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Abstract: Managed pressure drilling (MPD) is a drilling technique used to address the narrow density
window under complex geological environments. It has widespread applications in the exploration
and exploitation of oil and gas, both onshore and offshore. In this study, to achieve effective control
of the downhole pressure to ensure safety, a gas–liquid two-phase flow model based on the drift
flux model is developed to describe the characteristics of transient multiphase flow in the wellbore.
The advection upwind splitting method (AUSM) numerical scheme is used to assist with calculation
and analysis, and the monotonic upwind scheme for conservation laws (MUSCLs) technique with
second-order precision is adopted in combination with the Van Leer slope limiter to improve precision.
Relevant data sourced from prior literature are used to validate the suggested model, the results of
which reveal an excellent statistical consistency. Further, the influences of various parameters in a
field application, including backpressure, density, and mass flow, are analyzed. Over the course of
later-stage drilling, a combination of wellhead backpressure and displacement is recommended to
exercise control.

Keywords: managed pressure drilling (MPD); two-phase flow; hydraulic model; drift flux model;
advection upwind splitting method (AUSM) numerical scheme; high-order accuracy

1. Introduction

In the oil and gas industry, the continuously increasing demand for underground resources has
led to a shift in the focus on exploration and exploitation to deep or ultra-deep reservoirs. Due to the
complicated geological conditions of these reservoirs, drilling technology aimed at creating a wellbore
to reach the gas or oil reservoir encounters a multitude of challenges, particularly within narrow
pore-fracture pressure windows [1,2]. Over the course of drilling, incidents occur frequently and cause
various disadvantages, such as longer drilling times, higher costs, and vast risks. Conventional drilling
is incapable of addressing these issues, and advanced technology-managed pressure drilling (MPD)
is proposed as an alternative, which is useful for resolving complicated situations such as leakage,
gas-kick, collapse, and trapping within a narrow density window through reducing the non-productive
time and avoiding incidents [3,4]. Regarding offshore drilling, MPD shows remarkable advantages
in coping with complex situations and has been widely used in drilling engineering, considering
the continued exploration of challenging reservoirs [5,6]. Moreover, for the drilling and production
of natural gas hydrate, MPD also creates incomparable advantages, including precise monitoring
and control of pressure, avoidable formation damage and unwanted fractures, and rare gas kick and
lost circulation [7,8].

Managing annular pressure in wellbores is considered a challenging task, as flow materials are
likely to contain mud, oil, gas, and cuttings [9]. Typically, a gas–liquid two-phase flow is included in
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MPD with the homogeneous flow model (HFM), two-fluid model (TFM), and drift flow model (DFM).
The HFM is incapable of ensuring accuracy in reflecting the flow characteristics of each phase, and its
calculation accuracy is less than satisfactory; thus, it is rarely applied nowadays. A four-dimensional
hypercube has been suggested to describe gas–liquid two-phase flow, and a set of hyperbolic partial
differential equations (PDEs) can be derived [10,11]. Of these, the most complicated is the high-fidelity
model, which has the capability of describing how physical variables (momentum, mass, and energy)
are transmitted and meet the requirements of the thermodynamic equilibrium equation [12–15]. Despite
this, these models are highly complicated to solve, and it is possible that the calculation process does
not converge enough to use high-order numerical schemes. Therefore, the simplified DFM was first
suggested by Zuber and Findlay [16] and was subsequently improved by Ishii [17]. In the DFM, mass
conservation of the gas–liquid two-phase is taken into consideration separately, and the interactions
occurring between the two phases are discounted. Relative to the TFM, the DFM demonstrates
various advantages such as having a simple form and less computation; thus, it has been commonly
applied in the theoretical research process [18–20]. In order to enhance its accuracy, the majority
of the following studies concentrated on the empirical parameters of this constitutive relationship.
In fact, the calculation process remains complicated to some extent. In addition, there are many more
simplified equations that have been derived for application under different scenarios, including early
gas-kick detection and parameter estimation [21–24]. However, these models give no consideration to
how the characteristics of various parameters, which are primarily used for automation and are not
suited to fine MPD, are distributed in the wellbore. Figure 1 shows the relation between the models [11].
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Figure 1. Relation between the models [11]. PDE: partial differential equation; DFM: drift flow model;
and ODE: ordinary differential equation.

