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Abstract: Germany has experienced rapid growth in its renewable electricity generation capacity in
the past fifteen years. This development has been accompanied by a drop in wholesale electricity
prices and significant net export surpluses. This situation has given rise to discussions in policy
circles concerning the drivers behind these dynamics. The paper at hand empirically analyzes
historical cross-border commercial flows (CBCF) of electricity from Germany by applying a Ridge
Regression model to parse the effects of the growing shares of renewable energy capacity on
the commercial electricity exchange between 2012 and 2016. In case of PV, the fraction of PV
generation (marginal effect of PV on export) that is exported correlates positively with the level of
PV generation. However, the marginal effect of wind on export is negatively correlated with the level
of wind generation. A possible explanation for this finding as it relates to wind feed-in could involve
the high degree to which the grid is constrained at times of high wind penetration.

Keywords: commercial cross-border exchange; renewable generation; electricity prices

1. Introduction And Background

Germany is currently in the midst of implementing its Energiewende (energy transition), steadily
increasing the share of variable renewable energy sources (VRE) as a percentage of its electricity
production over the past decade. There has been a sharp increase in the installed capacity of VRE
sources, most prominently onshore wind energy (from 18.4 GW in 2005 to 50.3 GW in 2017) and PV
(from 10.57 GW in 2005 to 43.3 GW in 2017). Offshore wind energy has likewise increased steadily
since 2012, from under 300 MW to ca. 5.3 GW by the end of 2017 [1]. The increasing volumes of VRE
production has not only had a significant impact at the grid level but has also had a bearing on the
development of wholesale prices. At the same time, the growing share of renewable power production
has been accompanied by an increasing volume of electricity exports.

Physical net exports rose sharply from 2010 to 2016 (from ca. 18 TWh to over 50 TWh).
In commercial terms, absolute levels of exports increased from 2012 to 2015 to a level in excess of
EUR 2 billion. In 2016, the trade balance fell slightly to around EUR 1.75 billion. Furthermore, Figure 1
highlights the distribution of the net position across the year, indicating higher export levels in winter
as opposed to summer months. The trends observed raise initial questions as to the impact of seasonal
weather and load patterns on Germany’s net position while the dip in the surplus in 2016 poses
questions as to the transitory nature of the drop.
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Figure 1. Distribution of commercial electricity trade (grouped monthly) balance between Germany
and its neighboring countries in the CWE region displayed as box-plots, source: own illustration,
data: [2].

These trends have drawn a great deal of attention with regard to their causal relationships as
relates to physical impacts on the transnational grid infrastructure as well as welfare effects in the
respective countries. In particular, the effect of growing shares of VRE in the German electricity system
and their influence on export volumes has been discussed in policy circles with questions being raised
about the extent to which intermittent renewable generation is driving the growth of the net export
surplus or if the root of the export frequency stems from the operational inflexibilites of conventional,
baseload power plants [3].

Concurrent to the development in the shares of VRE in Germany, the European electricity markets
have been undergoing a continuous process of integration. Starting with the markets in the Central
Western European (CWE) region (covering Benelux, France and Germany), which were coupled
in 2010, price coupling was instituted in 2014 for the countries of Northwestern Europe (NWE),
covering the CWE region, Great Britain as well as the Nordic and Baltic states. With the inclusion
of Spain and Portugal and the coupling of Italy with France, Austria and Slovenia, the currently
coupled market area has expanded to cover 19 countries, representing ca. 85% of European electricity
consumption. This region carries the designation of the Multi-Regional Coupling. The implicit
allocation of interconnection capacity via market coupling has facilitated a more efficient use of
cross-border interconnection capacity. In mid-2015, the capacity allocation mechanism referred to as
Flow Based Market Coupling (FBMC) was introduced in the CWE region to enhance the efficiency of
calculating cross-border capacities by improving the representation of the physics of the grid while
maintaining a zonal approximation of the commercial exchange between countries [4].

In connection with these developments, various analyses have examined the extent to which
market integration has materialized, evaluating the instance of convergence between national power
prices across the coupled markets. Furthermore, the effect of VRE on price convergence in the context
of market coupling has also been looked at for selected countries [5].

