biggest weight loss compared to the others. This indicated that nano-Fe2O3 promoted the
pyrolysis of lignin and the remaining solid residues of cellulose and hemicellulose in the last stage.
In addition, we can also see in Figure 3 that the VF-Fe2O3 sample had the lowest residues, which
showed that the VF-Fe2O3 sample had the biggest weight loss compared to the others. Compared
with nano-NiO and nano-NiO/Fe2O3, the catalyst of nano-Fe2O3 had a significant effect on the whole
pyrolysis process of Vernicia fordii wood. The main reason might be attributed to the fact that the
nano-Fe2O3 can promote the breaking of ether bond in the lignin and lignin derivative structures.
Nano-Fe2O3 improved the cleavage of α- and β-aryl–alkyl-ether linkages and the splitting of the
aliphatic side chains from the aromatic ring. However, for the catalyst of nano-NiO/Fe2O3, the catalysis
of nano-Fe2O3 was restricted by nano-NiO.
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For the utilization of lignocellulosic biomass, fast pyrolysis is the most felicitous technology since
it is two to three times more economical than liquefaction and gasification processes. By fast pyrolysis,
lignocellulosic biomass could be ameliorated into a liquid product, which is often known as the
bio-oil. However, the bio-oil has an extremely complicated composition, with different proportions
of ethers, esters, aldehydes, ketones, phenols, organic acids, aromatics, and alcohol compounds.
It is believed that these compounds in the bio-oil could serve as precursors of value-added biofuels
and fine chemicals [51,52]. Many studies have been concerned with the mechanisms of biomass
pyrolysis, especially in relation to single lignocellulosic components such as lignin, cellulose,
and hemicellulose [53–59]. Py-GC/MS is a rapid, reliable, and powerful method to scrutinize biomass
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fast pyrolysis because it facilitates the elucidation of chemical mechanisms by detecting the pyrolysis
products [60]. In this study, the bio-oil vapor released from non-catalytic and catalytic pyrolysis VF
samples were analyzed in-situ by Py-GC/MS. For all of the VF samples, the total ion chromatograms
of their bio-oil vapor are shown in Figure 4, with the product of bio-oil vapor summarized in
Supplementary Materials Tables S5–S8. Similar to the VF extracts, a wide range of organic compounds
were found in the fast pyrolysis product of VF samples. Likewise, these organic compounds were
categorized into common functional groups, viz. acids, alcohols, aldehydes, aromatics, amines, alkanes,
esters, furans, ketones, olefins, phenolics, and others. Figure 5 compiles the chemical composition of
bio-oil vapor released from the fast pyrolysis of Vernicia fordii wood (VF) samples sorted by common
functional groups.
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The Py-GC/MS analysis revealed that the bio-oils from VF, VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3

were composed of 72, 68, 69, and 70 chemical compounds. As observed in Figure 5, non-catalytic
pyrolysis of VF and catalytic fast pyrolysis of VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3 almost produced
bio-oil with similar product distribution, although the functional group contents were non-identical. The
bio-oil from VF was comprised of acids (0.23%), alcohols (29.72%), aldehydes (3.24%), alkanes (14.43%),
amines (7.38%), aromatics (9.52%), esters (1.81%), furans (9.01%), ketones (4.03%), phenolics (1.65%),
olefines (14.53%), and others (4.45%). The bio-oil from VF was rich with 2-methyl-3-buten-1-ol (28.00%),
ethylcyclopropane (11.88%), 1,3-butadiene (10.60%), 3-methylfuran (4.95%), 3-iodo-1H-pyrazole (3.67%),
2-butenal (2.99%), felbamate (2.14%), toluene (2.10%), and benzene (1.83%).