Concerning the DFM, accuracy and efficiency are crucial for the mathematical algorithm. The DFM
is a typical hyperbolic equation that can be solved using the finite volume method. The Godunov and
Roe schemes have been suggested to solve the DFM, but they depend on algebraic Riemann solvers
or analytic Jacobian matrices of conservation equations [25,26]. A new pressure-based method was
developed to address the convergence problem of the drift flux model by Wang [27]. Among the
different schemes, it has been confirmed that the advection upwind splitting method (AUSM) schemes
are effective solutions to the DFM in terms of their simplicity, accuracy, and robustness [28–30]. Not
only do these schemes display accuracy in flux difference splitting (FDS) in the boundary layer, they
also exhibit robustness in flux vector splitting (FVS) when capturing strong discontinuity. AUSM
schemes are relatively late in performing the calculation of gas–liquid two-phase flow, and nearly all of
them were studied after the year 2000. Niu [31] applied the AUSM based on flux difference (AUSMD)
scheme to solve the flow model of seven equations. Nevertheless, it was discovered that Niu’s method
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was susceptible to numerical oscillation. Subsequently, Paillère et al. [32] achieved success in applying
AUSM+ to solve the TFM of six equations. Evje et al. [28,33] also used the AUSM+ and AUSM based
on flux vector (AUSMV) methods on a flow model of four equations and a drift flux model of three
equations. Moreover, this method is applicable to engineering computing in drilling [34,35].

According to a general drift flux model of compressed gas–liquid two-phase flow, a model to
describe the transient flow dynamics in the wellbore for the MPD is established in this paper. Pressure
variations of the throttle valve at the wellhead and flow change resulting from the pressure difference
at the bottom hole are considered as well. The governing equation of the DFM is numerically solved by
the AUSM scheme with a second-order spatial accuracy and Van Leer slope limiter. The data obtained
from published papers are used to validate the established model. In addition, a field application case
is researched to support data analysis to make operation decisions.

2. Mathematical Model

2.1. Governing Equations

The typical hydraulic cycle used in the process of MPD is shown in Figure 2. The mud from
the rig pump flows into the drill pipe through the surface equipment and riser, and flows through
the bit nozzle at the bottom of the drill pipe. Then it enters the annular space and flows upward.
After reaching the surface, it is processed by the solids control equipment and returns to the mud
pit, then enters the rig pump again. The hydraulic model is the basis of the design and calculation of
pressure control. MPD requires a real-time estimate based on the measured data, and it inputs the
calculated results into the control system to achieve automatic control. It is costly to use pressure while
drilling (PWD) tools to measure the downhole pressure, so the hydraulic model is of great significance.
Additionally, even in the case of PWD, the hydraulic model is an essential auxiliary analytical tool.
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As discussed in the previous section, the DFM is primarily a simplification of high-fidelity models
using a complex conservation equation. In DFM, a mixture momentum equation is adopted rather
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than using an isolated equation for each phase. To achieve a high level of precision, some closure
relations are applied into the equations. The basic DFM includes two conservation equations for the
gas and liquid and a mixture momentum equation [28]:

∂
∂t


ρlαl
ρgαg

ρgαgvg + ρlαlvl

+ ∂
∂x


ρlαlvl
ρgαgvg

ρgαgv2
g + ρlαlv2

l + p)

 =


0
0
−FG − F f

 (1)

Equation (1) can be written in vector form:

∂u
∂t

+
∂F(u)
∂x

= Q(u) (2)

where:

u =


ρlαl
ρgαg

ρgαgvg + ρlαlvl

, F(u) =


ρlαlvl
ρgαgvg

ρgαgv2
g + ρlαlv2

l + p

, Q(u) =


0
0
−FG − F f

 (3)

where ρ, p, and υ are the density, pressure, and velocity. α is the volume fraction. The subscripts l and
g denote the liquid and gas phases, respectively.

