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Abstract: The matrix converter (MC) is a promising converter that performs the direct AC-to-AC
conversion. Model predictive control (MPC) is a simple and powerful tool for power electronic
converters, including the MC. However, weighting factor design and heavy computational burden
impose significant challenges for this control strategy. This paper investigates the generalized
sequential MPC (SMPC) for a three-phase direct MC. In this control strategy, each control objective
has an individual cost function and these cost functions are evaluated sequentially based on priority.
The complex weighting factor design process is not required. Compared with the standard MPC,
the computation burden is reduced because only the pre-selected switch states are evaluated in the
second and subsequent sequential cost functions. In addition, the prediction model computation
for the following cost functions is also reduced. Specifying the priority for control objectives can
be achieved. A comparative study with traditional MPC is carried out both in simulation and an
experiment. Comparable control performance to the traditional MPC is achieved. This controller
is suitable for the MC because of the reduced computational burden. Simulation and experimental
results verify the effectiveness of the proposed strategy.

Keywords: Matrix converter (MC); model predictive control (MPC); sequential model predictive
control (SMPC); weighting factors

1. Introduction

The direct matrix converter (MC) carries out direct AC-to-AC power conversion, and it does
not require any bulky energy storage elements. This converter provides many benefits, including
bidirectional power flow, controllable input power factor, compact volume, and higher power
density [1–4]. Therefore, MCs attract tremendous research interest and are proposed for many
application areas. Some manufacturers, such as Yaskawa and Fuji, have commercialized some
MC products and modules. Table 1 summarizes some information of some MC products that are
commercialized in the industry. As seen in this Table, the maximum voltage and power ratings
reach 6.6 kV and 6 MVA in Yaskawa MX1S series. The main application area is oriented to industrial
motor drives.

In academia, many control techniques have been researched for MCs [5,6]. These mainly include
the Venturini method [7,8], space vector modulation [9,10], direct torque control [11,12], hysteresis

Energies 2019, 12, 214; doi:10.3390/en12020214 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-5304-6297
https://orcid.org/0000-0002-2530-2000
http://www.mdpi.com/1996-1073/12/2/214?type=check_update&version=1
http://dx.doi.org/10.3390/en12020214
http://www.mdpi.com/journal/energies


Energies 2019, 12, 214 2 of 14

control [13,14], and model predictive control (MPC) [15–18]. The performance comparison of these
control techniques is summarized in Table 2. Among these controllers, MPC has emerged as a popular
and promising control alternative in power converters and drives because of its simplicity, flexibility
in system constraint integration, and potential to be applied in a wide range of areas.

Table 1. Summarized Information of some MC related commercial products.

Manufacturers Product/Model Max. Voltage Max. Power Target
Application

Other
Information/Feature

Yaskawa FSDrive-MX1S 6.6 kV 6 MVA motor drive energy-saving

Yaskawa U1000 480 V 800 HP motor drive full regeneration,
ultra-low harmonics

Yaskawa AC7 480 V 250 HP motor drive legacy product

Yaskawa Z1000U 480 V 350 HP HVAC
applications low input distortion

Eupec ECONOMAC
FM35R12KE3ENG 1200 V 42 kVA unspecified module

Fuji FRENIC-Mx 400 V 45 kW
general

industrial
machines

best suitable for
elevators and cranes

Table 2. Performance comparison of some control techniques for MCs.

Features Venturini
Control

Space Vector
Modulation

Direct Torque
Control

Predictive
Control

Hysteresis
Control

Complexity low high medium low very low

Sampling
Frequency

very
low low very high high high

Switching
Frequency

very
low low high high high

Dynamic
Response good good fast very fast very fast

Application
Range narrow wide narrow very wide medium

The situation is aggravated if more control objectives are included or more switch states need to
be evaluated.

MPC explicitly incorporates control objectives and system constraints in a cost function.
All allowable switch states of a converter are evaluated in this cost function to optimize the selection
of switch states. The higher number of switch states contributes to the heavier computational
burden. MPC was investigated for most power electronic converters [19–22]. However, there are
some drawbacks associated with MPC, including a complicated weighting factor design and heavy
computational burden.