Meanwhile, the bio-oil from VF-NiO was made up of acids (1.17%), alcohols (27.83%), aldehydes
(0.66%), alkanes (25.91%), amines (1.92%), aromatics (14.40%), esters (2.33%), furans (6.96%), ketones
(4.07%), phenolics (4.02%), olefines (7.32%), and others (3.43%). The bio-oil from VF-NiO primarily
contained 2-methyl-3-buten-1-ol (25.07%), methylenecyclopropane (12.12%), ethylcyclopropane (9.67%),
dimethylethylborane (4.12%), 4,4′-methylenedianiline (4.02%), 2-methylfuran(3.44%), 1,3-pentadiene
(3.30%), toluene (2.65%), 3-iodo-1H-pyrazole (2.64%), benzene (2.63%), 1,3-butadien-1-ol (2.15%),
3-hexen-1-yne (1.54%), L-β-homoserine (1.17%), and furfural (1.15%).
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For VF-Fe2O3, its bio-oil was comprised of acids (3.23%), alcohols (29.01%), aldehydes (0.40%),
alkanes (30.78%), amines (2.19%), aromatics (9.56%), esters (0.28%), furans (9.78%), ketones (2.86%),
phenolics (0.84%), olefines (7.91%), and others (3.14%). The bio-oil of VF-Fe2O3 was abundant
with 2-methyl-3-buten-1-ol (25.77%), methylenecyclopropane (17.05%), ethylcyclopropane (10.58%),
2-methylfuran (4.06%), 1,3-pentadiene (3.90%), benzene (3.28%), toluene (3.21%), 3-iodo-1H-pyrazole
(2.87%), acetic acid (2.86%), dimethylethylborane (2.51%), furfural (2.42%), 1,3-butadien-1-ol (2.29%),
2,5-dimethylfuran (1.34%), 1-penten-3-one (1.13%), lidocaine (1.10%), and p-xylene (0.95%), respectively.

Energies 2019, 12, x FOR PEER REVIEW 7 of 12 

 

vapor summarized in Supplementary Materials Tables S5–S8. Similar to the VF extracts, a wide 
range of organic compounds were found in the fast pyrolysis product of VF samples. Likewise, these 
organic compounds were categorized into common functional groups, viz. acids, alcohols, 
aldehydes, aromatics, amines, alkanes, esters, furans, ketones, olefins, phenolics, and others. Figure 
5 compiles the chemical composition of bio-oil vapor released from the fast pyrolysis of Vernicia fordii 
wood (VF) samples sorted by common functional groups. 

 
Figure 4. Total ion chromatograms of bio-oil vapor released from the fast pyrolysis of Vernicia fordii 
wood samples (VF, VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3). 

The Py-GC/MS analysis revealed that the bio-oils from VF, VF-NiO, VF-Fe2O3, and 
VF-NiO/Fe2O3 were composed of 72, 68, 69, and 70 chemical compounds. As observed in Figure 5, 
non-catalytic pyrolysis of VF and catalytic fast pyrolysis of VF-NiO, VF-Fe2O3, and VF-NiO/Fe2O3 
almost produced bio-oil with similar product distribution, although the functional group contents 
were non-identical. The bio-oil from VF was comprised of acids (0.23%), alcohols (29.72%), 
aldehydes (3.24%), alkanes (14.43%), amines (7.38%), aromatics (9.52%), esters (1.81%), furans 
(9.01%), ketones (4.03%), phenolics (1.65%), olefines (14.53%), and others (4.45%). The bio-oil from 
VF was rich with 2-methyl-3-buten-1-ol (28.00%), ethylcyclopropane (11.88%), 1,3-butadiene 
(10.60%), 3-methylfuran (4.95%), 3-iodo-1H-pyrazole (3.67%), 2-butenal (2.99%), felbamate (2.14%), 
toluene (2.10%), and benzene (1.83%).  

  
(a) (b) Energies 2019, 12, x FOR PEER REVIEW 8 of 12 

 

  
(c) (d) 

Figure 5. Chemical composition of bio-oil vapor released from fast pyrolysis of Vernicia fordii wood 
(VF) samples that were sorted by common functional groups. (a) VF, (b) VF-NiO, (c) VF-Fe2O3, and 
(d) VF-NiO/Fe2O3. 

Meanwhile, the bio-oil from VF-NiO was made up of acids (1.17%), alcohols (27.83%), 
aldehydes (0.66%), alkanes (25.91%), amines (1.92%), aromatics (14.40%), esters (2.33%), furans 
(6.96%), ketones (4.07%), phenolics (4.02%), olefines (7.32%), and others (3.43%). The bio-oil from 
VF-NiO primarily contained 2-methyl-3-buten-1-ol (25.07%), methylenecyclopropane (12.12%), 
ethylcyclopropane (9.67%), dimethylethylborane (4.12%), 4,4'-methylenedianiline (4.02%), 
2-methylfuran(3.44%), 1,3-pentadiene (3.30%), toluene (2.65%), 3-iodo-1H-pyrazole (2.64%), benzene 
(2.63%), 1,3-butadien-1-ol (2.15%), 3-hexen-1-yne (1.54%), L-β-homoserine (1.17%), and furfural 
(1.15%).  

