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Abstract: Photovoltaic (PV) models” parameter extraction with the tested current-voltage values is
vital for the optimization, control, and evaluation of the PV systems. To reliably and accurately extract
their parameters, this paper presents one improved moths-flames optimization (IMFO) method.
In the IMFO, a double flames generation (DFG) strategy is proposed to generate two different types
of target flames for guiding the flying of moths. Furthermore, two different update strategies are
developed for updating the positions of moths. To greatly balance the exploitation and exploration,
we adopt a probability to rationally select one of the two update strategies for each moth at each
iteration. The proposed IMFO is used to distinguish the parameter of three test PV models including
single diode model (SDM), double diode model (DDM), and PV module model (PMM). The results
indicate that, compared with other well-established methods, the proposed IMFO can obtain an
extremely promising performance.

Keywords: moth-flame optimization; parameter extraction; photovoltaic model; double flames
generation (DFG) strategy

1. Introduction

Owing to fuel depletion, global warming, and environmental pollution, the renewable energy
sources such as wave, tidal, wind, geothermal, and biomass have received more attention in recent
years [1-4]. Solar energy is considered as an extremely promising renewable energy source owing to
its usability and cleanliness [5-7]. Furthermore, solar energy is also widely adopted to generate power
via photovoltaic (PV) systems [8]. However, PV systems are susceptible to external environmental
factors such as temperature and global irradiance, affecting the use efficiency of solar energy [9].
Therefore, it is crucial to accurately establish current-voltage models for optimizing and controlling PV
systems [10]. The current-voltage models mainly include single diode model (SDM) and double diode
model (DDM) [11], which are widely utilized to indicate the connection between current and voltage.
The accuracy and reliability of the PV models are primarily determined by their parameters. However,
because of unstable operating cases such as faults and aging, the PV models’ parameters are generally
not available and vary. Thus, developing an effective method to accurately extract these parameters
becomes especially critical.

Recently, a large number of algorithms have been proposed for identifying the parameters of PV
models. They are mainly divided into the following three categories: analytical [12], deterministic [13],
and heuristic methods [14]. The first category methods identify the PV models’ parameters via analyzing
a set of mathematical formulas [15,16], which accelerates and simplifies the calculation. However,
the reliability and accuracy of the solution are poor due to some postulations that need to be made
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before the analysis [17,18]. The second category methods are greatly susceptible to initial assumptions
and tend to fall into local optimum. In addition, they depend on the model’s differentiability or
convexity. However, the PV models are usually non-linear and multimodal, resulting in a set of poor
solutions when using the second category methods. The third category methods are heuristic methods
and can properly overcome the defects of analytical and deterministic methods. Therefore, they have
become potential alternatives to PV models” parameters extraction.

Until now, various heuristic algorithms have been proposed for the parameter extraction of the
PV models. Reference [14] presents a genetic algorithm (GA) for identifying the SDM parameters of a
photovoltaic panel. Reference [19] proposes a new method adopting particle swarm optimization (PSO)
with inverse barrier constraint to determine the uncertain parameters of a PV model. Reference [20]
applies the artificial bee colony (ABC) to identify the optimal parameters of a silicon solar cell.
Reference [21] presents an improved adaptive differential evolution (IADE) algorithm, which utilizes a
simple structure based on the feedback of fitness value in the evolutionary process. Reference [22] uses
the bird mating optimizer (BMO) to estimate the optimal parameters of silicon solar cell. Reference [23]
proposes the chaotic whale optimization algorithm (CWOA), which adopts the chaotic maps to calculate
and automatically adapt the internal parameters of the optimization algorithm. Reference [24] presents
an improved ant lion optimizer (IALO), which arranges the initial positions of individuals by chaotic
sequence to improve the uniformity and ergodicity of population. Reference [25] adopts the bacterial
foraging algorithm (BFA) to predict the solar PV characteristics accurately. Reference [26] proposes an
improved JAYA (IJAYA) algorithm, in which a self-adaptive weight is proposed to regulate the trend of
moving towards the best result, getting out of the worst result at distinct search stages. Reference [27]
uses a teaching learning—based optimization (TLBO) algorithm to extract all five parameters of a solar
cell. Reference [28] proposes flower pollination algorithm (FPA) to extract the optimal parameters of
different PV models.

Furthermore, as a population-based heuristic algorithm, MFO [29] is inspired by moths’ behaviors
and acquires great performance when solving non-convex and multimodal optimization problems.
In MFO, each of the moths represents a solution for problems. Specifically, the algorithm’s most
striking feature is that each moth has its own flame and flies toward the flame in a spiral curve.
Consequently, the flight curves of the moths are always oriented at a fixed angle to the remote target
flames, known as the transverse orientation. In MFO, the flames” number is gradually decreased
with the iterations’ number raising, which allows MFO to obtain fast convergence speed. Note that
reference [29] demonstrates MFO's excellent optimization performance in relation to other well-known
methods such as GA [18], FPA [28], and PSO [19]. Besides, MFO has been commonly applied to various
PV-related practical problems. In reference [30], MFO is utilized to estimate parameters of the three
diode models for multi-crystalline solar cells/modules. In reference [31], MFO is used for PV MPPT
and partial shading problem. In reference [32], MFO is applied for Al-based MPPT that is used for
partial-shaded grid-connected PV plant.

Nevertheless, in MFO, the fast information exchanges among moths are produced owing to
all the moths flying toward their best target flames. Once the global optimal value is close to the
local optimum, the moths can easily fall into the local optimum of the search area. To overcome the
shortcoming of MFO, various MFO variants have been proposed. Reference [33] presents a novel
opposition-based moths-flames optimization (OMFO) that uses an opposition-based learning strategy
in MFO to improve convergence speed. Reference [34] proposes an efficient hybrid algorithm based
on water cycle and MFO algorithms (WCMFO), which combines the Levy-flight operator and spiral
movement of MFO into the Water Cycle (WC) method to enhance the WC’s ability of exploration
and exploitation, respectively. Reference [35] presents a moth-flame optimization algorithm based on
chaotic crisscross operator (CCMFO) that uses the chaotic operator and crisscross strategy in MFO
to enhance the convergence of premature. However, the above MFO variants have no attempts for
solving the PV models’ parameters extraction problems.
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This paper proposes an improved MFO (IMFO) for accurately estimating the parameters of the
PV models. In IMFO, a double-flames generation (DFG) strategy is presented to generate two different
kinds of target flames for effectively guiding the flying of moths. By adopting corresponding local
best moths, a type of flames called local flame (LF) is produced. Another type of flames is called
global flame (GF) and is generated by combining all the moths’ current personal best positions (pbests).
Furthermore, two different update strategies are created for updating the positions of moths, and each
moth only adopts one of the two different evolution update strategies at each iteration. To ensure
the effective compromise between global exploration and local exploitation, a probability is utilized
to rationally select the two different update strategies for each moth. To demonstrate the superior
performance of IMFO, we compare the proposed method with eight well-established algorithms on
extracting the parameters of three different PV models, i.e., SDM, DDM, and PMM. The experimental
results show that IMFO can achieve a highly competitive performance as well as can reliably and
accurately extract the parameters of the three different PV models.