The weighting factor is usually obtained using empirical methods via a trial-and-error process,
which is time-consuming. Some research efforts have been devoted to addressing the weighting
factor issues. In [23], guidelines for designing weighting factors for power converters were presented.
Empirical processes are still involved. A multi-objective ranking-based MPC was proposed to regulate
the torque and flux of an induction motor in [24]. Weighting factor design was avoided; however,
all control objectives were treated as equal, compromising the control. In addition, all switch states
were evaluated in each cost function, resulting in a heavy computational burden. Many other methods
for avoiding weighting factors either require conversion of the regulated variables into equivalent
quantities or involves another technique [25–27]. These are undesirable because the control system
complexity is increased. When control complexity is increased, the computational burden is also
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increased. Heavy computation burden is one of factors hindering the wide application of MPC [21].
Therefore, it is beneficial to reduce the computational burden.

As a possible solution, this paper investigates a sequential MPC (SMPC) for a three-phase
direct MC. In this control strategy, the complex weighting factor design process is avoided, and thus
the computational burden is reduced. SMPC was first proposed in [22] for an induction motor.
Only two control objectives were considered and the controller was not generalized. In this work,
the control strategy was extended to the matrix converter and generalized for controlling n variables.
The contributions of this paper include: (i) A generalized SMPC strategy is proposed and this method is
investigated for a three-phase direct MC. The regulation of different control objectives can be achieved,
avoiding the sophisticated design of weighting factors. (ii) With the proposed control strategy, the cost
functions corresponding to control objectives are evaluated individually and sequentially. In this
way, the computational burden is reduced since only the pre-selected switch states are evaluated in
the subsequent cost functions. (iii) Priority of control objectives can be specified with the proposed
strategy. A comparative study is carried out to compare the performance of the proposed controller
with the conventional MPC. A similar performance can be achieved, while the reduced computational
burden enables further improvement of the performance in the proposed strategy. The proposed
controller is suitable for the MC, especially when there are several control objectives because the
computational burden can be reduced. Both simulation and experimental results are presented to
verify the proposed SMPC.

2. Prediction Models of the Matrix Converter and Load

There are nine bidirectional semiconductor switches in a three-phase direct MC, as shown in
Figure 1. These nine switches compose 27 allowable switch states that need to be evaluated in the cost
function of the MPC, which can lead to the heavy computational burden.
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Figure 1. Three-phase direct MC.

The semiconductor switches in an MC are arranged in the form of a 3 × 3 matrix. The relationship
between the inputs and outputs of the MC can be established as: va

vb
vc

 =

 SAa SBa SCa
SAb SBb SCb
SAc SBc SCc


 vA

vB
vC

 = S

 vA
vB
vC

 (1)
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 iA
iB
iC

 =

 SAa SAb SAc
SBa SBb SBc
SCa SCb SCc


 ia

ib
ic

 = ST

 ia

ib
ic

 (2)

∑
X=A,B,C

SXx = 1, (x = a, b, c) (3)

where S (transpose ST) is the switch matrix and vA,B,C are the output phase voltages. Other variables
are denoted in Figure 1. The elements, SXx, in the switch matrix can be assigned a value of 1 for the ON
state and 0 for the OFF state. As a result, there are 29 = 512 switch combinations in total in a three-phase
direct MC. Based on the measurement of vA,B,C and ia,b,c, the voltages and currents, va,b,c and iA,B,C,
can be calculated respectively, which will be used in the prediction models. The constraint (3) is used
to exclude the invalid switch states that can cause detrimental overvoltage and overcurrent.

In MPC, system models are employed to predict the targeted variables. To regulate the MC output
current, an output model needs to be developed. For an inductive-resistive load, (Ra, La), the output
model can be represented as: 

va = iaRa + La
dia
dt

vb = ibRb + Lb
dib
dt

vc = icRc + Lc
dic
dt

(4)

Here, the variables are defined in Figure 1. Due to the symmetry of the three-phase system, it is
sufficient to consider a single-phase model. Using the Euler method, the discretized model for the
output phase, a, is obtained:

ia[k + 1] = ia[k]−
RaTs

La
ia[k] +

Ts

La
va[k] (5)

Here, Ts is the sampling time. The discretized model in Equation (5) is used to predict future
behavior of the load current, ia. ia[k], is measured using a current sensor and va[k] is calculated using
Equation (1). Another control objective considered in this work is the input power factor. For this
control objective, the input filter is modeled as:

vSA − iSA · RA − LA
diSA

dt = vA

vSB − iSB · RB − LB
diSB
dt = vB

vSC − iSC · RC − LC
diSC

dt = vC

(6)


iSA = CA

dvA
dt + iA

iSB = CB
dvB
dt + iB

iSC = CC
dvC
dt + iC

(7)

Here, CA represents the equivalent capacitance of CAB in the star connection. Similarly, it is
sufficient to consider a single-phase mode for discretization.