For VF-Fe2O3, its bio-oil was comprised of acids (3.23%), alcohols (29.01%), aldehydes (0.40%), 
alkanes (30.78%), amines (2.19%), aromatics (9.56%), esters (0.28%), furans (9.78%), ketones (2.86%), 
phenolics (0.84%), olefines (7.91%), and others (3.14%). The bio-oil of VF-Fe2O3 was abundant with 
2-methyl-3-buten-1-ol (25.77%), methylenecyclopropane (17.05%), ethylcyclopropane (10.58%), 
2-methylfuran (4.06%), 1,3-pentadiene (3.90%), benzene (3.28%), toluene (3.21%), 
3-iodo-1H-pyrazole (2.87%), acetic acid (2.86%), dimethylethylborane (2.51%), furfural (2.42%), 
1,3-butadien-1-ol (2.29%), 2,5-dimethylfuran (1.34%), 1-penten-3-one (1.13%), lidocaine (1.10%), and 
p-xylene (0.95%), respectively.  

The constituents of VF-NiO/Fe2O3 bio-oil were acids (3.08%), alcohols (19.40%), aldehydes 
(3.58%), alkanes (15.59%), amines (3.61%), aromatics (8.34%), esters (2.10%), furans (6.53%), ketones 
(8.59%), phenolics (19.48%), olefines (5.74%), and others (3.99%). The bio-oil of VF-NiO/Fe2O3 was 
rich in 2-methyl-3-buten-1-ol (17.25%), methylenecyclopropane (9.48%), ethylcyclopropane (6.08%), 
isoeugenol (4.14%), acetoveratrone (3.58%), 4-vinylguaiacol (3.41%), DL-2-aminoadipic acid (3.06%), 
syringol (2.92%), 2-methylfuran (2.87%), 4-allyl-2,6-dimethoxyphenol (2.67%), 3-iodo-1H-pyrazole 
(2.56%), benzene (2.34%), 1,3-pentadiene (2.33%), toluene (1.94%), vanillin (1.64%), furfural (1.44%), 
piperonal (1.40%), guaiacol (1.40%), creosol (1.38%), 3-hexen-1-yne (1.16%), and anandamide 
(1.08%). 

When the NiO catalyst was introduced, the aldehyde, amine, furan, and olefin products in the 
VF bio-oil decreased significantly, but aromatic, alkane, and phenolic compounds increased 
remarkably (Figure 5). In the presence of NiO, the peak area proportion of aromatics and phenolics 
increased from 9.52 to 14.40% and from 1.65 to 4.02%, respectively. Thus, the NiO catalyst affected 
the bio-oil composition by promoting lignin decomposition for the formation of aromatics and 
phenolics. Meanwhile, the VF bio-oil produced in the presence of Fe2O3 had a greater proportion of 
alkanes and furans than that of non-catalytic pyrolysis at the expense of lower productions of 
aldehydes, amines, esters, ketones, and olefins. Seemingly, the bio-oil of VF and VF-Fe2O3 had 
almost similar peak area proportions of aromatics (9.52% and 9.56%, respectively); nonetheless, the 
distribution of the aromatics was different. In the presence of Fe2O3, the slight increment of furans 
and drastic decrement of aldehydes implied the inhibition of cellulose pyrolysis by the Fe2O3 

catalyst. Furthermore, the lower proportion of phenols and aromatics in the bio-oil of VF-Fe2O3 than 

Figure 5. Chemical composition of bio-oil vapor released from fast pyrolysis of Vernicia fordii wood
(VF) samples that were sorted by common functional groups. (a) VF, (b) VF-NiO, (c) VF-Fe2O3, and (d)
VF-NiO/Fe2O3.