The main contributions of our work are as follows:

1. Anovel IMFO algorithm is presented to extract the parameters of different PV models. Different
from most existing MFO methods, IMFO develops a double-flames generation (DFG) strategy
to generate two kinds of high-performance flames. Furthermore, in IMFO, two different update
strategies of moths are developed to effectively tackle exploration and exploitation. Besides,
a probability is applied to rationally select one of two different update strategies for each
moth’s update, contributing the efficient compromise between the global exploration and
local exploitation.

2. To the best of our knowledge, there are no MFO methods for solving the parameters extraction
on the PMM. Specifically, most existing MFO variants such as OMFO and WCMFO have never
been used for the parameter extraction on the three PV models including SDM, DDM, and PMM.
Although MFO [30] has been used for the DDV, it has never been adopted for the parameter on
the SDM or PMM. However, the proposed IMFO fully considers the parameter extraction on the
SDM, DDM, and PMM.

3.  Comparisons are given between IMFO and eight well-established algorithms on extracting the
parameters of three PV models. The results verify that IMFO can achieve better performance
than the eight algorithms on the extraction of the three PV models’ parameters.

4. The rest of the paper can be arranged as follows. Section 2 introduces the problem formulation of
PV models. The original MFO algorithm is illustrated in Section 3. Section 4 gives the detail of
the IMFO algorithm. The experimental results and analysis of different PV models are given in
Section 5. Furthermore, the discussion is given in Section 6. Finally, the conclusion is displayed
in Section 7.

2. Formulation of PV Models

The single diode model (SDM), double diode model (DDM), and PV module model (PMM) are
generally adopted to indicate the relationship between current and voltage of solar cells and PV systems.
In this section, the SDM, the DDM, and the PMM are given as follows. Furthermore, the objective
function for extracting the parameters of the three models is described as follows.

2.1. Single Diode Model

The SDM has been commonly used to illustrate the static characteristics of solar cells owing to
its simple structure and accuracy. As shown in Figure 1a, the SDM is composed of a diode, a current
source, a shunt resistor, and a series resistor. Note that the shunt resistor and series resistor are used
for indicating leakage current and denoting load current loss, respectively. The output current I, of
this diode model can be computed as follows:

Io = Iph - Id - Ish (1)
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where Ig,, I3, and I, represent the shunt resistor current, the diode current, and the photo produced

current, respectively; I, denotes the calculated output current. The calculation formulas of I3 and Iy
are shown as follows:

Vi+ iR
la = Isd[exp(q(j:TT”)) - 1] @)
LRs+V
Ih=—p — 3)
sh

where I;q indicates the saturation current of the diode; I; and V respectively represent the tested output
current and voltage; Rs means the series resistance; g and k are the electron charge (1.60217646 x 10_19C)
and Boltzmann constant (1.3806503 x 10723 J/K), respectively; m is the ideal factor of diode; T is the cell
temperature (K); Rq, denotes the shunt resistance. Consequently, we can rewrite Formula (1) as follows:

q(Ve + ItRs) IiRs + Vi
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(o) ph Sd[exp( ka Rsh ( )
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— —3—
e 1
I 1
[ph Id" Igh ¢ Iph Idl" Idzv Ish ¢

(a) (b)
RS
e &
L/N,
I Ish"
A D -

()
Figure 1. Equivalent circuit diagram of the (a) SDM, (b) DDM, and (c) PMM.

Note that Formula (4) has five undetermined parameters (Ipp, Isd, Rs, Rsh, and m). Accurate and
reliable extraction of the five parameters is important for solar cells, which can be realized by the
proposed IMFO algorithms.

2.2. Double Diode Model

The DDM has been developed [36,37] due to this fact that the SDM has not considered the influence
of composite current loss of the depletion area. As shown in Figure 1b, the DDM contains a current
source, two diodes in parallel with a shunt resistance and a resistance in series with the current source.
One of the diodes is applied to simulate the charge-recombination current with the non-ideal factors,
and the other one is set as the rectifier. The output current I, of this model can be acquired as follows:

Io = Iph —Ia1 — a2 — Lsn

Vi+ IR Vi+ IR
q(Ve +1i S))—l]—lsdz[exp(q( 4 I s))_l]_ItRerVt

= ph_Isdl[eXp( kT kT Ry &)
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where I3; and m; denote the current of diffusion and the ideality factor, respectively; my and Iy
indicate the composite diode ideality factor and saturation current, respectively. Different from the
SDM, the DDM includes seven undetermined parameters (Iph, Isd1, Isd2, Rs, Rsh, 1, and my) that need
to be accurately extracted.

2.3. PV Module Model

The PMM typically embodies multiple solar cells connected in parallel and/or in series.
The equivalent circuit diagram of the single diode PMM is presented in Figure 1c. The output
current of this model can be calculated by the following Formula (6):

a(Ve/Ns + IiRs /Np)
mkT

Ry (6)

IiRs/Np + Vi /N,
Iosz{Iph—Isd[exp v i A S}

where N and N, represent the number of solar cells in series and parallel, respectively. Same as the
SDM, PMM also has five undetermined parameters (Iph, Isdas Rs, Rep, and m) to be accurately extracted.

2.4. Objective Function

For the extraction problem of the undetermined parameters in PV models, the main task is to
explore the undetermined parameter optimal value for narrowing the difference between the calculated
and tested current values. The errors on each set of calculated and tested current values of the SDM
and DDM can be obtained by the following Formulas (7) and (8), respectively.