Using the Euler method, the prediction model is obtained:

iSA[k + 1] =
(

1− RATs

LA

)
iSA[k] +

Ts

LA
vSA[k]−

Ts

LA
vA[k] (8)

On the right-hand side of Equation (8), iSA, vSA, and vA are not related to va,b c or iA,B,C in
Equations (1) and (2), which means the prediction, iSA[k + 1], is independent of the switch states.
Therefore, this prediction model Equation (8) cannot be straightforwardly used, and it is not suitable
for MPC. Instead, the zero-order-hold method is used.
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From Equations (6) and (7), the discretized input filter model can be developed in the state-space
as follows:[ .

iSA
.
vA

]
= F

[
iSA
vA

]
+ G

[
vSA
iA

]
, F =

[
−RA/LA −1/LA

1/CA 0

]
, G =

[
1/LA 0

0 −1/CA

]
(9)

[
iSA[k + 1]
vA[k + 1]

]
= A

[
iSA[k]
vA[k]

]
+ B

[
vSA[k]
iA[k]

]
, A = eF·Ts , B =

∫ Ts

0
eF·τdτ · G (10)

A =

[
A11 A12

A21 A22

]
, A11 = a·ea·Ts−b·eb·Ts

a−b , A12 = −(ea·Ts−eb·Ts )
Loa(a−b) ,

A21 = ea·Ts−eb·Ts

Cab(a−b) , A22 = a·ea·Ts−b·eb·Ts

a−b + Roa ·(ea·Ts−eb·Ts )
Loa(a−b)

(11)

B =

[
B11 B12

B21 B22

]
, B11 = ea·Ts−eb·Ts

Loa(a−b) ,

B12 = [a·(eb·Ts−1)−b·(ea·Ts−1)]
(Loa ·Coa ·a·b)·(a−b) , B22 = −ea·Ts+eb·Ts+Roa ·[a−b−a·eb·Ts+b·ea·Ts ]

(Loa ·Coa ·a·b)·(a−b)

(12)

with a, b = −RA/LA±
√

(RA/LA)
2−4/CA/LA

2 . Therefore, the discretized model to predict iSA is:

iSA[k + 1] = A11 · iSA[k] + A12 · vA[k] + B11 · vSA[k] + B12 · iA[k] (13)

Here, iSA[k], vSA[k], and vA[k] are measured using sensors, while iA[k] is calculated using
Equation (2). To compute the input reactive power, the three-phase variables are converted into
α-β-γ components using:  iα

iβ

iγ

 =
2
3

 1 −1/2 −1/2
0
√

3/2
√

3/2
1/2 1/2 1/2


 ia

ib
ic

 (14)

 ia

ib
ic

 =

 1 0 1
−1/2

√
3/2 1

−1/2 −
√

3/2 1


 iα

iβ

iγ

 (15)

where ia,b,c are the three-phase currents in the abc system and iα ,β,γ are the currents in the αβγ system.
The input reactive power is computed from:

Q[k + 1] =
3
2
(
vSA−β[k + 1]iSA−α[k + 1]− vSA−α[k + 1]iSA−β[k + 1]

)
(16)

The supply voltage is considered stable and it barely changes during a short sampling cycle.
Therefore, vSA−α ,β [k + 1] = vSA−α ,β [k] holds.

3. Systematic Descriptions of SMPC

The systematic diagram of the proposed SMPC is illustrated in Figure 2. As shown in the diagram,
the proposed SMPC can be carried out in the following steps.

Step 1: Determine n control objectives or variables that need to be regulated. Sort these control
objectives in terms of priority (from high to low: 1st, 2nd, . . . , nth). Define an individual cost function
(g1 to gn) for each control objective. These cost functions enable switch state selection for controlling
corresponding variables. These cost functions will be evaluated in sequential order as explained below.
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Step 2: Evaluate all m available switch states (switch actions) and select n most suitable switch
states that render the minimum values of g1 for regulating the first control objective.

Step 3: Evaluate the n switch states selected in the previous step and select n − 1 most suitable
switch states that render the minimum values of g2 for regulating the second control objective.

Step x: Evaluate the n − x + 3 switch states selected in the previous step and select n − x + 2 most
suitable switch states that render the minimum values of g3 for regulating the (x− 1)th control objective.