Against this backdrop, the following analysis provides a detailed consideration of the causes of
the large German electricity trade surplus. In particular, the research questions include analyzing the
effect of VRE on supply and price and in turn cross-border trade and, subsequently, quantifying the
elasticity of Germany’s net position with respect to wind and solar generation. Tying in the European
context, the influence of the introduction of FBMC is also evaluated.

The remainder of the paper is structured as follows. After a discussion of the extant literature is
conducted in Section 2, Section 3 introduces the theoretical framework. The data and methodological
approach used in the analysis are presented in Section 4. In Section 5, the results of the empirical
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analysis are derived and discussed. The paper concludes with a recapitulation of the key takeaways of
the analysis with a brief outlook towards areas for further research in Section 7.

2. Review of Empirical Findings on the Effects of VRE Generation in the Context of
Market Coupling

The paper at hand addresses the confluence of two streams of literature: The impact of VRE
feed-in on domestic electricity prices as well as the fundamentals of cross-border electricity trade and
integration of European electricity markets. The interplay between the feed-in of VRE and domestic
electricity price movements is the subject of a growing amount of empirical research. As it relates to the
effect of VRE on domestic electricity prices, an ample amount of research has examined the influence
of solar and wind feed-in on the absolute price level as well as its volatility. Examples that consider
the effects in the former German–Austrian market zone include [6–13]. While analyzing data from
different time periods using both econometric and model-based simulations, the overarching findings
conclude that on account of the merit-order effect, renewable feed-in negatively impacts wholesale
electricity prices. A comprehensive overview of the research on the impact of VRE on electricity prices
with a supplemental empirical evaluation using a multi-variant regression model is provided in [14].
The analysis indicates that the price effect of generation from wind and solar energy sources is similar.
For the former German-Austrian market zone, the price on the day-ahead market fell by 1 EUR/MWh
for each additional GWh of expected generation from VRE. More recently, reference [15] confirm that
the growing shares of wind generation and photovoltaic feed-in drove the sharp drop in electricity
prices between 2012 and 2015. The authors also point out that wind has a stable impact throughout the
day while PV has the most pronounced influence at midday.

In a European context, the issue of market integration and cross-border commercial flows has
also also been examined in great detail. As a top policy priority, starting in 2003 the European
Union has increasingly sought to enact measures enhancing cross-border electricity trade to increase
welfare by improving security of supply and stimulating competition. These prospective benefits have
been detailed and quantified in, e.g., [16,17]. Pertaining to evaluating the degree of transnational
integration, early publications including, e.g., [18,19], demonstrate empirically that price convergence
at spot markets between European member states had only partially been achieved while identifying
persisting inadequacies in the institutional framework relating to auctioning interconnector capacities.
In [20], the authors find evidence of market integration between French, German, British, Dutch and
Spanish electricity markets increasing over time with the proximity of neighboring countries having
a muted impact on the magnitude of integration. More recent publications have provided mixed
conclusions on the state of market integration. Analyzing prices on 13 European electricity spot
markets during the period 2007–2012, in [21], the authors observe increased price convergence in the
wake of the implementation of the European Commission’s Third Energy Package. Examining an
extended sample of spot prices from 2000 to 2013 in nine European electricity spot markets as well
as month-ahead prices in four markets between 2007 and 2012, evidence of convergence between
forward prices while observing a persisting divergence in spot prices across the markets has been
observed [22]. In [23], an empirical investigation of price convergence of day-ahead prices across 25
European markets between 2010 and 2015 was carried out. They conclude that after an initial uptake
in market integration between 2010 and 2012, a subsequent decline is observed, occurring at the same
time market coupling was being expanded.

More in line with the research focus of the paper at hand, with respect to the effect of VRE on the
commercial cross-border exchange [5] demonstrate, based on a sample of hourly French and German
day-ahead prices from 2009 to 2013, that VRE production in Germany has significantly contributed
to price divergences between the two markets. The panel regression performed indicates that large
volumes of solar and wind energy generation are being exported to neighboring countries leading to
incidences of congested interconnections and diverging day-ahead prices. While the introduction of
market coupling in 2011 initially mitigated the effects, the analysis establishes that growing shares of
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VRE have displaced positive efficiency gains. A similar analysis with a stronger emphasis on volatility
spillovers between the two markets has been carried out in [24]. Based on data from 2012 to 2015,
the authors show that variable wind energy generation in Germany considerably impacts both German
and French electricity prices. They also demonstrate that market coupling has a mitigating effect on
the price variance between the markets, but note that the coupling of the markets has increased the
transmission of price volatility caused by intermittent wind generation. Focusing on the impact of
wind power generation on cross-border power transmission, the authors of [25] employ principal
component analysis in combination with a subsequent regression model and demonstrate that wind
power forecasts and spot price movements in Germany significantly affect cross-border power flows
in Europe.