FG represents the gravity term:

FG = g
(
αlρl + αgρg

)
cosθ (4)

Ff is the friction term:

F f =
2 fmρmvm|vm|

D− d
(5)

where:
ρm = αlρl + αgρg (6)

vm = αlvl + αgvg (7)

fm can be calculated by [26]:

fm =


16

Rem
if Rem ≤ 2400

1[
4 log

(
∆/(D−d)

3.7065 −
5.0452
Rem

log Λ
)]2 if Rem ≥ 2400 (8)

Λ =
[∆/(D− d)]1.1098

2.8257
+

(7.149
Rem

)0.8981
(9)

Rem =
ρmvm(D− d)

µm
(10)

where D and d denote the outer diameter and inner diameter of the annulus, respectively. Re is the
Reynolds number; and µm is the viscosity.

2.2. Closure Equations

For a constant mass flow, the following equations must be satisfied [20]:

ρa = (ρ+ dρ)(a + da) (11)

ρa = ρa + adρ+ ρda + dρda (12)

a is the speed of sound in the fluid.
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Neglect the last term:

a = −ρ
da
dρ

(13)

Similarly, for the momentum:

p + ρa2 = (p + dp) + (ρ+ dρ)(a + da)2 (14)

da = −
dp + a2dρ

2aρ
(15)

a = ρ
dp + a2dρ

2aρdρ
(16)

a =
dp

2adρ
+

a
2

(17)

a2 =

(
dp
dρ

)
(18)

Therefore, the density of the liquid is described as:

ρl = ρl,0 +
p− pl,0

a2
l

(19)

Similarly,

ρg =
p

a2
g

(20)

The following relationship is satisfied:

αg + αl = 1 (21)

In addition, the slip velocity equation proposed by Zuber and Findlay [16] is represented by

vg= C0vm+vt (22)

where C0 is the distribution parameter and υt is the gas drift velocity.

2.3. Shi Slip Relation

In this research, a Shi slip relation was adopted, which can be found in [36]:

vt =

(
1−C0αg

)
VcK

(
αg, Ku, C0

)
m(φ)

C0αg

√
ρg
ρ + 1−C0αg

(23)

where:

K =


1.53/C0 if αg ≤ a1
1.53
C0

+ C0Ku−1.53
2C0

[
1− cos

(
π
αg−a1
a2−a1

)]
if a1 < αg ≤ a2

Ku if αg > a2

(24)

with a1 = 0.2 and a2 = 0.4.
Ku is the critical Kutateladze number:

Ku =

 CKu
√

NB


√

1 +
NB

C2
Ku

Cw
− 1




1/2

(25)
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where CKu and Cw denote the fitted parameters, which are set to 142 and 0.008, respectively.
NB is the Bond number:

NB =

 g
(
ρl − ρg

)
σgl

(D− d)2 (26)

where σgl is the gas–liquid interfacial tension.
Vc is the characteristic velocity:

Vc =

σglg
(
ρl − ρg

)
ρ2

l


1/4

(27)

The distribution parameter C0 can be determined by:

C0 =
Cmax

1 + (Cmax − 1)γ2 (28)

Cmax represents the value of the gas distribution parameter, which is usually set to 1.2.
γ is calculated by:

γ =
β− B
1− B

(29)

where:

β = max
(
αg, Fv

αg|vm|

vsg f

)
(30)

where Fυ is a multiplier of the flooding velocity fraction that defaults to 1.0.

vsg f = VcKu

(
ρl

ρg

)1/2

(31)

The above relation is based on the derivation of the vertical flow. In an inclined pipe, the terminal
rise velocity can be indicated as follows:

V∞θ = V∞m(θ) (32)

where θ is the angle of deviation and m is the drift velocity multiplier.
m(θ) represents the influence of the wellborn inclination:

m(θ) = m0(cosθ)n1(1 + sinθ)n2 (33)

For the water–gas flow, m0 = 1.28, n1 = 0.5, n2 = 1.7 (θ < 88◦). When 88◦≤ θ ≤ 90◦, the relation has
a large deviation for horizontal wells.