Step n + 1: Evaluate the two switch states selected in the previous step and select the most
suitable switch states that render the minimum values of gn for regulating the nth control objective.
The selection in this step is final and will be applied to the converter.
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In the proposed SMPC, the priority determines the importance of each objective in the controller.
The higher the priority, the more important it is. Generally, the priority of each control objective is
determined on the specific applications and desired performance.

In this work, there are two control objectives (n = 2), i.e., the load currents and input power factor
considered in SMPC for MC. The main control objective is the regulation of the load currents, so it
has the highest priority. There are 27 (m = 27) allowable switch states in total in the MC. The cost
functions for optimizing the selection of switch states for load currents and the input power factor are
individually defined in:

g1 = |i∗a − ia[k + 1]|+ |i∗b − ib[k + 1]|+ |i∗c − ic[k + 1]| (17)

g2 = |Q∗ −Q[k + 1]| (18)

Here, no weighting factors need to be designed for the proposed SMPC. However, in the
traditional MPC, the cost function is:

g = g1 + λg2 (19)

where λ is the weighting factor, which is usually obtained by time-consuming empirical methods
through a complex process. The weighting factor specifies the relative importance of the control
objective in traditional MPC methods.

4. Simulation Results

To verify the effectiveness of the proposed controller, comparative simulation tests were carried
out. The block diagram of the proposed SMPC for MC is shown in Figure 3. Here, two independent cost
functions (g1 and g2) are used for the load current and input power factor, respectively. All 27 possible
switching states are evaluated in the first cost function (g1) and two states are preselected. These two
states are then evaluated in g2 to select the final switch state, which is applied in the controller.
The system and controller parameters are tabulated in Table 3. The amplitude of the reference load
current was set to 2 A. A unity power factor is desired, so the reactive power reference was set to zero.
In the traditional MPC, a weighting factor of λ = 0.0008 was used, which was obtained by a lengthy
trial-and-error process. In the simulation results, the black dashed lines represent the current reference
waveform (e.g., ia*).

Table 3. System and controller parameters.

vs [Vpk-pk] fs [Hz] LA [mH] CA [µF] RA [Ω] RL [Ω] LL [mH] fo [Hz] Q* [VAr] Ts [µs]

100 50 6.8 10 0.5 15 14 60 0 100
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Figure 4 compares the performance of the output current regulation between the traditional MPC
and the proposed SMPC. As observed in this figure, the performance of the proposed SMPC is very
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similar to the traditional MPC. The total harmonic distortion (THD) in the traditional MPC is 4.07%
while it is 3.95% in the proposed SMPC.
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Figure 5 compares the input power factor regulation of two methods. Both methods can regulate
the input current, iSA, to be in phase with the input voltage, vSA, resulting in unity input power factor
operation. As concluded from these results, the proposed SMPC exhibits comparable results to the
traditional MPC. However, the complex weighting factor design is not required in the proposed SMPC.
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The proposed SMPC reduces the computational burden and can potentially improve the
performance further. Compared with the traditional MPC, the computation burden is reduced
because only the pre-selected switch states are evaluated in the second and subsequent sequential
cost functions. In addition, the prediction model computation for the following cost functions is
also reduced. These further improve the performance by increasing the sampling frequency of the
algorithm. However, this is difficult to achieve in the traditional MPC because all switch states are
evaluated in all cost functions; otherwise, some pre-selection technique must be applied. To verify
this benefit of the proposed SMPC, the sampling time was reduced to 80 µs, which complies with
the experimental implementation in the following section. The simulation results for the proposed
SMPC with Ts = 80 µs are shown in Figure 6. The regulated output current is improved in terms of the
waveform and THD (3.31%) and the input waveform is also improved.
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A comparative table of the performance is shown in Table 4. Under the same system conditions,
the proposed SMPC performs similarly to the traditional MPC in terms of the evaluated performance
with a slightly lower average switching frequency. These simulation results demonstrate the
effectiveness of the proposed SMPC.

Table 4. Comparative performance evaluation of SMPC and MPC.