To the authors’ knowledge, apart from [26] there have been no other publications that directly
address disaggregating the factors influencing the increase in German electricity exports in recent years.
In [26], the authors provide a brief qualitative discussion of the causes of the large commercial electricity
trade surplus in 2013. They put forth the observation that analyzing the net trade balance in the context
of the hourly power plant dispatch, there is a strong indication that a significant amount of electricity
was exported at times when solar and wind feed-in was at its highest. This observation is grounded in
basic economic trade theory. Additionally, the authors point to the oversupply of generation capacity
and a comparatively efficient domestic power plant fleet as causes for the trade surplus. Due to
the nature of the support system for VRE in Germany, it is noted that the electricity exports can be
considered an externality entailing distributional effects that should be evaluated.

As can be gleaned from the review above, the extant literature addresses various aspects of
cross-border commercial exchange, however, empirically parsing the extent to which VRE generation
is contributing to the Germany export surplus and evaluating their implications for the integration
of wind and solar feed-in has yet to be specifically addressed. Thus, the analysis at hand extends
previous work by addressing the question as to what effect the generation from VRE sources had on
the price elasticity of German electricity exports between 2012 and 2016.

3. Theoretical Framework: Trade Theory in Electricity Markets

To support the following analysis, a brief overview of trade theory in the context of power markets
is provided. Considering two connected markets trading in a homogeneous good like electricity with
unrestricted cross-border transmission capacities, the price disparities in the two markets converge to
an equilibrium price.

In Figure 2, the prices in the market with the higher domestic price PA drops to the equilibrium
market price PA+B. While the domestic price in the market with the initially lower price level PB rises
to the equilibrium price. Electricity is exported (Exp) from region B to region A.

MW
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Region A Region B
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Figure 2. Graphical representation of cross-border exchange absent VRE, source: own illustration.
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Assuming that region B introduces substantial shares of VRE (Figure 3), the supply function of the
region shifts to the right as VRE are bid into the market clearing at negligible marginal costs. This causes
the price in the region to fall to PBres (without considering cross-border exchanges). However, the prices
in region B increase as a result of the exported volumes. Since there is no incidence of congestion,
the prices converge to PA+Bres , which is lower than the price level in the previous case (PA+B). The prices
in region A fall further than in the previous case by ∆PA. The amount of exports from region B to
region A increases by ∆Export.

MW MW MW

DA SA
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XA XB

DB

PA+Bres

PA

Exp

IN

X‘A X‘‘B

PBres

PA+Bres PA+Bres

ΔExport

ΔPA

ΔPBres

No RES
With RES

Price [EUR/MWh]

Region A Region B

Price [EUR/MWh]

Figure 3. Graphical representation of cross-border exchange with VRE, source: own illustration.

These two theoretical examples indicate that cross-border trade leads to increases in prices in the
exporting country and a decrease in prices in the importing country. The increase in VRE generation
results in a price decline in both markets. Furthermore, it should be noted that the increase in VRE
also leads to an increase in exports at lower prices.

While this theoretical framework explains the fundamentals of market operation, it is important
to recognize that the framework cannot explain all aspects of market operation. Relevant to the paper
at hand is the aspect of integrating of VRE into the market. Here, the theoretical framework proves
limited as it fails to take into account the flexibility of the system (the framework analysis provides
merely a snapshot of the market operation), interplay between different generation sources and the
prevailing network conditions.

In the following section, the empirical validity of these comparative statistics are explored
further using historical data for VRE generation, which builds the basis for the subsequent empirical
estimation conducted.

4. Data Description and Exploratory Analysis

The primary dataset used in the analysis was provided by Agora Energiewende [2]. The data is
based on various sources and was cleaned and processed by Agora Energiewende. In addition to this
dataset, the national generation capacity data was sourced from Open Power System Data [27]. Table 1
provides and overview of the data used in the analysis. Table A1 in Appendix A provides descriptive
statistics on the data used in the analysis.

