
energies

Article

Comparison of LSSVR, M5RT, NF-GP, and NF-SC
Models for Predictions of Hourly Wind Speed and
Wind Power Based on Cross-Validation

Rana Muhammad Adnan 1,2,* , Zhongmin Liang 1,2,*, Xiaohui Yuan 3, Ozgur Kisi 4,
Muhammad Akhlaq 5 and Binquan Li 1,2

1 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
libinquan@hhu.edu.cn

2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,
Nanjing 210098, China

3 School of Hydropower and Information Engineering, Huazhong University of Science & Technology,
Wuhan 430074, China; yxh71@hust.edu.cn

4 Faculty of Natural Sciences and Engineering, Ilia State University, Tbilisi 0162, Georgia;
ozgur.kisi@iliauni.edu.ge

5 Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University,
Rawalpindi 46300, Pakistan; m.akhlaq@uaar.edu.pk

* Correspondence: rana@hhu.edu.cn (R.M.A.); zmliang@hhu.edu.cn (Z.L.)

Received: 8 December 2018; Accepted: 16 January 2019; Published: 21 January 2019
����������
�������

Abstract: Accurate predictions of wind speed and wind energy are essential in renewable energy
planning and management. This study was carried out to test the accuracy of two different neuro
fuzzy techniques (neuro fuzzy system with grid partition (NF-GP) and neuro fuzzy system with
substractive clustering (NF-SC)), and two heuristic regression methods (least square support vector
regression (LSSVR) and M5 regression tree (M5RT)) in the prediction of hourly wind speed and wind
power using a cross-validation method. Fourfold cross-validation was employed by dividing the
data into four equal subsets. LSSVR’s performance was superior to that of the M5RT, NF-SC, and
NF-GP models for all datasets in wind speed prediction. The overall average root-mean-square errors
(RMSE) of the M5RT, NF-GP, and NF-SC models decreased by 11.71%, 1.68%, and 2.94%, respectively,
using the LSSVR model. The applicability of the four different models was also investigated in
the prediction of one-hour-ahead wind power. The results showed that NF-GP’s performance was
superior to that of LSSVR, NF-SC, and M5RT. The overall average RMSEs of LSSVR, NF-SC, and
M5RT decreased by 5.52%, 1.30%, and 15.6%, respectively, using NF-GP.

Keywords: wind speed; wind power; forecasting; least square support vector regression;
M5 regression tree; neuro-fuzzy system; Sotavento Galicia wind farm

1. Introduction

Currently, because of increasing environmental pollution and the energy crisis, wind energy is
very important for the energy industry. The use of wind energy in electricity production is widespread,
and new units with a nominal capacity of thousands of megawatts are being installed each year [1].
In 2017, according to the report of World Wind Energy Association, the total installed wind power
capacity (WPC) of the whole world increased to 539 GW with recent installation of 52.6 GW [2], while
the global growth rate was 10.8%. In the same year in China, the recently installed WPC was 15 GW,
and the total capacity reached 163.67 GW with a 21.3% increment. Both the wind power capacity and
the growth rate of China were larger than those of other countries in 2017. Wind energy is important
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to the economic and environmental operation of electric power systems due to its characteristics of
clean and renewable energy; thus, such abilities make it a more attractive subject for researchers [3].
Nevertheless, wind power has innate features of randomness, instability, and intermittence. If the
electricity produced by unstable wind power, especially in large quantities, is injected into the power
grid, it will threaten the grid’s safety. This problem can be solved by accurately predicting wind
power [4]. Precise wind energy prediction can help workers (at the power grid control system) know
the precise amount of electric power produced by wind energy in a timely manner, and employ a
sensible dispatching plan for other forms of energy to serve an appropriate electricity amount. It can
be seen that the accurate prediction of wind power energy plays a vital role in the power grid’s safety
and economical operation; it can also guide the normal operation of wind turbines and extend the
equipment’s service life, while also reducing dependence on conventional expensive energy sources [5].

In recent years, many approaches were developed for wind speed and wind power prediction in
the literature. These approaches can be considered in three categories: the physical approach, statistical
approach, and soft computing approach. The principle of the physical approach is to find out the
relationships among wind speed, temperature, pressure, and moisture and build thermodynamics
formulas [6]. This kind of model is good for long-term wind speed prediction. However, the detection
and collection of this information needs a lot of sensors, which can be very expensive. What is
more, solving this kind of model requires complex calculations. In the physical approach, the models
require a huge number of physical specifications [7]. These disadvantages limit the application of
the physical model. In addition, physical models are selected for modeling long time horizons, while
statistical approach models are more suitable for short time horizons [8]. The statistical approach tries
to find inherent relationships within the actual data. Autoregressive models, such as autoregressive
moving average (ARMA) and autoregressive integrated moving average (ARIMA) are commonly
utilized for short-term wind speed prediction [9,10]. In recent years, some new and improved
statistical models were proposed for wind prediction [11–13]. Kavasseri and Seetharaman [14]
applied a fractional-ARIMA model in wind speed prediction of one- and two-day-ahead horizons
in four potential wind generation sites located in North Dakota, United States of America (USA).
The simulated results showed that fractional-ARIMA outperformed ARIMA when wind speed series
showed long-memory characteristics. Erdem and Shi [15] proposed four approaches based on ARMA
for the prediction of hourly wind speed obtained from two wind observation sites in North Dakota,
USA, and satisfactory simulation results were obtained. In the literature, some authors also used
space–time statistical models for wind energy prediction and found them better in comparison to
simple statistical time-series models. However, such models provide less accurate prediction results
because they cannot adequately address the nonlinearity of the data [16]. In addition, statistical
models establish that any phenomenon can be expressed as a linear combination of its own past values,
given that the studied stochastic process is stationary. However, it was documented that wind speed
time series have a heteroscedastic, non-stationary, and highly nonlinear behavior. Soft computing
methods, due to their excellent nonlinear processing capacity, which is very important for wind energy
high-precision predictions, were adopted in this study [17–19].

In soft computing (SC) approaches, models use an auto learning process from previous data to
recognize future trends. The most popular SC-based models are neural network (NN), neuro-fuzzy
system (NF), support vector regression (SVR), least square support vector regression (LSSVR), and
M5 regression tree (M5RT) models. Wind power production is mainly affected by wind speed
fluctuations [20–22]. Thus, SC-based models overcome the shortcomings of statistical models in
handling the nonlinearity of the data (e.g., wind speed) [23,24]. NF models were successfully utilized
for modeling wind energy in the past few decades [25–32]. Liu et al. [26] predicted wind energy
using NF and compared the results with a radial basis neural network (RBFNN), a backpropogation
neural network (BPNN), and LSSVR. In the study, they firstly predicted wind energy using BPNN,
RBFNN, and LSSVR, separately. Then, they used predicted results of these models as inputs to
the NF model and found that NF provided more accurate prediction results in comparison to these
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models. Saleh et al. [27] used NF to predict wind energy using fuzzy cluster means for selecting the
optimal fuzzy rules. They found that the proposed NF model provided good prediction accuracy in
wind energy prediction. Giorgi et al. [28] used NF, NN, and ARMA models to predict wind power.
Their results showed superior accuracy of the NF model compared to ARIMA and NN. Mohandes et
al. [29] estimated the wind speed at different heights using the NF model. The results demonstrated
that the NF model could be applied successfully in the estimation of wind speeds at higher heights,
using the wind speed at lower heights as inputs. Johnson et al. [31] applied the NF model to predict
five-minutes-ahead wind power. The results were compared with the persistence method, and it was
found that NF provided better accuracy compared to the latter model. LSSVR was also extensively
applied in solving many wind energy problems in recent years [33–40]. Zhang et al. [33] applied the
LSSVR model for wind energy prediction, compared with the RBF model, and found that LSSVR
provided better results than RBF. Wang et al. [34] used a model combination of ARIMA, extreme
learning machine, SVR, and LSSVR for wind speed prediction. Liu and Li [36] predicted short-term
wind speed and wind power by utilizing LSSVR with wavelet transform (WT). The results were
compared with a recursive least square (RLS) regression model, and the LSSVR-WT gave better results
than the RLS-WT model. Zhou et al. [38] made a study on the fine-tuning of SVR model parameters to
predict wind speed for one-step-ahead horizon. The simulated results showed that the SVR models
processed by fine-tuning outperformed the persistence model. Guo et al. [39] used the LSSVR model
for wind speed prediction in the Hexi corridor of China. They compared the results of LSSVR with two
statistical models, ARIMA and seasonal ARIMA (SARIMA), and also made a hybrid of LSSVR with
these models. The results indicated that LSSVR alone provided better accuracy compared to the others.
Yuan et al. [40] applied the LSSVR model with a gravitational search algorithm for the prediction of
wind power. They compared the optimized LSSVR with SVR and NN, and LSSVR’s performance
was superior to that of the other models. M5RT is not as popular as NF and LSSVR in the field of
wind energy, and there are limited applications in the literature related to wind prediction. To our best
knowledge, the applications of M5 regression trees in wind energy modeling were only reported by
Kusiak et al. [41,42].