2.4. Primitive Variables

Equation (1) can be expressed as:

∂t


u1

u2

u3

+ ∂x


vlu1

vgu2

v2
l u1 + v2

gu2 + p(u1, u2)

 =


0
0
−FG − F f

 (34)

where u1 = αlρl, u2 = αgρg and u3 = αlρlvl + αgρgvg.
Equation (21) can be expressed in terms of u1 and u2:

u1

ρl
+

u2

ρg
= 1 (35)
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Substitute Equations (19) and (20) into Equation (35):

u1

ρl,0 +
p−pl,0

a2
l

+
u2a2

g

p
= 1 (36)

It can be obtained by simple transformation:

p2 + Bp + C = 0 (37)

where:

B = a2
l

ρl,0 −
pl,0

a2
l

− u1 −

(
ag

al

)2

u2

 (38)

C = u2
(
agal

)2
pl,0

a2
l

− ρl,0

 (39)

The pressure is then given by:

p(u1, u2) =
−B +

√

B2 − 4C
2

(40)

The volume fractions are determined as:

αl =
u1

ρl
(41)

αg =
u2

ρg
(42)

One can get the following equation by Equation (34):

u1vl+u2vg= u3 (43)

According to Equation (22):

−Coαlvl +
(
1−Coαg

)
vg = vt (44)

A system of linear equations from Equations (43) and (44) can be expressed in matrix form:(
u1 u2

w1 w2

)(
vl
vg

)
=

(
u3

vt

)
(45)

Hence, we can get expressions for υl and υg:

vl =
u3w2 − u2vd
u1w2 − u2w1

⇒

u3
(
1−Coαg

)
− u2vd

u1
(
1−Coαg

)
+ u2Coαl

(46)

vg =
u1vd − u3w1

u1w2 − u2w1
⇒

u1vd + u3Coαl

u1
(
1−Coαg

)
+ u2Coαl

(47)
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2.5. Boundary Conditions

At the inlet, the convective flux is determined by the flow of the gas and liquid. The pressure flux
can be obtained by extrapolation:

P inlet = p(1) − 0.5(p(1) − p(2)) (48)

It is necessary to analyze the two operating conditions of a shut-in and open well at the outlet
boundary. During shut-in, the flow rates of gas and liquids at the wellhead are zero, and then the
convective flux is zero. The pressure flux can be calculated as:

P outlet = p(N) + 0.5(p(N) − p(N − 1)) (49)

While the well is open, the convective flux can be dealt with using the original variables at the
outlet (velocity, density, volume fraction). The pressure flux is equal to the ground backpressure.

The two-phase flow in the choke valve can be represented as [20]:

ρlvlαl
√
ρl

+
ρgvgαg

γ
√
ρg

= Kczc

√
2
ρa

(P choke − Patm ) (50)

where Kc is the valve discharge coefficient, zc is the choke valve opening index, and γ is the gas
expansion factor. Pchoke and Patm represent the pressure of the choke and the atmosphere, respectively.

The inflow rate resulting from the pressure difference between the reservoir and the bottom hole
can be expressed as:

p2
r − p2

w f = Aq + Bq2 (51)

Pr and Pwf are the reservoir pressure and bottom-hole pressure, respectively. q is the inflow rate.
A and B are regression coefficients, which are mainly determined by the reservoir.

3. Numerical Scheme

3.1. Advection Upwind Splitting Method Scheme

The flux at the cell interface is composed of the convective flux and pressure flux, which can be
represented as [26,31]:

F(u) j+1/2 =
(
Fc

l + Fc
g + Fp

)
j+1/2

(52)

Fc
l and Fc

g represent the liquid and gas phase convective flux, respectively, and Fp represents the
pressure flux.

For the convective terms:

Fc
g =

(
αgρg

)
Ψ±g =

(
αgρg

)
L
Ψ+

gL +
(
αgρg

)
R

Ψ−gR (53)

Fc
l = (αlρl)Ψ

±

l = (αlρk)LΨ+
lL + (αlρl)RΨ−lR (54)

where Ψ is the speed function, l and g are liquid and gas phases, respectively, and L and R represent
left and right cells, respectively.