Figure 4 depicts the net export of electricity for Germany as a function of day-ahead prices.
To observe the aggregate impact of prices on export, the data was clustered in unevenly sized groups.
The clusters are grouped together based on the level of day-ahead prices within a year. The bins
represent the following quantiles of day-ahead prices: [0–5] , [5–10], [10–40], [40–90], [90–95], [95–100].
While some year-specific characteristics can be observed, at an aggregate level, the graph shows an
inverse relationship between the commercial exports and electricity prices. The figure also highlights
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the increasing frequency of net exports at low day-ahead market price from 2012–2015 with a slight
deviation in 2016.

Table 1. Data sources for generation and price data

Variable Source Year

Cross-border commercial flows Agora Energiewende 2012–2016
Generation (technology-specific) Agora Energiewende 2012–2016
Load (Germany) Agora Energiewende 2012–2016
Day Ahead Spot Prices (Germany) Agora Energiewende 2012–2016
National generation capacity (Germany) Open Power System Data 2012–2016

0 10 20 30 40 50 60 70
Day-ahead price [EUR]

2
3
4
5
6
7
8
9

Cl
us

te
re

d 
m

ea
n 

ne
t p

os
iti

on
 [G

W
h] 2012

2013
2014
2015
2016

Figure 4. Mean net commercial trade balance, source: own illustration, data: [2].

Figures 5–7 depict the relationship between total power generation and the price for electricity
in Germany for the years 2012 to 2016. The figures share the same data points (all available
observations, cf. Table A1), but additionally display different levels of PV, wind and total VRE
generation, respectively.

Figure 5. Scatter plot of total generation and price with different levels of PV energy, source:
own illustration.
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Figure 6. Scatter plot of total generation and price with different levels of wind energy, source:
own illustration.

Figure 7. Scatter plot of total generation and price with different levels of variable renewable energy,
source: own illustration.

The positive correlation between total supply and price can be observed from the scatter plots.
Also, in all three figures, higher renewable generation levels tend to concentrate in the lower part of
the data spectrum, which means that they coincide with lower price levels. Very high PV generation is
also more concentrated on the right side, additionally coinciding with higher levels of overall supply.
Naturally, this is due to PV’s high correlation with load due to diurnal patterns. In addition, periods of
very high PV generation are characterized by low to medium prices as opposed to times with high
wind or overall VRE generation, which exhibit low to very low prices.

Furthermore, Figures 5–7 display four lines of best fit. These are based on the correlation between
price and supply for four different subsets. For PV and wind, the subsets contain generation levels from
0–5 GW, 5–10 GW, 10–15 GW and >15 GW. For VRE, the subsets contain generation levels from 0–5 GW,
5–15 GW, 15–25 GW and >25 GW. The increasing generation levels of the categories correspond with
brighter lines (dark red for the lowest generation level category to orange for the highest). In all three
figures a downward trend in the lines is observable corresponding with the increasing renewable
generation levels of the subsets. This effect is more substantial for wind energy than for PV generation.
The combined effect of both technologies is the largest.

In general, the exploratory analysis supports the theoretical assumption that renewable generation
causes a downward shift in the supply curve, thereby leading to greater export volumes and a lower
import price for the importing country.

While this exploratory analysis provides a fundamental understanding of the market dynamics at
play and the impact of VRE generation on exports, a more sophisticated regression analysis is required
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to parse the effects of PV and wind generation on the price elasticity of German CBCF as well as the
impacts of the introduction of FBMC on commercial export volumes.

5. Methodological Approach

To further analyze if the positive effect on exports is larger for wind energy than for PV,
as suggested by the exploratory analysis, a linear regression analysis model is developed.