In this research, the applicability of LSSVR, M5RT, NF-SC, and NF-GP methods was investigated
for predicting hourly wind speed (WS) and wind power (WP) time series using a cross-validation
method. The cross-validation method and M5RT were used successfully in recent years for modeling
hydrological time series [43,44]. Thus, the authors were compelled to apply these methods to wind
time series to check their performance. It is worthy to note that there are no published studies in
the literature that predict the wind speed and wind power by comparing LSSVR, M5RT, NF-SC, and
NF-GP models while also using the cross-validation method. The paper is organized as follows: in
Section 2, the basic structures of the LSSVR, M5RT, NF-SC, and NF-GP models are briefly explained.
In Section 3, the data used in the analysis are described. In Section 4, two neuro-fuzzy and two
heuristic regression models are applied for the prediction of hourly wind speed and wind power.
The performance of the four models is analyzed with respect to three statistical indexes. Section 5
contains the concluding remarks. The models were applied using MATLAB software in the present
study [45].

2. Methods Applied in the Research

2.1. Neuro-Fuzzy System

The NF system has an architecture which consolidates fuzzy logic and NN. This method was
introduced by Jang [46]. NF has an approximating capacity of any real continuous function on a
compact set to any level of exactness [47]. NF utilizes an NN learning algorithm for constructing
fuzzy if–then rules with proper membership functions (MFs) from the stipulated input–output pairs.
Numerous sorts of inference systems exist in the literature [48–50]. Sugeno’s fuzzy structure of the NF
system is computationally more accurate compared to other alternatives. This type of NF is the most
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common candidate for fuzzy modeling. It comprises five layers, as shown in Figure 1. More detailed
information about NF can be obtained from Jang [46].

NF-GP: In this NF model, the grid partition (GP) is used. GP utilizes an axis-paralleled partition
dependent on a predefined number of membership functions to divide the input space into rectangular
sub-spaces. In NF-GP, by expanding the quantity of the input variables, the quantity of fuzzy rules
also increases exponentially. For example, let us assume that we have t input variables and l MFs;
then, the quantity of rules will be tl [51]. More information regarding NF-GP can be obtained from
Abonyi et al. [52].

NF-SC: The NF sub-clustering model is an expansion of the mountain clustering approach
proposed by Yager and Filev [53], which combines the NF model with the subtractive clustering
method. This method was later modified by Chiu [54]. The benefit of NF-SC is that it takes out the
need to indicate a grid resolution, thereby diminishing the computational complexity of the previous
mountain clustering strategy. In the method, every data point is taken into account as a possible cluster
center and the potential of this point is computed by its distance to every other point. A data point
having many neighboring data points has a high potential value. The influential radius ought to be
distinguished for determining the quantity of clusters. If a small radius is selected, it causes numerous
clusters and, thus, requires numerous rules [55]. In this manner, the choice of appropriate radius is
critical for data space clustering. Details of NF-SC were given by Chiu [56] and Cobaner [57].
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2.2. Least Square Support Vector Regression

LSSVR, introduced by Suykens and Vandewalle [58], is an alteration of SVR to solve the issues
of regression, classification, and function estimation [58–61]. SVR is a supervised machine learning
technique proposed by Vapnik [62] and his co-workers in 1995. LSSVR has an advantage compared to
SVR due to a reduction in the complexity of the optimization process, due to its use of linear equations
instead of quadratic equations [63–65].

Figure 2 shows the procedure of LSSVR. By utilizing input xi (previous wind speed/wind power
values) and output yi (current wind speed/wind power) time series, the LSSVR function can be
expressed as shown below.
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y(x) = ωT ϕ(x) + b, (1)

where x is the input, y indicates the output, ω is the weight vector with m dimension, ϕ is the mapping
term, and b is the bias term [66,67]. The cost function of LSSVR can be expressed as

minJ(ω, e) =
1
2

ωTω+
γ

2

N

∑
i=1

e2
i , (2)

which has the following constraints:

yi = ωT ϕ(xi) + b + ei (i = 1, 2, . . . , N), (3)

where γ and ei represent the regularization constant and the training error for xi, respectively.
To solve Equation (2), the Lagrange multiplier optimal programming method is employed to

find the solutions of ω and e. By altering the constraint problem into an non-constraint problem, the
objective function can be achieved [23]. The Lagrange function, L, can be calculated as

L(ω, b, e, β) = J(ω, e)−
N

∑
i=1

βi

{
ωT ϕ(xi) + b + ei − yi

}
, (4)

where βi is the Lagrange multiplier.
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By applying the Karush–Kuhn–Tucker conditions [68], the optimal conditions can be computed
by independently calculating the partial derivatives of Equation (4) with respect to ω, b, e, and β,
as follows: 

ω =
N
∑

i=1
βi ϕ(xi) + b

N
∑

i=1
βi = 0

βi = γei
ωT ϕ(xi) + b + ei − yi = 0

. (5)

The linear equations are obtained after the disposal of ei, and ω can be expressed as(
0
E

ET

Ω + γ−1E

)(
b
β

)
=

(
0
y

)
. (6)

After the elimination of ei and ω from Equation (4), the kernel trick is applied. According to
Mercer’s condition, the Kernel trick can be expressed as k(x, xi) = f (x)T f (xi), i = 1, 2, . . . , N. Thus,
the LSSVR can be expressed as

f (x) =
N

∑
i=1

βik(x, xi) + b. (7)

k(x, xi) = exp

(
−‖x− xi‖2

2σ2

)
. (8)

Numerous kernel functions (e.g., linear, polynomial, radial basis (RBF), and spline functions) are
utilized to solve regression problems [69,70]. The accuracies of LSSVR models developed using various
kernel functions differ from each other. The kernel function type plays a vital role in constructing a
highly accurate LSSVR model [71]. In the present study, the commonly used RBF was applied, and it is
expressed in Equation (8).

2.3. M5RT

The M5 model regression tree (M5RT), first introduced by Quinlan [72], is a decision-tree-based
regression approach. The M5 model regression tree changes over the nonlinear relationship between
input and output parameters into a piecewise linear relationship. The M5RT splitting criterion is the
difference principle of sample attributes (standard deviation reduction, SDR).

SDR = sd(T)−∑
|Ti|
|T| sd(Ti) (9)

where T speaks to a set of examples that achieves the node, Ti is the subset of examples having the i-th
result of the potential set; and sd speaks to the standard deviation [73,74].

In M5RT splitting, linear regression functions exist at the leaves instead of the class labels in
decision trees. Model regression trees sum up the idea of simple regression trees [75]. Figure 3 shows
how the space partition of M5RT should be possible. As observed from the figure, space partitioning
of the model is a recursive space two-differentiation problem. In the first step, two differentiation rules
(X2, X1) are developed; in the second step, a chopping process is employed. In the first step, the initial
tree is built using the splitting criterion that minimizes the intra-subset variation in the class values
down each branch, instead of maximizing the information gain at each interior node.
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Model 5 regression trees are better than classic regression trees due to having a smaller size and
containing fewer variables in the regression functions [76–78]. Details on M5RT can be obtained from
Quinlan [72].

3. Dataset and Statistical Analysis

The hourly wind speed and wind power data from 1 January to 28 February 2015 were used in
this study to forecast one-hour-ahead wind speed (WS) and wind power (WP). Data were obtained
from the Sotavento Galicia (SG) wind farm, which is supported by the Galician Regional Autonomous
Government (http://www.sotaventogalicia.com/en/technical-area/monitored-data). Five different
technologies and nine different machine models are used in the wind farm, and it comprises 24 wind
turbines. The rating of the power and the mean yearly generation of the SG farm are 17.56 MW and
33,364 MWh, respectively. This farm is associated with the substation at A Mourela in As Pontes
through a 9-km high-volt energy feed line. In the region, the wind prevails on the east–west axis with
an average WS of 6.41 m/s. The anemometric towers measure the WS and its direction at two heights,
the pressure and temperature of air at the lower level, and the solar radiation and air density. The wind
turbine supervisory control and data acquisition (SCADA) system measures the 10-min average data
of wind speed, and the wind power generated cumulatively.

In this study, a cross-validation procedure was adopted for evaluating the methods.
The cross-validation method is utilized in data-driven modeling because methods are highly dependent
on data characteristics (e.g., distribution, complexity, correlation among the variables, etc.). Each SC
method applied in this study highly depends on its control parameters, and these parameters are
calibrated using measured input–output data. Therefore, applying various datasets and evaluating
employed methods with respect to their average accuracy is a good approach. In the cross-validation
procedure, the data were first divided into four equal parts. Three parts were then utilized for training
and the remaining part was adopted for testing the methods. The process was repeated until each part
of the data was utilized for testing. The summary statistics of hourly wind speed and wind power data
are summarized in Table 1. In the table, M1, M2, M3, and M4 are the four equal parts of the entire data

http://www.sotaventogalicia.com/en/technical-area/monitored-data
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for the cross-validation process. As clearly seen from the table, wind speed and wind power generally
indicate high positive skewness.

Table 1. Statistics of hourly wind speed and wind power time series.