Ψ+
gL = V

+(
0 1 v

)T
, Ψ+

lL = V
+(

1 0 v
)T

(55)

Ψ−gR = V
−
(

0 1 v
)T

, Ψ−lR = V
−
(

1 0 v
)T

(56)
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where:

V
±

(v, c,χ) =

 χV±(v, c) + (1− χ) v±|v|
2 if |v|≤ c

v±|v|
2 otherwise

(57)

χ is the weight coefficient and can be expressed as:

χL =
2(ρ/α)L

(ρ/α)L + (ρ/α)R
(58)

χR =
2(ρ/α)R

(ρ/α)L + (ρ/α)R
(59)

V±(v, c) =
{
±

1
4c (v± c)2

|v| ≤ c
1
2 (v± |v|) |v| > c

(60)

where v is the mixture velocity and c is the sound velocity.

c =


al ag < ε
w ε ≤ ag ≤ 1− ε
ag ag > 1− ε

(61)

w =

√
p

αgρl
(
1−C0αg

) (62)

ε is a small parameter to ensure smooth transition.
The pressure flux is updated by:

p j+1/2 = P+
(
vm,L, c j+1/2

)
pL + P−

(
vm,R, c j+1/2

)
pR (63)

P±(v, c) = V
±

(v, c)

 1
c

(
±2− v

c

)
if |v|≤ c

1
v otherwise

(64)

3.2. Second-Order Accuracy

In this paper, we use a classical second-order monotonic upwind scheme for conservation laws
(MUSCLs) technique to improve the accuracy:

w j+1/2,L = w j +
1
2

S
(
φ j

)(
w j+1 −w j

)
(65)

w j+1/2,R = w j+1 −
1
2

S
(
φ j+1

)(
w j+2 −w j+1

)
(66)

where w =
(
p,ρg,ρl,αg,αl, vg, vl

)
.

S is the Van Leer slope limiter:

S(φ) =

∣∣∣φ∣∣∣+φ
1+

∣∣∣φ∣∣∣ (67)

3.3. Solution Method

When Equation (2) is discretized explicitly:

un+1
j = un

j −
∆t
∆x

(
Fn

j+1/2 − Fn
j−1/2

)
+ ∆tQn

j (68)
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Whereas Equation (2) is discretized implicitly:

un+1
j − un

j +
∆t
∆x

(
Fn+1

j+1/2 − Fn+1
j−1/2

)
− ∆tQn+1

j = 0 (69)

The Newton–Raphson method is used for solving the implicit equation, so that the process of the
calculation is stable.

3.4. Workflow

The primary calculation steps are shown in Figure 3, as follows. (1) Input the known parameters
(well depth, bottom hole assembly (BHA), fluid properties, etc.) and complete the initialization
according to the calculation requirements. (2) Calculate the raw data with the MUSCLs of second-order
accuracy and obtain temporary data. (3) Use the AUSM method to analyze the elements from the
bottom up, considering the Shi slip relationship, and then convert the conservative variables to
primitive variables. (4) After one time step, store the result of this moment as the initial condition for
calculating the next time step. (5) Repeat the above steps until the preset time period is over, and then
store all of the data.
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The Newton–Raphson method is used for solving the implicit equation, so that the process of 
the calculation is stable. 

3.4. Workflow 

The primary calculation steps are shown in Figure 3, as follows. (1) Input the known parameters 
(well depth, bottom hole assembly (BHA), fluid properties, etc.) and complete the initialization 
according to the calculation requirements. (2) Calculate the raw data with the MUSCLs of second-
order accuracy and obtain temporary data. (3) Use the AUSM method to analyze the elements from 
the bottom up, considering the Shi slip relationship, and then convert the conservative variables to 
primitive variables. (4) After one time step, store the result of this moment as the initial condition for 
calculating the next time step. (5) Repeat the above steps until the preset time period is over, and then 
store all of the data. 
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4. Experimental Validation

4.1. Laboratory Test

To complete the verification of the established model, we designed a simple experimental device,
as shown in Figure 4. The device mainly includes a wellbore simulator, liquid circulation system,
and air supply unit, as shown in Figures 5–8. The wellbore is a 6 m long transparent glass tube with a
diameter of 180 mm, inside of which is an 80 mm blue plastic tube. The fluid is injected into the blue
string, and the air is injected at the bottom. The air enters the annulus, and a gas–liquid two-phase
flow is formed. Multiple pressure sensors are set in the wellbore to record the changes in pressure.
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During the experiment (Figure 9), the annulus was filled with liquid at the beginning with a flow
rate of 0.0028 m3/s and then injected with gas at 25 s, of which the flow rate was 0.01 kg/s. Figure 8
shows the annulus flow dynamics. The flow state is mainly divided into three stages: the liquid phase
flow stage (0–25 s), the transient gas–liquid two-phase flow stage (25–32 s), and the stable flow stage
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(32–60 s). Generally, the pressure in the wellbore increases first and then decreases, and finally, tends
to be stable.
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Figure 10 shows how the bottom hole pressure changes over time, and the simulated data are in
good agreement with the experimental results. The error range is within ±10%.
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Figure 10. Bottom hole pressure vs. time.