Methods Ts
Avg. Switching

Frequency
Weighting

Factor
Output

Current THD
Input Power

Factor

MPC 100 µs 2.038 kHz 0.0008 4.07% 0.997
SMPC1 100 µs 1.89 kHz none 3.95% 0.996
SMPC2 80 µs 2.37 kHz none 3.31% 0.997

To test the dynamic performance, dynamic tests were carried out. Figure 7 shows the response
of the output current to load variation. In this test, at 0.05 s, the load was increased to 1.5 times the
original value. As seen, the output current still can be controlled to follow the prescribed reference.
The corresponding results of the input power factor regulation are shown in Figure 8. In both
controllers, an almost united input power factor is obtained. The output voltages corresponding to the
load variation test are depicted in Figure 9.
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In addition, we evaluated the performance of the controllers under a reference step change.
The results of the regulated output currents are shown in Figure 10. The reference current amplitude
was changed from 2 A to 2.5 A at 0.05 s. As can be seen from the results, the controller can track
the reference with fast dynamics. It can be concluded from these results that the performance of the
proposed SMPC is comparative to that of MPC. However, unlike MPC, the proposed SMPC does not
require complex weighting factor tuning.
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5. Experimental Verification

The experimental work was carried out on an MC prototype to verify the proposed controller.
The hardware system is shown in Figure 11. The controller was implemented in a digital signal
processor—TMS320F28377D Dual-Core Delfino Microcontroller. The tested system and controller
parameters are the same as the simulation. For the experimental implementation, the total code
execution time of the traditional MPC and the proposed MPC was 81 µs and 67 µs, respectively.
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As mentioned in the simulation section, the execution time and computational burden are reduced
because only the pre-selected switch states need to be evaluated in the second and subsequent cost
functions. In addition, it requires less prediction model computation for the following cost functions.
To carry out a fair comparison between the proposed SMPC and MPC, a sampling time of 100 µs was
used. Comparative experimental results are presented below.

Figure 12 compares the regulated MC output currents and Figure 13 compares the performance
in terms of the regulation of the input power factor. As seen in these figures, similar results for the
traditional MPC and proposed SMPC are obtained. In the output current regulation, the THD for the
traditional MPC is 4.82% and it is 4.55% for the proposed SMPC. These results confirm the simulation
results. It is noted that the execution time of the proposed SMPC (67 µs) is reduced appreciably
compared with the traditional MPC (81 µs). Therefore, the sampling time in the proposed SMPC can
be reduced to 80 µs, which results in a better performance in both load currents and input power
factor regulation, as shown in Figure 14. However, this is difficult to achieve in the traditional MPC;
otherwise an overrun issue occurs in the practical implementation.

Energies 2019, 12, x FOR PEER REVIEW 11 of 13 

 

traditional MPC is 4.82% and it is 4.55% for the proposed SMPC. These results confirm the simulation 

results. It is noted that the execution time of the proposed SMPC (67 μs) is reduced appreciably 

compared with the traditional MPC (81 μs). Therefore, the sampling time in the proposed SMPC can 

be reduced to 80 μs, which results in a better performance in both load currents and input power 

factor regulation, as shown in Figure 14. However, this is difficult to achieve in the traditional MPC; 

otherwise an overrun issue occurs in the practical implementation. 

  
(a) (b) 

Figure 12. Experimental results of regulated load currents by (a) MPC and (b) proposed SMPC. 

  
(a) (b) 

Figure 13. Experimental results of regulated input power factor by (a) MPC and (b) proposed SMPC. 

  
(a) (b) 

Figure 14. Experimental results of (a) regulated currents and (b) input power factor by the proposed 

SMPC when Ts = 80 μs. 

As concluded from the above comparative experimental results, the proposed SMPC is effective 

in regulating the load currents and input power factor of MC. Under the same system conditions, 

similar results to the traditional MPC can be obtained with the proposed SMPC strategy. The complex 

weighting factor design process is not required. Therefore, the design process is simplified.  

6. Conclusions 

A generalised SMPC was proposed for a three-phase direct MC in this paper. In the proposed 

SMPC strategy, each control objective has an individual cost function. These cost functions were 

evaluated in sequential order according to the pre-determined priority. Complex weighting factor 

design was avoided in the proposed strategy, which simplifies the controller design process. With 

Figure 12. Experimental results of regulated load currents by (a) MPC and (b) proposed SMPC.

Energies 2019, 12, x FOR PEER REVIEW 11 of 13 

 

traditional MPC is 4.82% and it is 4.55% for the proposed SMPC. These results confirm the simulation 

results. It is noted that the execution time of the proposed SMPC (67 μs) is reduced appreciably 

compared with the traditional MPC (81 μs). Therefore, the sampling time in the proposed SMPC can 

be reduced to 80 μs, which results in a better performance in both load currents and input power 

factor regulation, as shown in Figure 14. However, this is difficult to achieve in the traditional MPC; 

otherwise an overrun issue occurs in the practical implementation. 