Dataset Data Type Min Max Mean SD Skewness

M1 (15 February 1:00 a.m.
to 28 February 12:00 a.m.)

Wind Speed (ms−1)
Wind Power (MW)

3.62
0

16.24
14.32

9.42
6.11

2.48
3.57

0.14
0.06

M2 (1 February 1:00 a.m. to
14 February 12:00 a.m.)

Wind Speed (ms−1)
Wind Power (MW)

3.71
0

23.13
15.85

9.45
5.65

3.42
4.51

0.61
0.45

M3 (16 January 1:00 a.m. to
31 January 12:00 a.m.)

Wind Speed (ms−1)
Wind Power (MW)

1.98
0

21.95
14.91

8.08
3.86

4.45
4.66

0.92
1.05

M4 (1 January 1:00 a.m. to
15 January 12:00 a.m.)

Wind Speed (ms−1)
Wind Power (MW)

0.36
0

20.79
14.33

6.31
2.67

4.21
3.81

1.26
1.63

4. Results and Discussion

In the first part of the research, the prediction of hourly wind speed using previous values was
carried out. Then, the accuracy of LSSVR, M5RT, NF-GP, and NF-SC was tested for hourly wind
power prediction. Root-mean-square errors (RMSE), mean absolute errors (MAE), and coefficients of
determination (R2) were used for evaluating the applied models. RMSE is one of the most commonly
used statistics for measuring prediction error. MAE is another statistical index used for measuring the
absolute error between observed and predicted values. R2 represents the degree of linear relationship
between the predicted and observed data. These three indices are commonly utilized for evaluating
model prediction performance in the field of wind energy [79–83]. Their equations are as follows:

RMSE =
1
N

N

∑
t=1

(
WO − W f

)2
, (10)

MAE =
1
N

N

∑
t=1

∣∣∣WO − W f

∣∣∣, (11)

R2 =

 ∑N
t=1
(
WO − WO

)(
W f − W f

)
√

∑N
t=1
(
WO − WO

)2
(

W f − W f

)2


2

, (12)

where N is the total number of observations, WO is the observed wind speed/wind power, W f is the
predicted wind speed/wind power, WO is the average of observed wind speed/wind power, and W f
is the average predicted wind speed/wind power.

Before application of the models, the input numbers should be decided to predict the wind
speed/wind power. For this purpose, correlation analysis (CA) was employed to wind speed and wind
power time series to observe the effect of antecedent wind speed and wind power values. Correlation
analysis was successfully used in previous studies for the determination of inputs of data-driven
models [84–87]. Sudheer et al. [84] used correlation analysis and determined the optimal inputs for
an artificial neural network (ANN) in modeling the complex rainfall–runoff phenomenon. Kisi [85]
determined the optimal inputs of ANN in modeling a nonlinear discharge–sediment relationship.
Li and Shi [86] applied correlation analysis for the determination optimal inputs of ANN in wind
speed forecasting. Zemzami and Benaabidate [87] applied correlation analysis for deciding the inputs
of data-driven models in the prediction of daily streamflows. On the basis of correlation analysis
employed in the current study, four previous values were selected for each variable as follows: (i)
WSt−1; (ii) WSt−1, WSt−2; (iii) WSt−1, WSt−2, WSt−3; and (iv) WSt−1, WSt−2, WSt−3, WSt−4 for wind
speed, and (i) WPt−1; (ii) WPt−1, WPt−2; (iii) WPt−1, WPt−2, WPt−3; and (iv) WPt−1, WPt−2, WPt−3,
WPt−4 for wind power (see Table 2).



Energies 2019, 12, 329 9 of 22

4.1. Hourly Wind Speed Prediction Using NF-SC, NF-GP, LSSVR, and M5RT Methods

The test results of the two NF methods are given in Table 2. It can be seen from the table that
NF-SC and NF-GP models give different prediction results for different inputs and datasets. It can be
observed from the average statistics that both methods provided the worst accuracy in the third input
combination. Input combinations (ii) and (iv) had better accuracy compared to input combinations
(i) and (iii) for all datasets. Input combination (ii) gave slightly better results for the NF-GP method
compared to input combination (iv). For the NF-SC method, the performance of input combination (iv)
was superior to the other combinations. It is obvious from the table that both methods had the worst
accuracy for the M2 dataset. The reason for this may be the fact that the maximum and minimum
wind speed values of the testing data set (WSmax = 23.13 m/s and WSmin = 3.71 m/s) were higher
and lower, respectively, than the corresponding values of the training dataset (Table 1). From this, we
can say that the trained NF-GP and NF-SC methods may have difficulties in extrapolating lower and
higher values in the M2 case. It is clear that the NF-GP and NF-SC methods gave good results for the
M4 dataset for all input combinations. It is obvious from Table 2 that the NF-GP method performed
slightly better than the NF-SC method with respect to average performance criteria. The reason for
this may be the fact that NF-GP includes much more fuzzy rules (or consequent parameters) than the
NF-SC model, and this may provide more flexibility to this method in predicting wind speed.

Table 2. The neuro-fuzzy grid partition (NF-GP) and neuro-fuzzy sub-clustering (NF-SC) model results
in wind speed prediction. RMSE—root-mean-square error; MAE—mean absolute error; R2—coefficient
of determination.

Statistics Cross-Validation Test Dataset Input (i) Input (ii) Input (iii) Input (iv) Mean

NF-GP

RMSE M1 15 February to 28 February 1.354 1.349 1.361 1.351 1.354
M2 1 February to 14 February 1.496 1.459 1.505 1.489 1.487
M3 16 January to 31 January 1.363 1.306 1.369 1.349 1.347
M4 1 January to 15 January 1.059 1.046 1.071 1.055 1.058

Mean 1.318 1.290 1.327 1.311 1.311

MAE M1 15 February to 28 February 0.975 0.944 0.991 0.962 0.968
M2 1 February to 14 February 1.032 1.018 1.101 1.026 1.044
M3 16 January to 31 January 0.926 0.913 0.997 0.921 0.939
M4 1 January to 15 January 0.846 0.829 0.836 0.839 0.838

Mean 0.945 0.926 0.981 0.937 0.947

R2 M1 15 February to 28 February 0.8178 0.8185 0.8163 0.8165 0.817
M2 1 February to 14 February 0.8099 0.8192 0.7936 0.8164 0.809
M3 16 January to 31 January 0.8986 0.9104 0.8931 0.9088 0.903
M4 1 January to 15 January 0.9062 0.9189 0.8905 0.9148 0.907

Mean 0.8581 0.8668 0.8484 0.8641 0.859

NF-SC

RMSE M1 15 February to 28 February 1.334 1.325 1.318 1.315 1.323
M2 1 February to 14 February 1.497 1.492 1.488 1.486 1.491
M3 16 January to 31 January 1.364 1.325 1.332 1.312 1.333
M4 1 January to 15 January 1.173 1.167 1.168 1.158 1.167

Mean 1.342 1.327 1.327 1.318 1.328

MAE M1 15 February to 28 February 0.925 0.927 0.927 0.896 0.919
M2 1 February to 14 February 1.042 1.045 1.058 1.039 1.046
M3 16 January to 31 January 0.958 0.945 0.953 0.941 0.949
M4 1 January to 15 January 0.852 0.839 0.854 0.836 0.845

Mean 0.975 0.972 0.979 0.959 0.971

R2 M1 15 February to 28 February 0.8152 0.8178 0.8172 0.8181 0.817
M2 1 February to 14 February 0.8094 0.8096 0.8115 0.8104 0.810
M3 16 January to 31 January 0.8363 0.9078 0.9037 0.9093 0.889
M4 1 January to 15 January 0.9059 0.9135 0.9127 0.9143 0.912

Mean 0.8417 0.8622 0.8613 0.8630 0.857

* The bold numbers indicate the best accuracy.
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The test statistics of the optimal LSSVR and M5RT models are summarized in Table 3. Here, input
combinations (iii) and (iv) performed worse than the other combinations. Input combination (ii) gave
slightly better results for the LSSVR method compared to input combination (i). For the M5RT method,
input combination (i) outperformed the other combinations. Similar to the NF-GP and NF-SC methods,
the LSSVR and M5RT methods had the worst accuracy for the M2 dataset due to the extrapolation
difficulties as mentioned before. The best models of the LSSVR and M5RT methods were obtained for
the M4 dataset using input combinations (ii) and (i), respectively. As observed from Table 3, LSSVR’s
performance was superior to M5RT in one-hour-ahead wind speed prediction. The main reason for
this might be the nonlinear structure of LSSVR compared to M5RT, which uses linear equations for
simulation. Various control parameters were considered for each LSSVR model, and the optimal values
that provided the minimum RMSE in the test period were selected for each dataset. The optimal
parameters of LSSVR are reported in Table 4. Here, M1 shows model 1 whereas (100, 12) refers to the
regularization constant and the RBF kernel’s width, respectively. The variation in control parameters
of LSSVR with respect to RMSE is illustrated in Figure 4 for the M4 dataset.Energies 2018, 11, x FOR PEER REVIEW  11 of 23 
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radial basis function (RBF) kernel for the LSSVR model for input combination (i) and the M1 dataset of
the wind speed time series.