4.2. Full-Scale Experiment

Lage and Fjelde [37] conducted their injection experiments in a real well. The vertical test well
was 1275 m deep with a parasitic pipe used for gas injection at a depth of 760 m and a pressure sensor
fitted at 605 m. At the start, the wellbore was filled with water at a flow rate of 10.11 m3/s prior to the
air being injected into the wellbore. The change in gas flow is presented in Figure 11. Over the course
of gas injection, there was a significant change in the gas volume. The total time taken to conduct this
experiment amounted to 1500 s, and the injection depth was relatively deep, which was used to exhibit
the characteristics of the gas invasion process in practice.
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Figure 12 presents a diagram that shows the changes in pressure over time at a latitude of 605 m.
In this paper, the original measurement data as well as the calculation results obtained by Meng et
al. [35] and Lage and Fjelde [37] are compared. As revealed by this figure, there is a decent consistency
between the simulation results and the on-site testing data. The curve obtained in this study is smoother
than that obtained by Lage and Fjelde. Meanwhile, the measurement data were contrasted with the
calculation results, which indicates that the resulting error is within ±5%.

In order to further understand the flow dynamics in the wellbore, we analyzed the variation of
other parameters according to the simulated data. Figure 13 reflects the changes in pressure with time
and depth. As can be seen from the figure, in both the measured and simulated data, the pressure
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shows a gradual decline, which is followed by a sharp fall, before an incremental increase again.
The drop in pressure is due to the original fluid within the ambient environment being dispelled with
the ingress of gas. It is known that gas has a lower density than fluid, causing the downhole pressure
to decline on a continued basis. As the gas moves upwards, the pressure it is subjected to decreases,
which causes the gas to expand further. As a result, more fluid is dispelled, and the drop in pressure
occurs faster. Up to the point when the gas reaches the wellhead, the downhole pressure is at its
minimum. With the continued ingress of gas, there will be an increase in downhole pressure to some
extent until the gas–fluid two-phase flow stabilizes. Figure 14 shows the changes in the gas holdup.
As revealed by this figure, there is a constant change in gas holdup at varying depths over time, which
is consistent with the changes in the gas mass flow. This is most obvious at the wellhead. The gas
holdup reaches its maximum at the wellhead when the maximum gas mass flow reaches the wellhead.
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Figure 15 presents an analysis of the gas mass flow. As revealed in the figure, there is a significant
change in gas mass flow, with the maximum at 0.265 kg/s. The variation in gas mass flow accounts for
the changes to all other characterizing parameters for the wellbore. In practice, due to the difference
between the geological pressure and that at the downhole, there will be a constant change in the gas
mass flow, as a result of which the characteristics exhibited by the transient multiphase flow will
change inside the wellbore. Figure 16 reflects the changes in fluid mass flow. The maximum fluid mass
at the wellhead is 63 kg/s, and the minimum is 4 kg/s, which is because as the amount of filled gas is on
the rise and the fluid inside the wellbore is dispelled, the fluid mass flow is significant when there is
less gas ingress. When the gas mass increases, the fluid mass flow will drop noticeably.
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5. Sensitivity Analysis

In the previous sections, the model proposed in this paper was validated and shown to be suited to
industrial application in the oil and gas industry. One example is a well located in the north of Sichuan
Province, where the MPD technique is applied. To complete the calculation, it was supplemented with
the following parameters (Tables 1 and 2). For more effective control of the downhole pressure during
drilling, the application of the existing technology to improve the effectiveness in downhole pressure
control is discussed, and an analysis is conducted of the impact of different parameters on flow inside
the wellbore.

Table 1. Geometric parameters.