Vi+IiRs s
fe(Ve I, X) = Ph_lsd[exp(—q( T ))—1]——I‘RR£V‘ ~h

@)
X = {Iph/ Isa, Rs, Rgp, m}

Vi+IiRg Vi+IiRs .
fx(Ve Iy, X) = Iph = Isar [exp(q(nf—k})) - 1] - Ist[eXP(q(;;r—ktT)) - 1] - % — 1

X = phs ISdl/ ISdZ/ RS/ Rsh/ my, My

®)

In this work, to evaluate the entire difference between the calculated and tested current values, the
root mean square error (RMSE) is utilized as objective functions as shown in Formula (9), which has
been commonly adopted in literature [24,26,27]. Particularly, the smaller the RMSE(X) value, the more
accurate the extraction of PV models’ parameters.

N 2
RMSE(X) = \/ L fx(;]/t, I, X) )

where N. denotes the number of tested current values, X is the decision vector that contains the
undetermined parameters to be estimated.

3. Moth-Flame Optimization Algorithm

As a novel population-based heuristic algorithm, MFO is proposed by Mirjalili in 2015 [29].
The algorithm mainly contains two mechanisms: flame generation mechanism and the spiral flight
search mechanism.
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3.1. Flame Generation Mechanism

In MFQO, the whole moth swarm’ population size and the individual dimensional size are set as N
and D, respectively. The whole moth swarm can be expressed as the following matrix AM:

AM1 anqq amipy -+ -+ aAnp
AM2 amynq amypy -+ - AMOD

AM = : = . : - : (10)
AMN amyi1 ampyp -+ - AMND

where AM; = [am;j, amy,--- ,am;p| represents the state of the i-th moth, i € {1, 2, ---, N}, and am;y
indicates the d-th dimensional position of i-th moth, d € {1, 2, ---, D}. When MFO is applied for the
estimating a PV model’s parameters, each dimension of AM; = [am;;, amj, - - - ,am;p| corresponds to a
set of extracted parameters of the PV model; D stands for the number of the estimated parameters.
For example, for the SDM with its five estimated parameters, each AM;, i € {1, 2, ---, N} has five
dimensions, written as AM; = [amj, amp, --- ,ams); amy, amp, amgz, amy, and am;s represent five
estimated parameters Ioh, Isd, Rs, Reh, and m, respectively.

F[#] denotes the fitness value function. Therefore, for the i-th moth AM;, its fitness value is
indicated as F{AM;]. Similarly, the fitness value vector of AM can be represented as follows:

F[AM] = : (11)
F [AMN}

Similarly, for the estimating a PV model’s parameters, F[] is defined as objective functions of the
PV model.

Due to each moth has its own target flame, the number of the initial flames is equivalent to moths.
The matrix AF is assumed to be the size of initial flames as follows:

AFq afiy afip -+ -+ afip
AF; afy afp -+ -+ afip

AF=| . |=| . } .. } (12)
AFyn afni afn2 -+ -+ afnp

where AF; is corresponding to the AM;, i € {1, 2, ---, N}. Dand N are the flames” dimensional number
and population size, respectively.

Similarly, for the i-th flame AF;, its fitness value is described as F[AF;]. The fitness value vector of
AF is expressed as below:

FIAF) = : (13)

FIAFy]

The maximum number of iterations and the current number of iterations are set as K and &,
respectively, k € {1, 2, ---, K}. The flame generation mechanism is introduced as follows:

e  Step one: when the current iterations” number k is one, the moths {AM;, AMy,--- ,AMn} are
sorted according to their corresponding fitness value {F[AM;], F[AM3],- - - , F[AMy]} from small
to large, and the i-th moth after sorting is set as AMg;, AM;; € {AMg1, AMg, -+, AMsn}. Then,
the AMy;, i € {1, 2, ---, N} means the i-th flame AF;. Thus, the AF and its corresponding fitness
value F[AF] can be initialed based on the sorted AM and F[AM], respectively.
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e  Step two: when the current number of iterations k is greater than one but less than or equal to
K. We sort AM(k — 1) and AF(k — 1) from small to large according to their corresponding fitness
values F[AM(k —1)] and F[AF(k—1)]. Next, the top N individuals are selected as new flames
AF(k) from AM(k—1) and AF(k — 1). The F[AM(k — 1)] and AM(k — 1) represent the fitness
value vector and the position vector of moths at the (k — 1)-th iterations, respectively. Similarly,
the fitness value vector and position vector of flames at the (k — 1)-th iterations are F{AF(k —1)]
and AF(k — 1), respectively.

From the above demonstration, AF denotes the essence of AM(k — 1) and AF(k — 1). Therefore,
for the estimating a PV model’s parameters, each dimension of AF; = [afj,afp, -+ ,afip]| corresponds
to an estimated parameters of the PV model; D stands for the number of the estimated parameters.

3.2. Spiral Flight Search Mechanism

Furthermore, since the moths fly toward their respective target flame in spiral, the spiral flight
search mechanism has been developed to simulate the moth’s logarithmic spirally flying curve,
as below:

Dj-e%- cos(2mt) + AF;(k), i < Fuy

. 14
Dj-e%- cos(2mt) 4+ AFf,, (k), i > Fuy (14)

AM;(k+1) = {
where AM;(k + 1) indicates the position of the i-th moth AM; after renewing, i € {1, 2, ---, N};
D; = |AF; — AM;| denotes the distance between the i-th flame AF; and the AM;; b is a constant for the
logarithmic spiral shape; f is a random number of [-1, 1], which denotes the distance between the next
position of the moth and the flame (t = -1 is the smallest distance between AM; and AF;, and t =1 is
the farthest between AM; and AF;). For diverse t values, the spirally flying trajectory in one dimension
is displayed in Figure 2.

A Moth o
i Flame @

Position in one dimension

t=05 t=—-05 t=-1 t=0 t=1
Figure 2. Geometric trajectory diagram of flying moth catching flame around logarithmic spiral curve.
F,y is the number of the flames during the iteration process. Note that as the number of iterations

increases, F,, gradually decreases and eventually equals to 1. The process of adaptively reducing the
number of flames can be expressed in Formula (15) as below:

Foy = round[N —kx (15)

N - 1]
where N and K are the maximum number of flames and iterations, respectively; k denotes the current
iterative number. Besides, round[x*] is the function that can make x* be rounded to its nearest integer.
Note that with k = 0, F,, = N; when k = K, F;;, = 1 denotes that moths utilize the best flame to update
their own positions at the last iteration in Formula (14).
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In general, the flames surrounded by their corresponding moths can be randomly distributed in
the search area. Consequently, the MFO can obtain the good balance between the local exploitation
and the global exploration [29].