Table 3. The least square support vector regression (LSSVR) and M5 model regression tree (M5RT)
model results in wind speed prediction.

Statistics Cross-Validation Test Dataset Input (i) Input (ii) Input (iii) Input (iv) Mean

LSSVR

RMSE M1 15 February to 28 February 1.319 1.305 1.327 1.329 1.320
M2 1 February to 14 February 1.461 1.454 1.468 1.471 1.464
M3 16 January to 31 January 1.327 1.301 1.315 1.323 1.317
M4 1 January to 15 January 1.058 1.041 1.063 1.065 1.057

Mean 1.291 1.275 1.293 1.297 1.289

MAE M1 15 February to 28 February 0.928 0.922 0.943 0.948 0.935
M2 1 February to 14 February 1.031 1.014 1.023 1.027 1.024
M3 16 January to 31 January 0.922 0.913 0.926 0.931 0.923
M4 1 January to 15 January 0.827 0.825 0.828 0.830 0.828

Mean 0.927 0.919 0.930 0.934 0.927

R2 M1 15 February to 28 February 0.8185 0.8189 0.8180 0.8171 0.8181
M2 1 February to 14 February 0.8109 0.8153 0.8117 0.8095 0.8119
M3 16 January to 31 January 0.9010 0.9056 0.9051 0.8931 0.9012
M4 1 January to 15 January 0.9065 0.9169 0.9090 0.8981 0.9076

Mean 0.8592 0.8642 0.8610 0.8545 0.8597
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Table 3. Cont.

Statistics Cross-Validation Test Dataset Input (i) Input (ii) Input (iii) Input (iv) Mean

M5RT

RMSE M1 15 February to 28 February 1.377 1.406 1.398 1.498 1.420
M2 1 February to 14 February 1.597 1.715 1.726 1.782 1.705
M3 16 January to 31 January 1.426 1.453 1.494 1.698 1.518
M4 1 January to 15 January 1.068 1.213 1.219 1.287 1.197

Mean 1.367 1.447 1.459 1.566 1.460

MAE M1 15 February to 28 February 0.985 1.021 1.019 1.101 1.032
M2 1 February to 14 February 1.136 1.226 1.225 1.26 1.212
M3 16 January to 31 January 0.989 1.023 1.051 1.103 1.042
M4 1 January to 15 January 0.836 0.958 0.96 1.021 0.944

Mean 0.987 1.057 1.064 1.121 1.057

R2 M1 15 February to 28 February 0.8161 0.7736 0.7685 0.7464 0.7762
M2 1 February to 14 February 0.7840 0.7540 0.7518 0.7402 0.7575
M3 16 January to 31 January 0.8969 0.8918 0.8869 0.8543 0.8825
M4 1 January to 15 January 0.8979 0.8931 0.8936 0.8798 0.8911

Mean 0.8487 0.8281 0.8252 0.8052 0.8268

* The bold numbers indicate the best accuracy.

Table 4. Parameters of LSSVR for each input combination for wind speed prediction.

Cross-Validation Test Dataset
Input Combination

(i) (ii) (iii) (iv)

M1 15 February 1:00 a.m. to 28 February 12:00 a.m. (100, 12) (100, 20) (90, 7) (100, 7)
M2 1 February 1:00 a.m. to 14 February 12:00 a.m. (30, 2) (100, 5) (30, 2) (100, 20)
M3 16 January 1:00 a.m. to 31 January 12:00 a.m. (60, 3) (100, 65) (100, 24) (100, 3)
M4 1 January 1:00 a.m. to 15 January 12:00 a.m. (70, 6) (100, 4) (50, 10) (80, 100)

According to the comparison of NF-GP, NF-SC, LSSVR, and M5RT methods (Tables 2 and 3), it is
clear that the LSSVR method outperformed the other models in predicting wind speed of the Sotavento
Galicia wind farm. There was a slight difference between LSSVR and NF-GP methods. The M5RT
method gave inferior results compared to the other methods. The linear structure of this method might
be the reason for this, because wind speed fluctuations are highly nonlinear. The average errors of the
NF-GP, NF-SC, LSSVR, and M5RT methods for each input combination are illustrated in Figure 5a,b.
As observed from the figure, the average RMSE and MAE values of the LSSVR method were smaller
than those of the other models for all input combinations. The LSSVR decreased the overall average
RMSE error of NF-GP, NF-SC, and M5RT by 1.68%, 2.94%, and 11.71%, respectively.
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Figure 5. Average (a) RMSE and (b) mean absolute error (MAE) of the applied models in predicting
wind speed for all input combinations.

Figure 6a–d show the observed and predicted hourly wind speeds using all methods for the
M4 dataset with their best input combinations. It is apparent from the figure that NF-GP, NF-SC,
and LSSVR methods provided higher R2 values for the M4 dataset. The figure also shows that the
NF-GP model gave a slightly higher value of R2 than the LSSVR model. From the fitted line equations,
however, it is apparent that the LSSVR model was closer to the ideal line compared to NF-GP (see the
slope and bias coefficients in Figure 6). In fact, both models (LSSVR and NF-GP) had almost the same
accuracy in wind speed forecasting.
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Figure 6. The scatterplots of the observed and predicted wind speeds using the (a) NF grid partition
(NF-GP),(b) NF sub-clustering (NF-SC), (c) LSSVR, and (d) M5RT models for the M4 dataset.

The best (NF-GP) and worst (M5RT) models were also tested in wind speed prediction for
multiple horizons (from one to five hours ahead) using the best dataset (M4). The new model results
are compared in Table 5. As expected, the models’ accuracies deteriorated upon increasing the forecast
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horizons. From the table, it is clear that the NF-GP model’s performance was superior to that of the
M5RT model in wind speed prediction for all considered horizons. It can be observed that increasing
the input lag beyond two (combination (ii)) generally did not increases model accuracy. These results
are parallel to previous studies [88–92]. This indicates the necessity of examining different input lags
to obtain the most effective one in WS forecasting.

Table 5. NF-GP and M5RT results in wind speed prediction for multiple horizons.

Forecasting Horizon

Input Combination

(i) (ii) (iii) (iv)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NF-GP
1 1.059 0.836 1.046 0.829 1.071 0.836 1.055 0.839
2 1.830 1.354 1.827 1.347 2.014 1.495 1.841 1.384
3 2.208 1.674 2.200 1.664 2.466 1.835 2.257 1.738
4 2.507 1.922 2.466 1.909 2.770 2.043 2.565 2.003
5 2.743 2.111 2.702 2.109 3.012 2.333 2.750 2.166

M5RT
1 1.068 0.846 1.213 0.958 1.219 0.960 1.287 1.021
2 1.936 1.429 1.977 1.430 2.184 1.605 2.584 1.597
3 2.216 1.681 2.387 1.836 2.582 1.926 2.821 1.852
4 2.574 2.027 2.661 2.043 2.856 2.150 2.947 2.067
5 2.763 2.171 2.938 2.239 3.031 2.435 3.104 2.623

* The bold numbers indicate the best accuracy.

4.2. Hourly Wind Power Prediction Using NF-SC, NF-GP, LSSVR, and M5RT Methods

In this section, the accuracy of the four methods was examined in one-hour-ahead wind power
prediction using previous values. Similar to the previous application, the cross-validation method
was also utilized here. The best control parameters of the LSSVR models are reported in Table 6.
The RMSE, MAE, and R2 statistics of the applied methods are reported in Tables 7 and 8. As obviously
seen from the tables, all methods also performed the worst for the M2 dataset, probably due to the
extrapolation difficulties (WPmax = 15.85 MW), while they performed very well for the M4 dataset.
It is also obvious from Tables 7 and 8 that LSSVR, NF-GP, and NF-SC showed similar accuracy for
different input combinations. However, the M5RT method gave worse results than the other methods
for all datasets probably due to its linear structure.

Table 6. Parameters of LSSVR for each input combination for wind power prediction.

Cross-Validation Test Dataset
Input Combination

(i) (ii) (iii) (iv)

M1 15 February 1:00 a.m. to 28 February 12:00 a.m. (100, 1) (100, 3) (100, 1) (100, 7)
M2 1 February 1:00 a.m. to 14 February 12:00 a.m. (31, 3) (100, 18) (100, 10) (90, 7)
M3 16 January 1:00 a.m. to 31 January 12:00 a.m. (28, 1) (100, 28) (80, 10) (10, 10)
M4 1 January 1:00 a.m. to 15 January 12:00 a.m. (100, 1) (40, 10) (100, 10) (10, 100)
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Table 7. NF-GP and NF-SC results in wind power prediction.