The linear regression model is of the following form:

NPt = β0 + β1FBt + β2Loadt + β3Pricet + β4Windt + β5PVt+

β6CapOnshore,t + β7CapOffshore,t + β8CapPV,t

Hη+ Mµ+ Yυ+ Xξ+ εt

(1)

The net position (balance of export and imports) of Germany represents the dependent variable
in Equation (1). By using net position (not just export) we capture, to some extent, the response of
the neighbouring countries. Aggregated load, the day-ahead price, wind and PV generation along
with the installed capacities for PV, wind onshore and wind offshore serve as explanatory variables.
Additionally, in order to capture the effect of FBMC, a flow-based dummy variable is included,
which is set to 0 for all dates up to May 19, 2015 and set to 1 for all dates thereafter. Conventional
generation is not represented in the model because its inclusion would almost fully explain the
dependent variable, leading to near perfect multicollinearity (in addition to generation and load,
the net position comprises losses, however, load and generation can almost perfectly explain the
net position). Furthermore, the right-hand side includes hourly, monthly and yearly dummy variables,
represented by the matrices H, M and Y. The dataset spans five years, making Y a t-by-4 matrix,
with 2012 being the omitted dummy variable. Similarly, H is a t-by-23 matrix (hour 1, 0:00–1:00,
is omitted) and matrix M t-by-11 (January is omitted).

The underlying hypothesis is that PV and wind generation affect net exports differently, contingent
upon the prevailing situation, which is described by load, renewable generation, price and capacities.
Therefore, matrix X includes polynomial terms (quadratic terms and interaction terms) of all numeric
variables in addition to the flow-based dummy variable but removing the quadratic flow-based dummy
variable, which renders X a t-by-35 matrix. The coefficient vectors η, µ, υ and ξ assume the column
dimension of the respective variable matrix.

The primary goal of the regression model is to measure the effect of PV and wind generation on
the net position, respectively. The marginal effect can be expressed by taking the partial derivative of
NPt with respect to Windt (Equation (2)) and PVt (Equation (3)). Note that both derivatives include
the coefficient ξ22 due to the shared interaction term.

δNPt/δWindt = β4 + ξ3FBt + ξ10Loadt + ξ16Pricet + 2 × ξ21Windt+

ξ22PVt + ξ23CapOnshore,t + ξ24CapOffshore,t+

ξ25CapPV,t+

(2)

δNPt/δPVt = β5 + ξ4FBt + ξ11Loadt + ξ17Pricet + ξ22Windt+

2 × ξ26PVt + ξ27CapOnshore,t + ξ28CapOffshore,t+

ξ29CapPV,t

(3)

The effects of PV and wind generation on the net position are dependent on the levels of the
explanatory variables. The interaction terms therefore allow for analyzing the effect of PV and
wind generation in different situations, which enables a more accurate description of the dependent
variable’s variance.
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While introducing polynomial terms as explanatory variables can increase the explanatory power
of the model, it can also lead to to high correlation between explanatory variables. Table A2 in
Appendix A displays the Variation Inflation Factors (VIFs) for all explanatory variables. They are
obtained by regressing each independent variable k on all other explanatory variables. The resulting
variable-specific R2

k is used to compute the respective VIFk, defined as 1/(1 − R2
k). VIFs greater than 10

can be seen as high, as they correspond with a R2 value exceeding 0.9, which hints at high collinearity
between explanatory variables [28]. This is the case for numerous variables in the model, as shown in
Table A2. Especially the continuous variables and their interaction terms suffer from large to extremely
high multicollinearity.

To tackle the challenge of high multicollinearity, a Ridge Regression is conducted [29,30].
Recent applications of Ridge Regression within the field of energy economics include [31,32].
This regularized regression technique, also referred to as Tikhonov regularization, adds bias to
the regression model, purposing a better generalization, i.e., a better out-of-sample performance
of the model. The cost function of the regular OLS (Ordinary Least Squares) regression model,
the reduction of squared errors, is expanded by adding the product of α, the regularization parameter,
and all squared coefficients with the exception of the intercept, see Equation (4). This incentivizes the
model to choose small coefficients. This is amplified by weighting the squared coefficients, as opposed
to the absolute coefficients as with Lasso Regression. If an explanatory variable is highly correlated
with other explanatory variables, the approach allows for reducing the affected variable’s coefficient
and assigning the effect to the correlated variables [33]. Furthermore, the results of the regression
analysis allow for good interpretation, similar to a standard linear regression model.