The constituents of VF-NiO/Fe2O3 bio-oil were acids (3.08%), alcohols (19.40%), aldehydes
(3.58%), alkanes (15.59%), amines (3.61%), aromatics (8.34%), esters (2.10%), furans (6.53%), ketones
(8.59%), phenolics (19.48%), olefines (5.74%), and others (3.99%). The bio-oil of VF-NiO/Fe2O3 was
rich in 2-methyl-3-buten-1-ol (17.25%), methylenecyclopropane (9.48%), ethylcyclopropane (6.08%),
isoeugenol (4.14%), acetoveratrone (3.58%), 4-vinylguaiacol (3.41%), DL-2-aminoadipic acid (3.06%),
syringol (2.92%), 2-methylfuran (2.87%), 4-allyl-2,6-dimethoxyphenol (2.67%), 3-iodo-1H-pyrazole
(2.56%), benzene (2.34%), 1,3-pentadiene (2.33%), toluene (1.94%), vanillin (1.64%), furfural (1.44%),
piperonal (1.40%), guaiacol (1.40%), creosol (1.38%), 3-hexen-1-yne (1.16%), and anandamide (1.08%).

When the NiO catalyst was introduced, the aldehyde, amine, furan, and olefin products in
the VF bio-oil decreased significantly, but aromatic, alkane, and phenolic compounds increased
remarkably (Figure 5). In the presence of NiO, the peak area proportion of aromatics and phenolics
increased from 9.52 to 14.40% and from 1.65 to 4.02%, respectively. Thus, the NiO catalyst affected the
bio-oil composition by promoting lignin decomposition for the formation of aromatics and phenolics.
Meanwhile, the VF bio-oil produced in the presence of Fe2O3 had a greater proportion of alkanes
and furans than that of non-catalytic pyrolysis at the expense of lower productions of aldehydes,
amines, esters, ketones, and olefins. Seemingly, the bio-oil of VF and VF-Fe2O3 had almost similar
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peak area proportions of aromatics (9.52% and 9.56%, respectively); nonetheless, the distribution of the
aromatics was different. In the presence of Fe2O3, the slight increment of furans and drastic decrement
of aldehydes implied the inhibition of cellulose pyrolysis by the Fe2O3 catalyst. Furthermore, the lower
proportion of phenols and aromatics in the bio-oil of VF-Fe2O3 than that of VF eventually corroborated
the catalytic effect of Fe2O3 on lignin pyrolysis. The Fe2O3 catalyst was also effective to produce VF
bio-oil with high hydrocarbon yield.

Moreover, the NiO/Fe2O3 mixture had a poor performance in forming olefins, alkanes, and alcohols.
Hydrocarbons have high value in the fuel industry [61]. The NiO/Fe2O3 completely converted acids,
aldehydes, and sugars besides significantly reduced furans. The synergistic effect between NiO and
Fe2O3 caused substantial enhancement of ketones and phenols, whereby phenols and their alkylated
derivatives are useful chemical precursors. Due to the high heating value, olefines and alkanes have
a high value for fuel applications. The catalytic pyrolysis of VF over NiO and Fe2O3 considerably
increased the formation of alkanes in the VF bio-oil from 14.43% to 25.91% and 30.78% peak areas,
respectively (Figure 5). There was a disparity in the bio-oils between VF-NiO/Fe2O3 and other samples
since the employment of NiO/Fe2O3 gave rise to the highest yield of ketones and phenolics.

4. Conclusions

In this study, the solvent extracts were analyzed by FTIR and GC-MS methods, which revealed
that the Vernicia fordii wood contained a large number and diversity of chemical compounds. These
natural product active molecules of the Vernicia fordii wood could be used as drug and biomedical active
ingredients, further indicating that Vernicia fordii wood extractives have broad application prospects
as raw materials in industrial and medical fields. The Py-GC-MS analysis indicated that the catalyst
type significantly influenced the compositions of the pyrolysis of the Vernicia fordii wood. The results
revealed that the nano-NiO and nano-Fe2O3 catalysts influenced the formation of acid, aromatics,
phenols, and alkanes compounds, and inhibited the formation of olefins and amines. In the presence
of nano-NiO, the formation of aromatics and phenolics was increased from 9.52% to 14.40% and from
1.65% to 4.02%, respectively. In addition, the NiO/Fe2O3 mixture had a poor performance in forming
olefins, alkanes, and alcohols.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/20/3972/s1,
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from ethanol/benzene extraction, Figure S4: Total ion chromatogram of Vernicia fordii wood (VF) extract from
ethanol/ether extraction, Figure S5: Chemical composition of Vernicia fordii wood (VF) extracts sorted by common
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of Vernicia fordii wood (VF) from different solvent based on FTIR method, Table S2: Chemical composition of
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