Statistics Cross-Validation Test Dataset Input (i) Input (ii) Input (iii) Input (iv) Mean

NF-GP

RMSE M1 15 February to 28 February 1.302 1.346 1.426 1.413 1.372
M2 1 February to 14 February 1.545 1.552 1.572 1.58 1.562
M3 16 January to 31 January 1.138 1.146 1.163 1.150 1.149
M4 1 January to 15 January 1.060 1.066 1.070 1.074 1.068

Mean 1.261 1.278 1.308 1.304 1.288

MAE M1 15 February to 28 February 1.047 1.067 1.085 1.081 1.070
M2 1 February to 14 February 1.062 1.086 1.096 1.091 1.084
M3 16 January to 31 January 0.747 0.753 0.776 0.762 0.760
M4 1 January to 15 January 0.686 0.699 0.702 0.692 0.695

Mean 0.886 0.901 0.915 0.907 0.902

R2 M1 15 February to 28 February 0.8826 0.8718 0.8665 0.8774 0.875
M2 1 February to 14 February 0.8466 0.8401 0.8353 0.8446 0.842
M3 16 January to 31 January 0.9193 0.9057 0.8979 0.9046 0.907
M4 1 January to 15 January 0.9387 0.9381 0.9372 0.9315 0.936

Mean 0.8968 0.8889 0.8842 0.8895 0.890

NF-SC

RMSE M1 15 February to 28 February 1.411 1.403 1.454 1.429 1.424
M2 1 February to 14 February 1.567 1.554 1.587 1.592 1.575
M3 16 January to 31 January 1.139 1.128 1.167 1.158 1.148
M4 1 January to 15 January 1.061 1.071 1.083 1.075 1.073

Mean 1.295 1.289 1.323 1.314 1.305

MAE M1 15 February to 28 February 1.057 1.071 1.091 1.079 1.075
M2 1 February to 14 February 1.101 1.089 1.113 1.110 1.103
M3 16 January to 31 January 0.761 0.759 0.794 0.784 0.775
M4 1 January to 15 January 0.711 0.696 0.691 0.685 0.696

Mean 0.908 0.904 0.922 0.915 0.912

R2 M1 15 February to 28 February 0.8794 0.8814 0.8764 0.8757 0.878
M2 1 February to 14 February 0.8449 0.8333 0.8364 0.8414 0.839
M3 16 January to 31 January 0.9107 0.9091 0.9077 0.9078 0.909
M4 1 January to 15 January 0.9384 0.9394 0.9385 0.9359 0.938

Mean 0.8934 0.8908 0.8898 0.8902 0.891

* The bold numbers indicate the best accuracy.

Table 8. LSSVR and M5RT results in wind power prediction.

Statistics Cross-Validation Test Dataset Input (i) Input (ii) Input (iii) Input (iv) Mean

LSSVR

RMSE M1 15 February to 28 February 1.408 1.386 1.517 1.596 1.477
M2 1 February to 14 February 1.555 1.54 1.588 1.592 1.569
M3 16 January to 31 January 1.160 1.143 1.176 1.271 1.188
M4 1 January to 15 January 1.148 1.112 1.165 1.219 1.161

Mean 1.318 1.295 1.362 1.420 1.349

MAE M1 15 February to 28 February 1.085 1.079 1.161 1.173 1.125
M2 1 February to 14 February 1.097 1.092 1.102 1.122 1.103
M3 16 January to 31 January 0.782 0.772 0.789 0.815 0.790
M4 1 January to 15 January 0.698 0.681 0.686 0.705 0.693

Mean 0.916 0.906 0.935 0.954 0.927

R2 M1 15 February to 28 February 0.8773 0.8811 0.876 0.8755 0.877
M2 1 February to 14 February 0.8362 0.8455 0.823 0.8091 0.828
M3 16 January to 31 January 0.9095 0.9132 0.9064 0.8982 0.907
M4 1 January to 15 January 0.9384 0.9408 0.9378 0.9262 0.936

Mean 0.8904 0.8952 0.8858 0.8773 0.887

M5RT

RMSE M1 15 February to 28 February 1.555 1.734 1.765 1.796 1.713
M2 1 February to 14 February 1.595 1.664 1.734 1.867 1.715
M3 16 January to 31 January 1.231 1.334 1.438 1.471 1.369
M4 1 January to 15 January 1.171 1.305 1.362 1.401 1.310

Mean 1.388 1.509 1.575 1.634 1.526
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Table 8. Cont.

Statistics Cross-Validation Test Dataset Input (i) Input (ii) Input (iii) Input (iv) Mean

M5RT

MAE M1 15 February to 28 February 1.128 1.162 1.211 1.313 1.204
M2 1 February to 14 February 1.169 1.291 1.315 1.340 1.279
M3 16 January to 31 January 0.786 0.878 0.936 0.965 0.891
M4 1 January to 15 January 0.686 0.788 0.808 0.845 0.782

Mean 0.942 1.030 1.068 1.116 1.039

R2 M1 15 February to 28 February 0.8754 0.8647 0.8540 0.8320 0.857
M2 1 February to 14 February 0.8143 0.7758 0.7714 0.7623 0.781
M3 16 January to 31 January 0.9061 0.8847 0.8741 0.8673 0.883
M4 1 January to 15 January 0.9303 0.9186 0.9067 0.9023 0.914

Mean 0.8815 0.8610 0.8516 0.8410 0.859

* The bold numbers indicate the best accuracy.

Figure 7a,b show the average errors statistics of all the applied methods for different input
combinations. As seen from the figure, NF-GP performed better than the other methods for all input
combinations from the viewpoints of RMSE, MAE, and R2. Input combination (i) gave the best results
for the NF-GP and M5RT models, whereas input combination (ii) provided the best accuracy for the
LSSVR and NF-SC models. However, input combination (iii) gave the worst results for the NF-GP and
NF-SC models, whereas input combination (iv) performed the worst for the LSSVR and M5RT models.
The figure also reports that both NF methods performed slightly better than the LSSVR method for
all input combinations. NF-GP decreased the overall average RMSE errors of the NF-SC, LSSVR, and
M5RT methods by 1.30%, 4.52%, and 15.6%, respectively.
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The observed and predicted hourly wind powers using all the methods are shown in Figure 8a–d
for the M4 dataset. As apparent from the figure, the NF-GP and NF-SC models were in good agreement
with the observed wind power data. The NF-GP and NF-SC methods provided higher R2 values for
each dataset than the other methods. The figure also reports that the LSSVR method gave slightly
higher values of R2 than the NF-GP method. The slope and bias coefficients for the NF-GP model were
closer to the 1 and 0, respectively, compared to values for the LSSVR, NF-SC, and M5RT models. It can
be clearly seen from the scatterplots that M5RT had more scattered predictions compared to LSSVR,
NF-GP, and NF-SC.
Energies 2018, 11, x FOR PEER REVIEW  18 of 23 

 

  

  

Figure. 8. The scatterplots of the observed and predicted wind powers using the (a) NF-GP, (b) NF-

SC, (c) LSSVR, and (d) M5RT models for the M4 dataset. 

Table 9 compares the best (NF-GP) and worst (M5RT) models in wind power prediction for 

multiple horizons (from one to five hours ahead) using the best dataset (M4). A decrease in model 

accuracy can also be clearly observed here with respect to an increase in forecast horizons. As seen 

from the test results, the NF-GP model outperformed the M5RT model for the all horizons and input 

combinations. It can be observed that increasing the input lag beyond one (combination (i)) generally 

did not improves the model accuracy. It is evident from the existing literature that increasing the 

input lag does not guarantee better forecast performance [93,94]. Sometimes, a high number of inputs 

has a negative impact on variance and causes a more complex model, leading to poor forecasting 

performance. Therefore, several values of input lag should be searched in the case of WS or WP 

forecasting using data-driven methods. 

Table 9. NF-GP and M5RT results in wind speed prediction for multiple horizons. 

Forecastin

g Horizon 

Input Combination 

(i) (ii) (iii) (iv) 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

NF-GP         

1 1.060 0.686 1.066 0.692 1.074 0.702 1.070 0.699 

2 1.572 1.007 1.584 1.030 1.596 1.044 1.590 1.033 

3 1.857 1.290 1.858 1.302 1.873 1.309 1.866 1.304 

4 2.073 1.501 2.098 1.506 2.103 1.519 2.101 1.513 

5 2.285 1.677 2.317 1.683 2.321 1.691 2.319 1.689 

M5RT         

1 1.171 0.702 1.305 0.788 1.362 0.808 1.401 0.845 

2 1.617 1.023 1.650 1.062 1.744 1.136 1.798 1.129 

Figure 8. The scatterplots of the observed and predicted wind powers using the (a) NF-GP, (b) NF-SC,
(c) LSSVR, and (d) M5RT models for the M4 dataset.

Table 9 compares the best (NF-GP) and worst (M5RT) models in wind power prediction for
multiple horizons (from one to five hours ahead) using the best dataset (M4). A decrease in model
accuracy can also be clearly observed here with respect to an increase in forecast horizons. As seen
from the test results, the NF-GP model outperformed the M5RT model for the all horizons and input
combinations. It can be observed that increasing the input lag beyond one (combination (i)) generally
did not improves the model accuracy. It is evident from the existing literature that increasing the
input lag does not guarantee better forecast performance [93,94]. Sometimes, a high number of inputs
has a negative impact on variance and causes a more complex model, leading to poor forecasting
performance. Therefore, several values of input lag should be searched in the case of WS or WP
forecasting using data-driven methods.
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Table 9. NF-GP and M5RT results in wind speed prediction for multiple horizons.