J(β,η,µ,υ,ξ) = MSE(β,η,µ,υ,ξ)+

α× (
8

∑
i=1

β2
i +

23

∑
h=1

η2
h +

11

∑
m=1

µ2
m +

4

∑
y=1

υ2
y +

35

∑
x=1

ξ2
x)

(4)

Picking the right degree of regularization poses a challenge, which is why levels of α from 108

to 10−4 are tested. Before the analysis, the dataset was divided into a training (80%) and a testing
subset (20%), using stratified sampling, ensuring that the distribution of the dependent variable is
very similar in both subsets. In this way, the performance of the trained model in an out-of-sample
setting can be tested subject to different degrees of regularization. For each level of α, the coefficients
are estimated using 3-fold cross-validation. For this, the training subset is divided into three equally
sized parts. The best fit is estimated using two-thirds of the subset and validating on the remaining
third, for all three combinations. It is important to note that all numeric variables, quadratic terms
and interactions terms are normalized (using their respective means and standard deviations) before
conducting the Ridge Regressions, which is necessary to avoid an ill-conditioned design matrix.
This must be accounted for when estimating the above-described effects of PV and wind generation on
the net position. The coefficients need to be divided by the standard deviation of the corresponding
variable to obtain interpretable values.

High alpha values penalize the coefficients’ deviation from zero to the extent that all coefficients
are set to (near) zero. In this case, the intercept, as the only non-regularized coefficient, remains
as the sole estimator and is simply set to the average of the dependent variable. With decreasing
levels of α, virtually no restriction is imposed on the coefficients. Almost all coefficients therefore
assume nonzero values. As α approaches zero, the model selects coefficients equal to the OLS
regression estimate. Figure A1 in Appendix A illustrates the coefficients rendered based on the level of
α. Note that the intercept is not displayed in the figure.

The Root Mean Squared Error (RMSE) is calculated for the training set and the test set. The RMSE
is very similar for the training and cross-validation subset, which is why it is not displayed in Figure 8.
The training set RMSE is the average of all three cross-validations. Additionally, three random samples
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of 50 observations are retrieved from the original dataset and predictions are made using the estimated
coefficients at each α-level. All resulting RMSEs are displayed in Figure 8.

As mentioned above, for very large values of α, the model estimates the average of the net position.
The RMSE is therefore equal to the standard deviation of the dependent variable in the training set
(red horizontal line at RMSE = 3595) (Note that the standard deviation slightly deviates from the
standard deviation of the net position in the overall dataset (cf. Table A1) This is because the training
dataset is a subset of the overall dataset. However, the values match very closely, stemming from the
stratified sampling). Here, the model suffers from underfitting and is characterized by high bias but
low variance. This is confirmed by very similar RMSEs for the training and test set. For decreasing
values of α, the RMSEs of all subsets diminish. For α-values too small, the model is overfitted and
does not generalize well. This is reflected by a further decreasing RMSE for the training subset for very
small values of α. However, the RMSE for the test subset starts to increase at an α-level of around 0.1.
The RMSEs of the random subsets increase at α-levels between 100 and 0.05.

Selecting a point, for which the RMSEs of the test sets is low while avoiding an overfitted model,
an α-value of 200 was chosen. At this level, the model also performs well for all random subsets.
The coefficients, corresponding to α = 200, were used to estimate the effect of PV and wind energy on
the net position. The results are discussed in the following section.

Figure 8. The RMSEs of the training and test subset in addition to the RMSEs of three random subsets
(50 obs.) in relation to different levels of alpha, from large to small. Source: own diagram.

The Ridge Regression at α-value = 200 achieves RMSEs close to the corresponding OLS regression,
which means that further decreasing regularization would not substantially improve the goodness
of fit. Overall, the RMSE is still high relative to the mean and standard deviation of the target variable.
For accurately predicting the net position, more complex models could be deployed. For example,
a regression analysis method such as LASSO (least absolute shrinkage and selection operator) is more
well-suited to feature selection and model identification. However, this technique does not handle
highly correlated variables well [34]. Since the goal of this analysis is measuring the marginal effects
of wind and PV production on net positions, the clear interpretability of regression coefficients is
preferred over higher explanatory power.

All coefficients, together with their standard deviations, t-values and p-values are displayed in
Table A3. Note that especially the variables with very high VIFs (cf. Table A2) are characterized by
small coefficients relative to their standard deviations and are consequently insignificant.