4. Improve Moth-Flame Optimization Algorithm

In the original MFO [29], the moths always flying towards their corresponding best target flames,
resulting in the fast communication between moths. Therefore, the moths are easily trapped into local
optimum when facing complex multi-modal problems. To address this problem, this paper develops
an improved MFO (IMFO) algorithm. In the IMFO, we propose a double-flames generation (DFG)
strategy to generate two different types of target flames for guiding moths flying. One type of flames is
named local flame (LF), which can be created by dividing the entire swarm into several sub-swarms
and then select the local best moths in a corresponding sub-swarm; another one is called global flame
(GF) that is generated by combining all the moths’ current personal best positions (pbests). Moreover,
two different update strategies are developed for updating the positions of moths; each moth only
adopts one of the two update strategies at each iteration. In addition, to ensure a great balance between
the exploitation and exploration, we develop a probability to rationally select one of the two update
strategies for each moth at each iteration. The above process is detailed below.

4.1. Double Flames Generation Strategy

In this strategy, two types of target flames are produced by adopting different moths’ information.
The first type of flames is the LFs, which can be generated by the following description:

1. Assume the population size of moths is N, AM; and F[AM;] are the position and the fitness value
of i-th moth, respectively,i € {1, 2, ---, N}.

2. Divide all the moths in the entire swarm into m sub-swarms, and each sub-swarm has n moths.
In this case, the a-th sub-swarm is composed of from number (x—1) X7 + 1 to number « X n,
oaell,2,---,m}

3. According to the moths’ fitness values, the best moth of each sub-swarm is select as LF «, which
denotes the LF of the x-th sub-swarm.

The second type is GF, which is generated by combining all the moths’ pbests. The calculation
formula of GF is displayed in Formula (16), we can see from the formula that the GF carries the
information about all moths.

N
1
GF = N Z pbest; (16)
i=1

4.2. Update Formulas

Furthermore, two different update strategies are created for generating new moths. Particularly,
the two update strategies correspond to two types of flames, respectively as follows:

AM;(k+1) = |LFq (k) — AM;(k)| x e x cos(2mt) + LE« (k) (¢ > P) (17)

AM;(k+1) = |GF(k) — AM;(k)| x e x cos(2nt) + GF(k) (¢ < P) (18)

where AM;(k + 1) and AM,; (k) respectively represent the updated position of the i-th moth at the
k-th and (k + 1)-th iteration, i € {1, 2, ---, N}; b indicates a constant for the logarithmic spiral shape;
LF4 (k) and GF(k) denote two type of flames; ¢ is a number that randomly distributed in the interval of
[-1,1].
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From the Formula (17), we can observe that as the local best flame in the «-th sub-swarm,
o €{1,2,--- ,m}, LE« (k) can effectively guide its corresponding moth AM;(k) to perform the local
search and explore a new potential place in the solution area. On the other hand, we can see from the
Formula (18) that the moths in the entire swarm can fly towards GF(k) for improving the accuracy
of solutions. Particularly, instead of using the best flame, Formula (18) adopts GF(k), namely the
average value of all the moths’ pbests to avoid the fast communication between moths and improve
the premature of the moths. In general, the two different update strategies make moths obtain the
promising compromise between global exploration and local exploitation.

In addition, we develop a probability to rationally select one of the above two update strategies at
each iteration. Specifically, a random number ¢ distributed in [0,1] is created during each iterative
process. If the value of ¢ is larger than P, the Formula (17) can be selected to update the i-th moth
AM,;; otherwise, the Formula (18) be done for updating the AM;. Therefore, it is significant to acquire
a suitable P value for balancing the exploitation and exploration abilities. The setting of P value is
displayed in Section 6.

4.3. Process of IMFO

The pseudo code of IMFO is expressed in the Algorithm 1, where k denotes the number of the
current iteration; LF, denotes the local best flame of the a-th sub-swarm, o € {1,2,--- ,m}, where m
indicates the number of sub-swarms. It can be seen from the Algorithm 1 that the complexity of IMFO
is comparable to the original MFO. Moreover, the flow chart of IMFO is described in Figure 3, where
the DFG strategy with two different update strategies are adopted to seek the best solution in the
search space.

Algorithm 1: IMFO

1: /*Initialization*/

2: Initialize the position AM; of moths, i € {1,2,--- ,N};

3: Calculate the fitness value F[AM;] of moths, initialize the pbest;, gbest;
4: [* DFG strategy*/
5:k=1;

6: for « =1 tom do
7: subswarm, = [AM(‘X_U*,,H,AM((X_U*,HZ, e ,AMa*n];
8: Select the best moth of sub — swarm,, as LF, (k);

9: end for

10: Calculate the GF(k) with formula (16);

11: while (condition of termination not met) do

122 k=k+1;

13: fori=1to N do

14: Create a random number ¢;

15: if ¢ > P

16: Update the AM; (k) with formula (17);

17: else

18: Update the AM; (k) with formula (18);

19: end if

20: Update the pbest;, LF,, GF, gbest,i € {1,2,--- ,N};

21: end for

22: end while
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Figure 3. Flow chart of the improved moths-flames optimization (IMFO).

5. Results and Analysis

To show the validity of the proposed IMFO method, it is applied to identify the parameters of
three different PV models involving the SDM, DDM, and PMM. For the SDM and DDM, reference [18]
gives the measured current and voltage values from a 57 mm diameter commercial silicon R.T.C.
France silicon solar cell working at a temperature of 33 °C under irradiance of 1000 W/m?2. Besides,
as a PMM, the Photowatt-PWP201 is applied to evaluate the IMFO for identifying the corresponding
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parameters [18,38,39]. Particularly, the Photowatt-PWP201 contains 36 silicon cells with series
conducting under 1000 W/m? at 45 °C. Considering fair comparison, we utilize the same search upper
and lower boundaries [24,26,27] of each parameter of three PV models, as shown in Table 1.

Table 1. Parameters boundaries of the three different photovoltaic (PV) models.