Forecasting Horizon

Input Combination

(i) (ii) (iii) (iv)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NF-GP
1 1.060 0.686 1.066 0.692 1.074 0.702 1.070 0.699
2 1.572 1.007 1.584 1.030 1.596 1.044 1.590 1.033
3 1.857 1.290 1.858 1.302 1.873 1.309 1.866 1.304
4 2.073 1.501 2.098 1.506 2.103 1.519 2.101 1.513
5 2.285 1.677 2.317 1.683 2.321 1.691 2.319 1.689

M5RT
1 1.171 0.702 1.305 0.788 1.362 0.808 1.401 0.845
2 1.617 1.023 1.650 1.062 1.744 1.136 1.798 1.129
3 1.929 1.311 2.068 1.394 2.240 1.488 2.113 1.442
4 2.167 1.527 2.310 1.551 2.218 1.569 2.342 1.615
5 2.471 1.737 2.629 1.775 2.683 1.825 2.842 1.914

* The bold numbers indicate the best accuracy.

5. Conclusions

In this study, hourly wind speed and wind power time-series data were used to examine the
prediction capability of the NF-GP, NF-SC, LSSVR, and M5RT methods. Three statistical indices
(RMSE, MAE, and R2) were used for evaluating the performance of these methods. Four heuristic soft
computing techniques were employed in one-hour-ahead wind speed prediction using previous values.
The cross-validation method was employed to better evaluate the applied methods. The comparison
results showed that LSSVR and NF-GP had almost same accuracy, and they performed better than the
other soft computing models. LSSVR decreased the overall average RMSE error of NF-GP, NF-SC, and
M5RT by 1.68%, 2.94%, and 11.71%, respectively. The capability of the four methods was also examined
in the prediction of wind power using previous values. NF-GP decreased the overall average RMSE
error of NF-SC, LSSVR, and M5RT by 1.30%, 4.52%, and 15.60%, respectively. The results indicated that
LSSVR and NF-GP had almost the same accuracy and performed better compared to other methods.
The overall results also indicated that the M5RT method gave the worst results in both applications.
The results showed that hourly WS and WP could be successfully predicted using the NF-GP and
LSSVR methods.

NF-GP and M5RT were also compared in forecasting WS and WP for multiple horizons (from
one to five hours ahead). The results indicated the superior accuracy of the first model compared to
the latter one. Only one or two input lags were found to be enough for multiple-hours-ahead WS and
WP forecasting.

This study examined the ability of two different neuro-fuzzy methods, as well as the LSSVR
and M5RT methods, in predicting hourly wind speed and wind power. The main limitation of this
study was using limited data from one site. It is known that the effect of inter-annual variability on
one-hour-ahead WS or WP prediction is relatively small. It will be better to get more training data
from different years to address this effect. In fact, this is a limitation of the models presented in the
current study. The NF-GP, NF-SC, LSSVR, and M5RT methods can be compared to each other using
much more hourly data from other climatic regions. The accuarcy of the four methods may also be
compared using evolutionary algorithms in the calibration of their control parameters.

Author Contributions: Conceptualization, R.M.A. and X.Y.; Methodology, R.M.A.; Software, R.M.A. and O.K.;
Formal Analysis, R.M.A. and M.A.; Data Curation, X.Y.; Writing-Original Draft Preparation, R.M.A. and
M.A.; Writing-Review & Editing, R.M.A. and O.K.; Visualization, B.L.; Supervision, Z.L. and B.L.; Funding
Acquisition, Z.L.

Funding: This research was funded by the National Key R&D Program of China (2016YFC0402706), and
the National Natural Science Foundation of China (41730750). The APC was funded by THR Postdoctoral
Start-up-Research Program of Hohai University.



Energies 2019, 12, 329 18 of 22

Acknowledgments: The data utilized in the present study were obtained from the website of the Sotavento
Galicia wind farm. The author would like to thank the staff of the Sotavento Galicia wind farm. This work was
supported by the National Key R&D Program of China (2016YFC0402706), and the National Natural Science
Foundation of China (41730750).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.;
Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and tools to evaluate the availability of renewable
energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [CrossRef]

2. World Wind Energy Association. Wind Power Capacity Reaches 539 GW, 52,6 GW Added in 2017. Available
online: http://wwindea.org/blog/2018/02/12/2017-statistics/ (accessed on 22 December 2018).

3. Yuan, X.; Tian, H.; Yuan, Y.; Huang, Y.; Ikram, R.M. An extended NSGA-III for solution multi-objective
hydro-thermal-wind scheduling considering wind power cost. Energy Convers. Manag. 2015, 96, 568–578.
[CrossRef]

4. Alessandrini, S.; Delle Monache, L.; Sperati, S.; Nissen, J. A novel application of an analog ensemble for
short-term wind power forecasting. Renew. Energy 2015, 76, 768–781. [CrossRef]

5. Yesilbudak, M.; Sagiroglu, S.; Colak, I. A new approach to very short term wind speed prediction using
k-nearest neighbor classification. Energy Convers. Manag. 2013, 69, 77–86. [CrossRef]

6. Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting.
Renew. Sustain. Energy Rev. 2014, 31, 762–777. [CrossRef]

7. Togelou, A.; Sideratos, G.; Hatziargyriou, N.D. Wind power forecasting in the absence of historical data.
IEEE Trans. Sustain. Energy 2012, 3, 416–421. [CrossRef]

8. Fortuna, L.; Nunnari, S.; Guariso, G. Fractal order evidences in wind speed time series. In Proceedings of the
ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy,
23–25 June 2014; pp. 1–6.

9. Torres, J.L.; Garcia, A.; De Blas, M.; De Francisco, A. Forecast of hourly average wind speed with arma
models in navarre (spain). Sol. Energy 2005, 79, 65–77. [CrossRef]

10. Cadenas, E.; Rivera, W. Wind speed forecasting in the south coast of Oaxaca, Mexico. Renew. Energy 2007, 32,
2116–2128. [CrossRef]

11. Fortuna, L.; Guariso, G.; Nunnari, S. One Day Ahead Prediction of Wind Speed Class by Statistical Models.
Int. J. Renew. Energy Res. 2016, 6, 1137–1145.

12. Fortuna, L.; Nunnari, G.; Nunnari, S. A new fine-grained classification strategy for solar daily radiation
patterns. Pattern Recognit. Lett. 2016, 81, 110–117. [CrossRef]

13. Fortuna, L.; Nunnari, S.; Guariso, G. One day ahead prediction of wind speed class. In Proceedings of the
2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy,
22–25 November 2015; pp. 965–970.

14. Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy
2009, 34, 1388–1393. [CrossRef]

15. Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy
2011, 88, 1405–1414. [CrossRef]

16. Osório, G.; Matias, J.; Catalão, J. Short-term wind power forecasting using adaptive neuro-fuzzy inference
system combined with evolutionary particle swarm optimization, wavelet transform and mutual information.
Renew. Energy 2015, 75, 301–307. [CrossRef]

17. Muhammad Adnan, R.; Yuan, X.; Kisi, O.; Yuan, Y.; Tayyab, M.; Lei, X. Application of soft computing models
in streamflow forecasting. In Proceedings of the Institution of Civil Engineers-Water Management, London,
UK, 30 October 2017; pp. 1–12.

18. Hu, J.; Wang, J.; Zeng, G. A hybrid forecasting approach applied to wind speed time series. Renew. Energy
2013, 60, 185–194. [CrossRef]

19. Cadenas, E.; Rivera, W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial
neural networks. Renew. Energy 2009, 34, 274–278. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2010.09.049
http:// wwindea.org/blog/2018/02/12/2017-statistics/
http://dx.doi.org/10.1016/j.enconman.2015.03.009
http://dx.doi.org/10.1016/j.renene.2014.11.061
http://dx.doi.org/10.1016/j.enconman.2013.01.033
http://dx.doi.org/10.1016/j.rser.2013.12.054
http://dx.doi.org/10.1109/TSTE.2012.2188049
http://dx.doi.org/10.1016/j.solener.2004.09.013
http://dx.doi.org/10.1016/j.renene.2006.10.005
http://dx.doi.org/10.1016/j.patrec.2016.03.019
http://dx.doi.org/10.1016/j.renene.2008.09.006
http://dx.doi.org/10.1016/j.apenergy.2010.10.031
http://dx.doi.org/10.1016/j.renene.2014.09.058
http://dx.doi.org/10.1016/j.renene.2013.05.012
http://dx.doi.org/10.1016/j.renene.2008.03.014


Energies 2019, 12, 329 19 of 22

20. Calif, R.; Schmitt, F.G. Modeling of atmospheric wind speed sequence using a lognormal continuous
stochastic equation. J. Wind Eng. Ind. Aerodyn. 2012, 109, 1–8. [CrossRef]

21. Calif, R.; Schmitt, F.G.; Huang, Y. Multifractal description of wind power fluctuations using arbitrary order
Hilbert spectral analysis. Phys. A Stat. Mech. Appl. 2013, 392, 4106–4120. [CrossRef]

22. Duran Medina, O.; Schmitt, F.G.; Calif, R. Scaling forecast models for wind turbulence and wind turbine
power intermittency. In Proceedings of the 19th EGU General Assembly Conference Abstracts, Vienna,
Austria, 23–28 April 2017; Volume 19, p. 10374.