6. Results And Discussion

The effect of PV and wind generation on the net position is estimated for different levels of PV
and wind generation. For this, the 10th percentile, the mean and 90th percentile of the distribution of
PV and wind generation are inserted into the partial derivatives described in Equations (2) and (3).
Additionally, the effects are calculated with and without the effect of the flow-based dummy variable.
Note that for all other explanatory variables, the average value of the training dataset is inserted,



Energies 2019, 12, 3434 11 of 17

i.e., 63.8 GW for load, 34.87 EUR for price and 35.6 GW, 34.8 GW and 1.49 GW for PV, wind onshore
and wind offshore capacities, respectively. Slight deviations from average values in Table A1 are due
to using a subset as training data. For PV the low (73 MW), average (6721 MW) and high (16,755 MW)
values are taken from a subset of the training data which only contains situations with PV generation
greater than 0. In the overall dataset, the mean and 10th percentile are equal to 0. For wind, low
(1240 MW), average (7205 MW) and high (16,341 MW) values are extracted from the full training set.

The effects of one additional unit of PV and wind generation, respectively, for the different levels
of PV and wind generation are displayed in Table 2. The values in parentheses represent the values
for situations after the introduction of flow-based market coupling. All values can be interpreted as
the average fraction of an additional unit of PV or wind energy that is exported, holding everything
else constant.

Table 2. Results from the Ridge Regression at α = 200: displayed are the effects of one additional
unit of PV and wind generation, respectively, for different levels of PV and wind generation. Values
including the effect of flow-based market coupling are in parentheses. Source: own diagram.

Effect of PV Generation Effect of Wind Generation

Low PV Average PV High PV Low PV Average PV High PV

Low 0.1473 0.2415 0.3837 0.3497 0.3565 0.3668
wind (0.2072) (0.3014) (0.4436) (0.4580) (0.4648) (0.4751)

Average 0.1534 0.2476 0.3898 0.2650 0.2718 0.2821
wind (0.2133) (0.3075) (0.4497) (0.3733) (0.3801) (0.3904)

High 0.1628 0.2570 0.3991 0.1353 0.1421 0.1524
wind (0.2227) (0.3169) (0.4590) (0.2436) (0.2504) (0.2607)

The fraction of PV generation that is exported correlates positively with overall PV generation as
well as overall wind generation. However, the difference in the effect is much more pronounced for
higher levels of PV production, while higher wind production only has a slight effect on the amount of
PV energy being exported. This implies that the level of wind generation does not have a large impact
on the fraction of PV exported while the level of PV generation significantly impacts the fraction
of PV exported. The fraction of wind generation that is exported correlates positively with overall
PV generation, although the effect is insubstantial. Interestingly, the amount of wind energy that is
exported correlates negatively with overall wind generation. A possible explanation for this interesting
result could involve the impact of wind generation on the available cross-border transfer capacities.
At times when large amounts of wind feed-in is expected, it is anticipated that the grid operators will
restrict the available trade capacities to limit the magnitude of loop flows. Consequently, this would
reduce the fraction of wind that can be exported. The impact is expected to be more pronounced at
times of high wind generation. NTC (Net Transfer Capacity) refers to the available interconnector
capacities for cross-border commercial exchange.

To investigate this possible explanation further, a bi-variate regression of the variable NTCout

(available NTC capacity for export) on wind and PV, respectively, is carried out. To analyze the
relationship, a quadratic model is employed. Figure 9 displays the results of the regression of NTCout

on wind generation. The regression indicates an inverse relationship between wind generation and the
available transfer capacity, i.e., at times of high wind generation, grid constraints reduce the level of
transfer capacity available for cross-border trade. The quadratic term of the regression has a negative
coefficient for wind while a positive (and significantly smaller value) for PV (Figure 10). This implies
that the rate of reduction of NTCout is higher at higher levels of wind generation. This finding seems
to support the explanation posited above that at times of high wind generation the export of an extra
unit of wind is restricted due to constraints on the available transfer capacity.
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Figure 9. Relation between available export net transfer capacity (2015 and 2016) and wind generation
for Germany.

Figure 10. Relation between available export net transfer capacity (2015 and 2016) and PV generation.