Single Diode/Double Diode PV Module
Parameter
Lower Bound Upper Bound Lower Bound Upper Bound
Ln(A) 0 1 0 2
Isdr Isdl/ Ist (#A) 0 1 0 50
Rs()) 0 0.5 0 2
Ry, (Q2) 0 100 0 2000
m, my, ny 1 2 1 50

To indicate the excellent performance of the IMFO method, it has been compared with eight
well-established and competitive methods. These compared methods were the basis MFO [30],
opposition-based MFO method (OMFO) [33], hybrid water cycle-moth-flame optimization method
(WCMEFO) [34], brain storm optimization method (BSO) [40], comprehensive learning PSO (CLPSO)
method [41], artificial bee colony (ABC) method [20], sine cosine algorithm (SCA) [42], and improved
JAYA (IJAYA) method [26]. All the compared methods were independently conducted 30 times on
each PV model. For each running, the maximum number of evaluations for the compared methods
is set to 50,000. Table A1 of Appendix A shows the parameter settings of the comparison methods.
Note that in the IMFO, the population size of moths is set as 100, and the number of sub-swarms and
P are set as four and 0.4, respectively. Moreover, the accuracy of the nine compared methods were
illustrated by comparing the best values in their RMSE. Also, their robustness and convergence speed
were evaluated through the analysis of data results and convergence curves.

5.1. Results on the Single Diode Model

For the SDM, RMSE and the estimated five parameters values are shown in Table 2, where we
highlight the overall best and the second best RMSE values in gray boldface and boldface, respectively.
Interestingly, both the IMFO and WCMFO achieve the best RMSE value (9.8602 x 10~%) among the
nine algorithms; besides, the IJAYA acquires second best RMSE value (9.8606 X 107%), followed by
ABC, CLPSO, MFO, OMFO, BSO, and SCA. RMSE is applied to denote the accuracy of experimental
results because of the information of the accurate values of the parameters is not available. Although
the gap between the best and second best RMSE values is extremely subtle, it is important to decrease
the difference between the true and estimated parameter values in objective function. Because the
smaller of objective value RMSE, the more accurate the estimated parameters. Moreover, the extracted
best parameters from IMFO are employed to plot I-V and P-V curves. This further demonstrates the
accuracy of the extracted parameters on SDM. From Figure A1 of Appendix A, we can see that the
measured and simulated current and voltage values acquired by IMFO are extremely consistent over
the entire voltage range. In addition, the individual absolute errors (IAE) between the simulated and
measured current values are displayed in Table A2 of Appendix A. Note that compared with 2.5 x 1073,
all the IAE values are smaller, demonstrating the preciseness of the extracted parameters from IMFO.
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Table 2. Comparison among different algorithms on the single diode model.

Algorithm IPh(A) I,q(nA) Rs(Q)) R, (D) m RMSE
IMFO 0.76078 0.32296 0.03638 53.71456 1.48117 9.8602 % 10~4
MFO 0.76092 0.30105 0.03596 51.81957 1.46935 9.9496 x 1074

OMFO 1.09171 0.69332 0.06003 93.11915 2.16144 1.1927 x 1073
WCMFO 0.76078 0.32314 0.03638 53.69502 1.48122 9.8602 % 10~%
BSO 0.76090 0.99996 0.03137  97.35715 1.60455 24551 x 1073
CLPSO 0.76073 0.31629 0.03639 52.31786 1.47910 9.9455 x 1074
ABC 0.76085 0.33319 0.03623 53.72712 1.48431 9.9049 x 104
SCA 0.76503 0.67937 0.03544 50.14796 1.56094 5.8058 x 1073
IJAYA 0.76077 0.32349 0.03637 53.89245 1.48133 9.8606 X 10~

Note: 9.8602 X 10~* : both the IMFO and WCMFO achieve the best RMSE value among the nine algorithms;

9.8606 X 10~ : the IJAYA acquires second best RMSE value (9.8606 x 1074), followed by ABC, CLPSO, MFO,
OMFO, BSO, and SCA.

5.2. Results on the Double Diode Model

For the DDM, the values of seven extracted parameters with the comparison results of RMSE are
presented in Table 3. It can be seen that the proposed IMFO obtain the best RMSE result (9.8252 x 107%)
among the nine methods; the second best RMSE result (9.8371 X 1074 is achieved by WCMEFO. Besides,
the I-V and P-V curves are rebuilt in Figure A2 through using the best model that estimated by IMFO.
Furthermore, via using IMFO, we can obtain IAE values listed in Table A3 of Appendix A, where each
of all the IAE values is also smaller than 2.5 x 1073. In addition, we can see from the Figure A2 of
Appendix A that the measured and simulated current and voltage values obtained by IMFO are highly
in coincidence. Therefore, IMFO can extract the parameters of DDM with high accuracy.

Table 3. Comparison among different algorithms on the double diode model.

Algorithm  Ip(A)  Lgqi(A)  Rs(Q))  Rep(Q) my LpuA) my RMSE

IMFO 0.76078  0.23350 0.03671 55.29970 1.45374 0.68372 2.00000 ' 9.8252 x 10~4
MFO 0.76087 0.15997 0.03699 52.76975 1.43092 0.55840 1.82735  1.0102 x 1073
OMFO 0.76078 0.01137 0.03644 53.27466 1.46548 0.30651 1.48014  9.8652 x 1074
WCMFO  0.76078 0.23956 0.03661 55.11475 1.45681 0.44291 190457 9.8371 x 10~%
BSO 0.76100 0.00001 0.03134 92.63446 1.14459 099843 1.60458  2.4636 x 1073
CLPSO 0.76066 0.28752 0.03664 5528951 1.95861 0.26868 1.46524  9.9224 x 1074
ABC 0.76051 0.24568 0.03641 58.63990 1.46175 0.26266 1.76608  1.0001 x 103
SCA 0.76540  0.00000 0.02945 38.07191 1.02508 0.95693 1.60284  9.2482 x 103
IJAYA 0.76077  0.64791 0.03675 54.86248 1.98667 0.22965 1.45222  9.8380 x 107*

Note:  9.8252 X 10~ : It can be seen that the proposed IMFO obtain the best RMSE result among the nine methods;
the second best RMSE result ( 9.8371 X 10~ ) is achieved by WCMFO.

5.3. Results on the PV Module Model

For the PMM, it has five parameters that need to be estimated. Table 4 presents the best RMSE
and the five extracted parameters values for each of the nine compared methods on 30 tests. From the
Table 4, we can see that IMFO achieves the best RMSE value (2.4251 x 1073); the IJAYA has the second
best RMSE value (2.2453 x 10~3). Furthermore, Figure A3 of Appendix A shows that the I-V and P-V
curves features of the estimated parameters by IMFO are good in coincidence with the measured
values. In addition, Table A4 of Appendix A indicates that each of all the IAE values is smaller than
4.8 x 1073, From these results, IMFO can achieve the great accuracy parameters extraction.
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Table 4. Comparison among different algorithms on the PV module model.