23. Kisi, O.; Parmar, K.S. Application of least square support vector machine and multivariate adaptive regression
spline models in long term prediction of river water pollution. J. Hydrol. 2016, 534, 104–112. [CrossRef]

24. Kisi, O.; Shiri, J.; Karimi, S.; Adnan, R.M. Three different adaptive neuro fuzzy computing techniques for
forecasting long-period daily streamflows. In Big Data in Engineering Applications; Springer: Singapore, 2018;
pp. 303–321.

25. Castellanos, F.; James, N. Average hourly wind speed forecasting with ANFIS. In Proceedings of the 11th
American Conference on Wind Engineering, San Juan, Puerto Rico, 22–26 June 2009.

26. Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP
and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers. Manag. 2015, 89, 1–11. [CrossRef]

27. Saleh, A.E.; Moustafa, M.S.; Abo-Al-Ez, K.M.; Abdullah, A.A. A hybrid neuro-fuzzy power prediction
system for wind energy generation. Int. J. Electr. Power Energy Syst. 2016, 74, 384–395. [CrossRef]

28. De Giorgi, M.G.; Ficarella, A.; Tarantino, M. Error analysis of short term wind power prediction models.
Appl. Energy 2011, 88, 1298–1311. [CrossRef]

29. Mohandes, M.; Rehman, S.; Rahman, S. Estimation of wind speed profile using adaptive neuro-fuzzy
inference system (ANFIS). Appl. Energy 2011, 88, 4024–4032. [CrossRef]

30. Sfetsos, A. A comparison of various forecasting techniques applied to mean hourly wind speed time series.
Renew. Energy 2000, 21, 23–35. [CrossRef]

31. Johnson, P.L.; Negnevitsky, M.; Muttaqi, K.M. Short term wind power forecasting using adaptive neuro-fuzzy
inference systems. In Proceedings of the 2007 Australasian Universities Power Engineering Conference,
Perth, WA, Australia, 9–12 Decemver 2007.

32. Liu, J.; Wang, X.; Lu, Y. A novel hybrid methodology for short-term wind power forecasting based on
adaptive neuro-fuzzy inference system. Renew. Energy 2017, 103, 620–629. [CrossRef]

33. Zhang, Y.; Wang, P.; Ni, T.; Cheng, P.; Lei, S. Wind power prediction based on LS-SVM model with error
correction. Adv. Electr. Comput. Eng. 2017, 17, 3–9. [CrossRef]

34. Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and
analysis—Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning
Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian
Process Regression) model. Energy 2015, 93, 41–56.

35. Zhang, Q.; Lai, K.K.; Niu, D.; Wang, Q.; Zhang, X. A fuzzy group forecasting model based on least squares
support vector machine (LS-SVM) for short-term wind power. Energies 2012, 5, 3329–3346. [CrossRef]

36. Liu, D.; Li, H. Short-term wind speed and output power forecasting based on WT and LSSVM. In Proceedings
of the 2009 International Conference on Information Engineering and Computer Science, Wuhan, China,
19–20 December 2009.

37. Wang, X.; Li, H. One-month ahead prediction of wind speed and output power based on EMD and LSSVM.
In Proceedings of the 2009 International Conference on Energy and Environment Technology, Guilin, China,
16–18 October 2009.

38. Zhou, J.; Shi, J.; Li, G. Fine tuning support vector machines for short-term wind speed forecasting.
Energy Convers. Manag. 2011, 52, 1990–1998. [CrossRef]

39. Guo, Z.; Zhao, J.; Zhang, W.; Wang, J. A corrected hybrid approach for wind speed prediction in hexi corridor
of china. Energy 2011, 36, 1668–1679. [CrossRef]

40. Yuan, X.; Chen, C.; Yuan, Y.; Huang, Y.; Tan, Q. Short-term wind power prediction based on lssvm–gsa
model. Energy Convers. Manag. 2015, 101, 393–401. [CrossRef]

41. Kusiak, A.; Zheng, H.; Song, Z. Models for monitoring wind farm power. Renew. Energy 2009, 34, 583–590.
[CrossRef]

http://dx.doi.org/10.1016/j.jweia.2012.06.002
http://dx.doi.org/10.1016/j.physa.2013.04.038
http://dx.doi.org/10.1016/j.jhydrol.2015.12.014
http://dx.doi.org/10.1016/j.enconman.2014.09.060
http://dx.doi.org/10.1016/j.ijepes.2015.07.039
http://dx.doi.org/10.1016/j.apenergy.2010.10.035
http://dx.doi.org/10.1016/j.apenergy.2011.04.015
http://dx.doi.org/10.1016/S0960-1481(99)00125-1
http://dx.doi.org/10.1016/j.renene.2016.10.074
http://dx.doi.org/10.4316/AECE.2017.01001
http://dx.doi.org/10.3390/en5093329
http://dx.doi.org/10.1016/j.enconman.2010.11.007
http://dx.doi.org/10.1016/j.energy.2010.12.063
http://dx.doi.org/10.1016/j.enconman.2015.05.065
http://dx.doi.org/10.1016/j.renene.2008.05.032


Energies 2019, 12, 329 20 of 22

42. Kusiak, A.; Zheng, H.; Song, Z. Short-term prediction of wind farm power: A data mining approach.
IEEE Trans. Energy Convers. 2009, 24, 125–136. [CrossRef]

43. Adnan, R.M.; Yuan, X.; Kisi, O.; Adnan, M.; Mehmood, A. Stream Flow Forecasting of Poorly Gauged
Mountainous Watershed by Least Square Support Vector Machine, Fuzzy Genetic Algorithm and M5 Model
Tree Using Climatic Data from Nearby Station. Water Resour. Manag. 2018, 32, 4469–4486. [CrossRef]

44. Adnan, R.M.; Yuan, X.; Kisi, O.; Anam, R. Improving Accuracy of River Flow Forecasting Using LSSVR with
Gravitational Search Algorithm. Adv. Meteorol. 2017, 2017. [CrossRef]

45. MATLAB. MATLAB 2012a for Windows. 2012. Available online: http://cn.mathworks.com/support/
compilers/R2012a/win64.html/ (accessed on 20 June 2015).

46. Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23,
665–685. [CrossRef]

47. Jang, J.-S.R.; Sun, C.-T.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning
and Machine Intelligence; Prentice-Hall: Englewood Cliffs, NJ, USA, 1997.

48. Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J.
Man-Mach. Stud. 1975, 7, 1–13. [CrossRef]

49. Tsukamoto, Y. An approach to fuzzy reasoning method. Adv. Fuzzy Set Theory Appl. 1979, 137, 149.
50. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control.

IEEE Trans. Syst. Man Cybern. 1985, 116–132. [CrossRef]
51. Wei, M.; Bai, B.; Sung, A.H.; Liu, Q.; Wang, J.; Cather, M.E. Predicting injection profiles using anfis. Inf. Sci.

2007, 177, 4445–4461. [CrossRef]
52. Abonyi, J.; Andersen, H.; Nagy, L.; Szeifert, F. Inverse fuzzy-process-model based direct adaptive control.

Math. Comput. Simul. 1999, 51, 119–132. [CrossRef]
53. Yager, R.R.; Filev, D.P. Approximate clustering via the mountain method. EEE Trans. Syst. Man Cybern. 1994,

24, 1279–1284. [CrossRef]
54. Chiu, S. Extracting fuzzy rules for pattern classification by cluster estimation. In Proceedings of the Sixth

International Fuzzy Systems Association World Congress, Sao Paulo, Brazil, 1–4 July 1995.
55. Chiu, S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2, 267–278.
56. Chiu, S. Extracting fuzzy rules from data for function approximation and pattern classification. In Fuzzy

Information Engineering: A Guided Tour of Applications; John Wiley&Sons: Hoboken, NJ, USA, 1997.
57. Cobaner, M. Evapotranspiration estimation by two different neuro-fuzzy inference systems. J. Hydrol. 2011,

398, 292–302. [CrossRef]
58. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9,

293–300. [CrossRef]
59. Qin, L.-T.; Liu, S.-S.; Liu, H.-L.; Zhang, Y.-H. Support vector regression and least squares support vector

regression for hormetic dose–response curves fitting. Chemosphere 2010, 78, 327–334. [CrossRef]
60. Kumar, M.; Kar, I. Non-linear HVAC computations using least square support vector machines.