  
(a) (b) 

Figure 12. Experimental results of regulated load currents by (a) MPC and (b) proposed SMPC. 

  
(a) (b) 

Figure 13. Experimental results of regulated input power factor by (a) MPC and (b) proposed SMPC. 

  
(a) (b) 

Figure 14. Experimental results of (a) regulated currents and (b) input power factor by the proposed 

SMPC when Ts = 80 μs. 

As concluded from the above comparative experimental results, the proposed SMPC is effective 

in regulating the load currents and input power factor of MC. Under the same system conditions, 

similar results to the traditional MPC can be obtained with the proposed SMPC strategy. The complex 

weighting factor design process is not required. Therefore, the design process is simplified.  

6. Conclusions 

A generalised SMPC was proposed for a three-phase direct MC in this paper. In the proposed 

SMPC strategy, each control objective has an individual cost function. These cost functions were 

evaluated in sequential order according to the pre-determined priority. Complex weighting factor 

design was avoided in the proposed strategy, which simplifies the controller design process. With 

Figure 13. Experimental results of regulated input power factor by (a) MPC and (b) proposed SMPC.



Energies 2019, 12, 214 12 of 14

Energies 2019, 12, x FOR PEER REVIEW 11 of 13 

 

traditional MPC is 4.82% and it is 4.55% for the proposed SMPC. These results confirm the simulation 

results. It is noted that the execution time of the proposed SMPC (67 μs) is reduced appreciably 

compared with the traditional MPC (81 μs). Therefore, the sampling time in the proposed SMPC can 

be reduced to 80 μs, which results in a better performance in both load currents and input power 

factor regulation, as shown in Figure 14. However, this is difficult to achieve in the traditional MPC; 

otherwise an overrun issue occurs in the practical implementation. 

  
(a) (b) 

Figure 12. Experimental results of regulated load currents by (a) MPC and (b) proposed SMPC. 

  
(a) (b) 

Figure 13. Experimental results of regulated input power factor by (a) MPC and (b) proposed SMPC. 

  
(a) (b) 

Figure 14. Experimental results of (a) regulated currents and (b) input power factor by the proposed 

SMPC when Ts = 80 μs. 

As concluded from the above comparative experimental results, the proposed SMPC is effective 

in regulating the load currents and input power factor of MC. Under the same system conditions, 

similar results to the traditional MPC can be obtained with the proposed SMPC strategy. The complex 

weighting factor design process is not required. Therefore, the design process is simplified.  

6. Conclusions 

A generalised SMPC was proposed for a three-phase direct MC in this paper. In the proposed 

SMPC strategy, each control objective has an individual cost function. These cost functions were 

evaluated in sequential order according to the pre-determined priority. Complex weighting factor 

design was avoided in the proposed strategy, which simplifies the controller design process. With 

Figure 14. Experimental results of (a) regulated currents and (b) input power factor by the proposed
SMPC when Ts = 80 µs.

As concluded from the above comparative experimental results, the proposed SMPC is effective
in regulating the load currents and input power factor of MC. Under the same system conditions,
similar results to the traditional MPC can be obtained with the proposed SMPC strategy. The complex
weighting factor design process is not required. Therefore, the design process is simplified.

6. Conclusions

A generalised SMPC was proposed for a three-phase direct MC in this paper. In the proposed
SMPC strategy, each control objective has an individual cost function. These cost functions were
evaluated in sequential order according to the pre-determined priority. Complex weighting factor
design was avoided in the proposed strategy, which simplifies the controller design process. With the
proposed control strategy, the cost functions corresponding to control objectives were evaluated
individually and sequentially. In this way, the computational burden was reduced since only
the pre-selected switch states will be evaluated in the subsequent cost functions. In addition,
the computation of prediction models for the following cost functions was reduced as well.
These enable further improvement of the control performance by increasing the sampling frequency.
The priority of the control objectives was also specified with the proposed strategy. The achieved
performance was comparative to that of the traditional MPC. The effectiveness of the proposed
controller was verified by both the simulation and the experimental results. The proposed controller
became more beneficial when more control objectives and more switch states were considered.
So, this controller is suitable for MC. The proposed SMPC can be readily extended to other converters
and systems.
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