Algorithm Iph(A) Lq(nA) Rs(0)) R, (D) m RMSE
IMFO 1.03052 3.47835 1.20139 980.46728 48.63854 2.4251 x 103
MFO 1.02807 4.06598 1.19215 1185.52443 49.19573 2.4576 x 1073

OMFO 1.03062 3.41288 1.20337 961.83398 48.56592 2.4257 x 1073
WCMFO 1.03039 3.53468 1.19979 1003.12281  48.69988 2.4255 x 1073
BSO 1.03591 1.18207 1.31645 593.82890 44.80230 47604 x 1073
CLPSO 1.03013 3.62057 1.19763 1043.44361 48.79166 24282 x 1073
ABC 1.03095 3.79242 1.18896 946.21624 48.97719 2.4660 x 1073
SCA 1.04244 4.68166 1.20422 1204.05479 49.78753 1.0327 x 1072
JAYA 1.03047 3.50872 1.20024 987.63650 48.67208 2.4253 x 1073

Note: IMFO achieves the best RMSE value ' 2.4251 x 102 ; the [JAYA has the second best RMSE value 2.4251 X 102 .

5.4. Statistical Results and Convergence Curves

In this section, IMFO is compared with the other eight methods on the reliability and convergence
speed by the convergence curves and statistical results. Table 5 displays the nine algorithms’ statistical
results over 30 independent tests on each of three PV models, where the minimum (min), mean and
standard deviation (SD) values of RMSE represent the accuracy, average preciseness and reliability of
the extracted parameters, respectively. Besides, we conduct the Wilcoxon signed-rank examination at
5% significant level [43] to verify the great differences between IMFO and other compared methods.

Sign “+” in the Table 5 indicates that the IMFO is greatly superior to its competitors.

Table 5. Comparisons on the statistical results of different algorithms for three different PV models.

. RMSE N
Model Algorithm Min Mean Max SD '8
IMFO 9.8602 x 10~4 9.8767 x 104 9.964110~%  2.181010°°
MFO 9.9496 x 104 1.9256 x 1073 2584910~  4.9255107* +
OMFO 1.1927 x 1073 2.1967 x 103 5.83691073 8.5214174 +
Single diode WCMFO 9.8602 % 10~% 1.0122x 1073 133051073  7.3423107° +
model BSO 24551107 2.6986x 1070 33307107  1.961417* +
CLPSO 9.9455x 107 1.0507 x 107> 1.1865107°  4.6730107° +
ABC 9.9049 x 107*  1.2951x 107> 1.9278107°  2.5483107* +
SCA 58058 x 107> 3.7413x 1072 486361072 130231072 +
IJAYA 9.8606 x 10~*  1.0261x 107> 1122310~  4.160910~° +
IMFO 9.8252 x 10~4 9.9737 x 10~4 1.14091073  3.2939107°
MFO 1.0102 x 1073 3.4150 x 1073 352151072  5.689710~3 +
OMFO 9.8652 x 1074 2.1677 x 1073 3.727710™%  7.3018107* +
Double WCMFO 9.8371x107*  1.1449x107° 2264810  3.080910~* +
diode model BSO 24636 x 1073 2.8700x 107 4.0906107%  3.7045107* +
CLPSO 9.9224 x 10-4 1.0522 x 1073 1.14621073  4.31411075 +
ABC 1.0001 x 1073 1.0936 x 1073 1.2896107%  7.4111107° +
SCA 9.2482 x 1073 42445 x 1073 222861071 3.62481072 +
IJAYA 9.8380x 107 1.0240 x 10~ 1.3507107°  8.5647107° +
IMFO 2.4251 x 1073 2.4294 x 1073 2.500510~3  1.3831107°
MFO 2.4576 x 1073 2.7962 x 103 5.175410~°  5.7283107* +
OMFO 24257 x 1073 2.5901 x 103 2.6391107%  5.2586107° +
PV module ~ WCMFO 24255%x 107  1.1551x 1072 27425107 4.96161072 +
model BSO 47604 x 107 2.0011x 107! 4.0635107!  1.0516107! +
CLPSO 24282 x 1073 24527 x 1073 2.527710™%  2.3828107° +
ABC 2.4660 x 1072 2.6049 x 103 2.759510™3  5.9962107° +
SCA 1.0327 x 1072 1.2834 x 107! 2.74331071 1.07401071 +
IJAYA 2.4253 x 1073 2.4404 x 1073 2.50261073  1.9767107° +




Energies 2019, 12, 3527 14 of 23

We can clearly see from the Table 5 that the IMFO algorithm achieves the more outstanding
performance than other eight algorithms on the reliability and average accuracy of the three models.
For the SDM, WCMFO and IJAYA obtain the second-best average accuracy and reliability, respectively.
For the DDM, the second-best reliability and average accuracy are acquired by IJAYA and CLPSO,
respectively. For the PMM, the IJAYA achieves the second-best result both on average accuracy
and reliability. Moreover, the results of Wilcoxon signed-rank test from Table 5 demonstrate that
IMFO presents the greatly superior to all the compared methods on all the three models. Figure A4
of Appendix A displays the box-plots, indicating the distribution of all the 30 independent runs’
results acquired by the nine different methods. Note that the sign “+” in Figure A4 represents the
abnormal value during the plotting. The span of the data distributions demonstrates that the superior
performance is also obtained by IMFO algorithm.

Furthermore, Figure 4 gives the convergence curves of nine methods, which are plotted by using
the average RMSE value on the 30 independent tests. Clearly, IMFO acquired the fastest convergence
speed among the nine methods on each of the three PV models.
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Figure 4. Convergence curves of different algorithms for three models.

In general, according to the above comparisons, we can indicate that the IMFO method expresses
the superior performance on searching preciseness, reliability and faster convergence performance
when extracting the three different PV models’ parameters. Besides, IMFO performs the superior and
competitive performance in contrast with eight mature heuristic methods.