Energy Convers. Manag. 2009, 50, 1411–1418. [CrossRef]
61. Kisi, O. Streamflow forecasting and estimation using least square support vector regression and adaptive

neuro-fuzzy embedded fuzzy c-means clustering. Water Resour. Manag. 2015, 29, 5109–5127. [CrossRef]
62. Vapnik, V.N. Introduction: Four periods in the research of the learning problem. In The Nature of Statistical

Learning Theory; Springer: New York, NY, USA, 1995; pp. 1–14.
63. Ghiasi, M.M.; Shahdi, A.; Barati, P.; Arabloo, M. Robust modeling approach for estimation of compressibility

factor in retrograde gas condensate systems. Ind. Eng. Chem. Res. 2014, 53, 12872–12887. [CrossRef]
64. Mahmoodi, N.M.; Arabloo, M.; Abdi, J. Laccase immobilized manganese ferrite nanoparticle: Synthesis and

LSSVM intelligent modeling of decolorization. Water Res. 2014, 67, 216–226. [CrossRef]
65. Guo, X.; Ma, X. Mine water discharge prediction based on least squares support vector machines. Min. Sci.

Technol. (China) 2010, 20, 738–742. [CrossRef]
66. Moreno-Salinas, D.; Chaos, D.; Besada-Portas, E.; López-Orozco, J.A.; de la Cruz, J.M.; Aranda, J.

Semiphysical modelling of the nonlinear dynamics of a surface craft with LS-SVM. Math. Probl. Eng.
2013, 2013. [CrossRef]

http://dx.doi.org/10.1109/TEC.2008.2006552
http://dx.doi.org/10.1007/s11269-018-2033-2
http://dx.doi.org/10.1155/2017/2391621
http://cn.mathworks.com/support/compilers/R2012a/win64.html/
http://cn.mathworks.com/support/compilers/R2012a/win64.html/
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1016/j.ins.2007.03.021
http://dx.doi.org/10.1016/S0378-4754(99)00142-1
http://dx.doi.org/10.1109/21.299710
http://dx.doi.org/10.1016/j.jhydrol.2010.12.030
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1016/j.chemosphere.2009.10.029
http://dx.doi.org/10.1016/j.enconman.2009.03.009
http://dx.doi.org/10.1007/s11269-015-1107-7
http://dx.doi.org/10.1021/ie404269b
http://dx.doi.org/10.1016/j.watres.2014.09.011
http://dx.doi.org/10.1016/S1674-5264(09)60273-8
http://dx.doi.org/10.1155/2013/890120


Energies 2019, 12, 329 21 of 22

67. Cao, S.-G.; Liu, Y.-B.; Wang, Y.-P. A forecasting and forewarning model for methane hazard in working face
of coal mine based on LS-SVM. J. China Univ. Min. Technol. 2008, 18, 172–176. [CrossRef]

68. Fletcher, R. Practical Methods of Optimization; John Wiley & Sons: New York, NY, USA, 1987; p. 80.
69. Gunn, S.R. Support Vector Machines for Classification and Regression; ISIS Technical Report; University of

Southampton: Southampton, UK, 1998; p. 14.
70. Muller, K.-R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel-based learning

algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–201. [CrossRef] [PubMed]
71. Guo, X.; Yang, J.; Wu, C.; Wang, C.; Liang, Y. A novel LS-SVMs hyper-parameter selection based on particle

swarm optimization. Neurocomputing 2008, 71, 3211–3215. [CrossRef]
72. Quinlan, J.R. Learning with continuous classes. In 5th Australian Joint Conference on Artificial Intelligence;

World Scientific: Singapore, 1992.
73. Zahiri, A.; Azamathulla, H.M. Comparison between linear genetic programming and M5 tree models to

predict flow discharge in compound channels. Neural Comput. Appl. 2014, 24, 413–420. [CrossRef]
74. Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann:

Burlington, MA, USA, 2005.
75. Sattari, M.T.; Pal, M.; Apaydin, H.; Ozturk, F. M5 model tree application in daily river flow forecasting in

sohu stream, turkey. Water Resour. 2013, 40, 233–242. [CrossRef]
76. Singh, K.K.; Pal, M.; Singh, V. Estimation of mean annual flood in Indian catchments using backpropagation

neural network and M5 model tree. Water Resour. Manag. 2010, 24, 2007–2019. [CrossRef]
77. Solomatine, D.P.; Xue, Y. M5 model trees and neural networks: Application to flood forecasting in the upper

reach of the Huai River in China. J. Hydrol. Eng. 2004, 9, 491–501. [CrossRef]
78. Pal, M. M5 model tree for land cover classification. Int. J. Remote Sens. 2006, 27, 825–831. [CrossRef]
79. Velo, R.; López, P.; Maseda, F. Wind speed estimation using multilayer perceptron. Energy Convers. Manag.

2014, 81, 1–9. [CrossRef]
80. Han, L.; Romero, C.E.; Yao, Z. Wind power forecasting based on principle component phase space

reconstruction. Renew. Energy 2015, 81, 737–744. [CrossRef]
81. Cassola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of Numerical

Weather Prediction model output. Appl. Energy 2012, 99, 154–166. [CrossRef]
82. Men, Z.; Yee, E.; Lien, F.-S.; Wen, D.; Chen, Y. Short-term wind speed and power forecasting using an

ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [CrossRef]
83. Zhao, P.; Wang, J.; Xia, J.; Dai, Y.; Sheng, Y.; Yue, J. Performance evaluation and accuracy enhancement of a

day-ahead wind power forecasting system in china. Renew. Energy 2012, 43, 234–241. [CrossRef]
84. Sudheer, K.P.; Gosain, A.K.; Ramasastri, K.S. A data-driven algorithm for constructing artificial neural

network rainfall-runoff models. Hydrol. Process. 2002, 16, 1325–1330. [CrossRef]
85. Kisi, Ö. Constructing neural network sediment estimation models using a data-driven algorithm.

Math. Comput. Simul. 2008, 79, 94–103. [CrossRef]
86. Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87,

2313–2320. [CrossRef]
87. Zemzami, M.; Benaabidate, L. Improvement of artificial neural networks to predict daily streamflow in a

semi-arid area. Hydrol. Sci. J. 2016, 61, 1801–1812. [CrossRef]
88. Hong, Y.Y.; Wu, C.P. Hour-ahead wind power and speed forecasting using market basket analysis and radial

basis function network. In Proceedings of the 2010 International Conference on Power System Technology,
Hangzhou, China, 24–28 October 2010.

89. Sanikhani, H.; Kisi, O. River flow estimation and forecasting by using two different adaptive neuro-fuzzy
approaches. Water Resour. Manag. 2012, 26, 1715–1729. [CrossRef]

90. Chang, F.J.; Chang, Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir.
Adv. Water Resour. 2006, 29, 1–10. [CrossRef]

91. Awchi, T.A. River discharges forecasting in northern Iraq using different ANN techniques. Water Resour.
Manag. 2014, 28, 801–814. [CrossRef]

92. Yaseen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-flow forecasting
using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 2016, 542, 603–614.
[CrossRef]

http://dx.doi.org/10.1016/S1006-1266(08)60037-1
http://dx.doi.org/10.1109/72.914517
http://www.ncbi.nlm.nih.gov/pubmed/18244377
http://dx.doi.org/10.1016/j.neucom.2008.04.027
http://dx.doi.org/10.1007/s00521-012-1247-0
http://dx.doi.org/10.1134/S0097807813030123
http://dx.doi.org/10.1007/s11269-009-9535-x
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491)
http://dx.doi.org/10.1080/01431160500256531
http://dx.doi.org/10.1016/j.enconman.2014.02.017
http://dx.doi.org/10.1016/j.renene.2015.03.037
http://dx.doi.org/10.1016/j.apenergy.2012.03.054
http://dx.doi.org/10.1016/j.renene.2015.10.014
http://dx.doi.org/10.1016/j.renene.2011.11.051
http://dx.doi.org/10.1002/hyp.554
http://dx.doi.org/10.1016/j.matcom.2007.10.005
http://dx.doi.org/10.1016/j.apenergy.2009.12.013
http://dx.doi.org/10.1080/02626667.2015.1055271
http://dx.doi.org/10.1007/s11269-012-9982-7
http://dx.doi.org/10.1016/j.advwatres.2005.04.015
http://dx.doi.org/10.1007/s11269-014-0516-3
http://dx.doi.org/10.1016/j.jhydrol.2016.09.035


Energies 2019, 12, 329 22 of 22

93. Shi, J.; Guo, J.; Zheng, S. Evaluation of hybrid forecasting approaches for wind speed and power generation
time series. Renew. Sustain. Energy Rev. 2012, 16, 3471–3480. [CrossRef]

94. Zhang, D.; Peng, X.; Pan, K.; Liu, Y. A novel wind speed forecasting based on hybrid decomposition and
online sequential outlier robust extreme learning machine. Energy Convers. Manag. 2019, 180, 338–357.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rser.2012.02.044
http://dx.doi.org/10.1016/j.enconman.2018.10.089
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods Applied in the Research 
	Neuro-Fuzzy System 
	Least Square Support Vector Regression 
	M5RT 

	Dataset and Statistical Analysis 
	Results and Discussion 
	Hourly Wind Speed Prediction Using NF-SC, NF-GP, LSSVR, and M5RT Methods 
	Hourly Wind Power Prediction Using NF-SC, NF-GP, LSSVR, and M5RT Methods 

	Conclusions 
	References