Well Depth (m) Outer Tubing Diameter (m) Casing Diameter (m)

0–500 0.089 0.2523
500–2800 0.089 0.15708

2800–3600 0.127 0.1469

Table 2. Calculation parameters.

Parameter Unit Value Parameter Unit Value

Liquid density kg/m3 1100 Surface temperature K 293.15
Back pressure Pa 101325 Temperature gradient K/(100 m) 2.2

Liquid viscosity Pa·s 0.02 Surface tension N/m 0.0761
Gas viscosity Pa·s 0.0000015 Sound velocity in liquid m/s 1200

The wellhead backpressure has a direct effect on the downhole pressure. As shown in Figure 17,
lower wellhead backpressure leads to a faster decline in the downhole pressure when overflow arises.
When the wellhead backpressure is 0.1 MPa, the downhole pressure declines by 7.5 MPa, which means
an increment of 1.9 MPa as compared to the time point when the wellhead backpressure is 2.0 MPa.
Therefore, it can be seen that applying pressure to some extent at the wellhead is effective for bringing
the reduction in the downhole pressure under control.
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Figure 17. Variation in the bottom hole pressure under different back pressures at different: (a) times;
and (b) depths.

Even a slight decline in the density of drilling fluid will cause a sharp drop in the downhole
pressure. As shown in Figure 18, the downhole pressure difference is about 3.4 MPa when the difference
in drilling fluid density is 0.1 kg/m3. A commonly-seen practice for controlling the downhole pressure
is to change the density of the drilling fluid. However, as it takes time for the drilling fluid to reach
the downhole from the wellhead, the downhole pressure is incapable of being adjusted promptly,
which means that the possibility of various dangerous incidents occurring remains possible. Therefore,
a combined approach taken while drilling with backpressure and displacement would be more effective
and reasonable to prevent the occurrence of incidents.

Over the course of drilling, displacement has a substantial impact on the downhole pressure.
As indicated by Figure 19, a lower displacement leads to a lower downhole pressure, which will
decline at a faster pace over time. Therefore, as far as the drilling facilities allow, an increase in the
displacement will cause a significant rise in the downhole pressure.

In actual conditions, the pressure difference between the reservoir and the downhole will constantly
change, and the invasion amount of gas will also vary synchronously. As shown in Figure 20, a higher
initial pressure difference causes a more significant variation in the downhole pressure. Transient
gas–liquid two-phase flow is always present in the wellbore, and there is no stable stage. The downhole
pressure drop can be divided into two stages: the accelerated stage while gas is in the annulus; and the
steady descent stage after the gas reaches the wellhead.
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6. Conclusions

In this paper, an MPD wellbore transient flow dynamic model was developed based on the
compressible gas–fluid two-phase flow with the drift flux model. The most critical findings are
summarized below:

(1) In laboratory experiments, the flow state is mainly divided into three stages: the liquid phase
flow stage (0–25 s), the transient gas–liquid two-phase flow stage (25–32 s), and the stable flow
stage (32–60 s). The simulated data are in good agreement with the experimental results, and the
error range is within ±10%.

(2) The pressure shows a gradual decline, which is followed by a sharp fall, before an incremental
increase again. The drop in pressure is due to the original fluid being dispelled with the ingress
of gas. As the gas moves upwards, the pressure it is subjected to decreases, which causes the
gas to expand further. As a result, more fluid is dispelled, and the drop in pressure occurs faster.
Up to the point when the gas reaches the wellhead, the downhole pressure is at its minimum.

(3) The adjustment of wellhead back pressure is mainly realized by throttle valve. The higher the
wellhead back pressure is, the smaller the downhole pressure will be. When the gas–liquid
two-phase flow in the wellbore reaches an equilibrium state, the downhole pressure will decrease
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less with the increase of drilling fluid displacement, and the time of gas reaching the wellhead
will be earlier.

(4) The downhole pressure can be controlled by changing the density of drilling fluid. However,
the adjustment of drilling fluid density has a serious lag. Considering the variation of gas
invasion caused by reservoir pressure difference, there will be no stable gas–liquid two-phase
flow equilibrium.

Further work needs to be done to couple the proposed method with deformation near the well at
a small scale.
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