6. Discussion

6.1. Discussion of Parameter

In this paper, the parameter P is used to rationally select one of the two update strategies for each
moth at each iteration. Thus, it is significant to set a suitable P value for balancing the local exploitation
and global exploration abilities. In this section, we test the influences of different P values on IMFO
performance through comparing the preciseness and reliability when extracting the parameters of the
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three different PV models. The maximum number of evaluations is also set as 50,000 on each running;
the population size of the moths and number of sub-swarms are set as 100 and 4, respectively.

We evaluate the IMFO with three different P values: 0.4, 0.5 and 0.6. In addition, the IMFO with
each different P value is independently conducted 30 times on each model. Table 6 shows that P = 0.4
provides the best values on all the three different PV models according to all criteria. This means
that P = 0.4 can obtain the best performance on accuracy and reliability when estimating the three
models’ parameters.

Table 6. Statistical results of root mean square error (RMSE) of IMFO with different settings of P on the
three models.

RMSE

Model P
Min Mean Max SD

Sinele diode P=04 9.8602 x 10~4 9.8767 x 10~ 9.9641 x 10~ 2.1810 x 10~

;511 odel P=05 9.8605 x 104 9.9166 x 104 1.0558 x 1073 1.2596 x 107>

P=06 9.8604 x 10~4 1.0592 x 1073 1.6218 x 1073 1.5329 x 1074

Double diode P=04 9.8252 x 10~ 9.9737 x 10~ 1.1409 x 1073 3.2939 x 10~°

model P=05 9.8259 x 10~4 1.0316 x 1073 1.3051 x 1073 9.3092 x 107>

P=06 9.8463 x 1074 1.1169 x 1073 1.5621 x 1073 1.8730 x 1074

PV module P=04 2.4251 x 1073 2.4294 x 1073 2.5005 x 1073 1.3831 x 107>

model P=05 24251%10°3  2.0553x1072  2.7425x107'  6.8963 X 1072

P=06 2.4252 x 1073 1.1607 x 10~2 2.7425 x 1071 4.9607 x 10~2

6.2. Discussion of IMFO

To demonstrate that IMFO can effectively escape the local optimum when solving multimodal
problems, we further tested the performance of IMFO, MFO [30], OMFO [33], WCMFO [34], BSO [40],
CLPSO [41], ABC [20], SCA [42], and IJAYA [26] on the CEC2017 benchmark suite [44]. Due to the
space constraints, the 30 benchmark functions of CEC2017 were listed in Table A5 of the Appendix A.
Moreover, according to the characteristics of the 30 benchmark functions, they can be classified into
unimodal, multimodal, hybrid, and composition problems. In addition, each function has the same
search boundary range (-100,100) on each dimension. Note that F(x*) is the optimal value of each
function; x” is the best solution corresponding to the optimal value. Here, owing to the limited space,
we select F4, F7, and F8 from the multimodal functions, and F12 and F18 from the hybrid functions
for evaluating the nine compared algorithms. Each evaluated algorithm was conducted 30 times
independently on each of the five selected benchmarks. The mean values (Mean) of the corresponding
errors are used as rating criteria. The comparison results of the nine algorithms with 30 dimensions are
displayed in Table 7, where we highlight the best and second-best Mean results in gray boldface and
boldface, respectively.

From the Table 7, we can see that IMFO achieves the best error means among the nine algorithms
on all the five complex functions. Moreover, the indicators of IMFO on the five benchmark functions
are all superior to the conventional MFO. For example, IMFO can provide the results of errors” mean
values 5.06 and 7.30 x 10 on multimodal functions F4 and F7, respectively, which are both close to the
optimal error value 0. However, MFO only can obtain the results of errors’ mean values 8.91 x 102
and 3.42 X 10? on multimodal functions F4 and F7, respectively. The above analysis shows that IMFO
can find a more promising solution than the MFO of the multimodal problem in the search space.
This indicates that MFO is easily trapped into the local optimum when solving complex multimodal
problems, however, IMFO can effectively escape the local optimum to find a more promising solution
on the multimodal problems.
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Table 7. Comparisons between IMFO and eight algorithms on five benchmark functions of CEC2017
with 30 dimensions.

Criteria Algorithm F4 F7 F8 F12 F18
IMFO 5.06 7.30 X 10 4.48 x 10 2.16 x 10*  8.61 x 10*
MFO 891x102 342x10%2 1.86x102 334x10%  252x10°

OMFO 9.04 x 10 228 x10%2  1.17x10> 486x10°  4.17 x 10°
WCMFO 7.74 % 10 6.63x102  2.09%x102 712x10°5 1.52x10°

Mean BSO 8.86 x 10 366x10%2 125x102 1.63x10° 1.72x10°
CLPSO 7.03 % 10 8.84 x 10 525%x10 427 %105 133 x10°

ABC 2.60 x 10 1.06 x 102 9.02 x 10 948 x10°  2.74x10°

SCA 958 x 102  418x10%2 240x102 1.10x10° 2.89 x10°

IJAYA 138 x 102 230x 102 1.18x10%> 6.54x10°  3.06 x 10°

7. Conclusions

The PV models’ parameters are located in the multi-modal and nonlinear solution space with
various local optima so that it is extremely tricky for various existing MFO algorithms to extract a set
of optimal parameters of the PV models. This paper proposes an improved MFO (IMFO) algorithm
for estimating the parameters of PV models. In IMFO, the DFG strategy has been first developed to
generate two different types of high-performance target flames for effectively searching the global
optimal solution. To effectively tackle the global exploration and local exploitation, two different update
strategies are developed. In addition, we develop a probability to select one of above two update
strategies for each moth during the iterative process, which ensures the balance between the global
exploration and local exploitation. Due to effectively combining the DFG strategy with the two update
strategies, IMFO can effectively accurately and reliably identify the different PV models” parameters.

In the future, IMFO will be adopted to settle multi-objective and constrained problems or economic
dispatch issues in power systems. Furthermore, some other improvements will be proposed to expand
the use of complex renewable energy algorithms by optimization algorithms.
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Appendix A

Table A1l. Parameters settings of the compared algorithms.

Algorithm Parameters
MFO NP =50
OMFO NP =40
WCMFO NP = 40, Ngy = 4, Nstream = Npop — Nsr, B = 3/2

BSO NP =50, pro =0.2,p,1 =0.8,p;11 =04, p;01 =0.5,¢=25M=5

CLPSO NP =40,w =0.9-02, ¢ =1.49445, m =5
ABC NP =50, o« = 1, limit = 100
SCA NP =50

IJAYA NP =50

IMFO NP =100,m=4,P =04
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Table A2. Absolute error of IMFO for each measured on the single diode model.

Item Vineasured (V) Imeasured(A) Isimulated (A) TIAE
1 —0.2057 0.7640 0.76408801 0.00008801
2 —-0.1291 0.7620 0.76266328 0.00066328
3 —0.0588 0.7605 0.76135541 0.00085541
4 0.0057 0.7605 0.76015400 0.00034600
5 0.0646 0.7600 0.75905514 0.00094486
6 0.1185 0.7590 0.75804220 0.00095780
7 0.1678 0.7570 0.75709145 0.00009145
8 0.2132 0.7570 0.75614111 0.00085889
9 0.2545 0.7555 0.75508658 0.00041342
10 0.2924 0.7540 0.75366357 0.00033643
11 0.3269 0.7505 0.75139069 0.00089069
12 0.3585 0.7465 0.74735365 0.00085365
13 0.3873 0.7385 0.74011717 0.00161717
14 0.4137 0.7280 0.72738237 0.00061763
15 0.4373 0.7065 0.70697301 0.00047301
16 0.4590 0.6755 0.67528069 0.00021931
17 0.4784 0.6320 0.63075889 0.00124111
18 0.4960 0.5730 0.57192892 0.00107108
19 0.5119 0.4990 0.49960738 0.00060738
20 0.5265 0.4130 0.41364884 0.00064884
21 0.5398 0.3165 0.31750984 0.00100984
22 0.5521 0.2120 0.21215441 0.00015441
23 0.5633 0.1035 0.10225068 0.00124932
24 0.5736 —0.0100 —0.00871799 0.00128201
25 0.5833 —-0.1230 —0.12550748 0.00250748
26 0.5900 —0.2100 —0.20847181 0.00152819

Table A3. Absolute error of IMFO for each measured on the double diode model.

Item Vmeasured V) I measured (A) I simulated (A) TIAE
1 —0.2057 0.7640 0.76399414 0.00000586
2 -0.1291 0.7620 0.76261019 0.00061019
3 —0.0588 0.7605 0.76133957 0.00083957
4 0.0057 0.7605 0.76017183 0.00032817
5 0.0646 0.7600 0.75910236 0.00089764
6 0.1185 0.7590 0.75811332 0.00088668
7 0.1678 0.7570 0.75717857 0.00017857
8 0.2132 0.7570 0.75623282 0.00076718
9 0.2545 0.7555 0.75516740 0.00033260
10 0.2924 0.7540 0.75371531 0.00028469
11 0.3269 0.7505 0.75139682 0.00089682
12 0.3585 0.7465 0.74730504 0.00080504
13 0.3873 0.7385 0.74001983 0.00151983
14 0.4137 0.7280 0.72725956 0.00074044
15 0.4373 0.7065 0.70686255 0.00036255
16 0.4590 0.6755 0.67521858 0.00028142
17 0.4784 0.6320 0.63076237 0.00123763
18 0.4960 0.5730 0.57199017 0.00100983
19 0.5119 0.4990 0.49969784 0.00069784
20 0.5265 0.4130 0.41372571 0.00072571
21 0.5398 0.3165 0.31754180 0.00104180
22 0.5521 0.2120 0.21212422 0.00012422
23 0.5633 0.1035 0.10216958 0.00133042
24 0.5736 —0.0100 —0.00878600 0.00121400
25 0.5833 —-0.1230 —0.12553982 0.00253982
26 0.5900 —-0.2100 —0.20837881 0.00162119
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Table A4. Absolute error of IMFO for each measured on the PV module model.

Item Vieasured (V) Imeasured (A) Isimulated (A) TIAE
1 0.1248 1.0315 1.02912657 0.00237343
2 1.8093 1.0300 1.02738585 0.00261415
3 3.3511 1.0260 1.02574421 0.00025579
4 4.7622 1.0220 1.02410747 0.00210747
5 6.0538 1.0180 1.02229035 0.00429035
6 7.2364 1.0155 1.01992786 0.00442786
7 8.3189 1.0140 1.01635944 0.00235944
8 9.3097 1.0100 1.01049231 0.00049231
9 10.2163 1.0035 1.00062569 0.00287431
10 11.0449 0.9880 0.98454637 0.00345363
11 11.8018 0.9630 0.95952145 0.00347855
12 12.4929 0.9255 0.92284049 0.00265951
13 13.1231 0.8725 0.87260289 0.00010289
14 13.6983 0.8075 0.80727824 0.00022176
15 14.2221 0.7265 0.72834029 0.00184029
16 14.6995 0.6345 0.63714077 0.00264077
17 15.1346 0.5345 0.53621417 0.00171417
18 15.5311 0.4275 0.42951068 0.00201068
19 15.8929 0.3185 0.31877223 0.00027223
20 16.2229 0.2085 0.20738624 0.00111376
21 16.5241 0.1010 0.09616350 0.00483650
22 16.7987 —0.0080 —0.00832793 0.00032793
23 17.0499 -0.1110 —0.11093729 0.00006271
24 17.2793 —0.2090 —0.20924554 0.00024554
25 17.4885 —0.3030 —0.30085833 0.00214167

Table A5. CEC2017 benchmark functions with initialization and search range: (=100,100)P.

Types No. Functions Flx*]
F1 Shifted and Rotated Bent Cigar Instance 100

Unimodal F2 Shifted and Rotated Sum of Different Power Instance 200
F3 Shifted and Rotated Zakharov Instance 300

F4 Shifted and Rotated Rosenbrock’s Instance 400

F5 Shifted and Rotated Rastrigin’s Instance 500

Fé6 Shifted and Rotated Expanded Scaffer’s F6 Instance 600

Multimodal F7 Shifted and Rotated Lunacek Bi_Rastrigin Instance 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Instance 800

F9 Shifted and Rotated Levy Instance 900

F10 Shifted and Rotated Schwefel’s Instance 1000

F11 Hybrid Instance 1 (N = 3) 1100

F12 Hybrid Instance 2 (N = 3) 1200

F13 Hybrid Instance 3 (N = 3) 1300

F14 Hybrid Instance 4 (N = 4) 1400

Hybrid F15 Hybr%d Instance 5 (N = 4) 1500
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Figure Al. Comparisons between the experimental data and simulated data obtained by IMFO for
single diode model: I-V and P-V characteristics.
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double diode model: I-V and P-V characteristics.
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