Returning to results of the Ridge Regression, the sensitivity of the results to changes in load and
price are tested. The ξ10-coefficient, which corresponds to the interaction term Loadt × Windt is equal
to −2.7 × 10−7. Consequently, even an increase of 10 GW in load would merely subtract −0.0027 from
the exported wind shares. Similarly, an additional load of 10 GW would add 0.0069 to the exported PV
shares (ξ11 = 6.9 × 10−7). An increase in the day-ahead price of 10 EUR raises the fraction of exported
wind energy by 0.0065 (ξ16 = 6.54 × 10−4) and the fraction of PV energy by 0.0236 (ξ17 = 2.36 × 10−3).
Thus, the results do not appear to change substantially in high or low load situations. Merely the
volumes of PV shares exported increase substantially with higher prices, while the amount of exported
wind production remains nearly constant in varying price regimes.

Finally, addressing the question as to the effect of the introduction of FBMC in mid-2015, the results
from the regression model indicate somewhat unexpectedly a higher impact of FBMC with respect to
the effect of an extra unit of wind generation (ca. 0.11) compared to PV generation (ca. 0.06). This is
consistent across all regimes of wind and PV generation. In terms of an explanation, it seems plausible
that owing to the fact that PV generation is more prevalent in situations with a more highly constrained
network (during the day), the domain of FBMC is more strongly confined. This largely negates the
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impact of FBMC on cross-border flows. However, as wind generation varies across day and night,
occurring in both constrained and unconstrained situations, FBMC increases the available cross-border
capacity more significantly, thereby influencing cross-border commercial flows to a greater extent.

7. Conclusions and Outlook for Further Research

The preceding analysis has brought together two strains of literature currently attracting much
attention in academic as well as policy circles. The effects of growing shares of VRE in power systems
on prices and in turn commercial exchanges between neighboring countries, as well as the ongoing
push towards integrating national markets across Europe to achieve gains in welfare. As an example of
this confluence, the paper pursues the questions as to the effects of wind and solar energy generation
on the commercial export surplus in Germany that has seen exponential growth in recent years.
Possible impacts related to the introduction of Flow Based Market Coupling as a means of exploiting
physical interconnectors between Germany and its neighbours are also investigated.

The results of the empirical regression model offer the following conclusions. As pertains to
PV, the share of generation that is exported is positively correlated with overall PV, as well as wind
generation levels, whereby the effect is much more pronounced for high levels of PV production. In the
case of wind generation, the share of wind generation being exported also is positively correlated
with overall wind generation. However, the effect is minimal. In contrast to PV, the additional unit
of wind energy being exported is negatively correlated with overall wind production. Changing the
underlying load situations in the data does not significantly affect these results. A possible explanation
posited for this result involves the relationship between wind and PV generation and available transfer
capacities. While PV generation is observed to have a very limited impact on the available cross-border
export capacity, wind generation sharply reduces it. Furthermore, it is observed that at times of higher
wind generation this effect is more pronounced. Furthermore, the analysis imparts the insight that the
effect of the introduction of FBMC in the CWE region in mid-2015 has had a statistically significant yet
minimal impact on German electricity exports. However, the effect of FBMC in conjunction with PV
and wind production is more pronounced, with its greatest effect found to be in combination with
wind generation.

The preceding analysis offers several avenues for further research. The differences in the impact of
PV and wind generation on cross-border trade has been largely neglected in the extant literature.
Understanding these dynamics is important for policy makers when designing incentives that
facilitate an efficient integration of VRE sources. As grid and market integration are advanced
further, these aspects are set to gain in importance with increasing cross-border interactions.
Furthermore, implications regarding quantifying resulting welfare effects present an additional aspect
worth considering in future work on the topic. With the pending phase-out of the coal power fleet
in Germany, the effect of this policy action on cross-border trade developments in the future would
also be an interesting supplemental analysis to the one undertaken here. The analysis undertaken
primarily looks at prices, VRE capacity and generation within Germany. Future research should
consider adaptations in the electricity system in neighboring countries, while providing a more
detailed representation of interconnector availabilities.
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Appendix A

Table A1. Descriptive statistics of input data.

Count Mean Std.Dev Min Max

Net Position (MW) 43,848 4779 3594 −7449 16,941
Generation (MW) 43,848 57,437 9871 12,170 91,233
Day Ahead Price (EUR) 43,848 35 16 −222 210
Load (MW) 43,848 63,727 9395 9749 91,340
Capacity Onshore (MW) 43,848 34,828 5499 26,965 45,438
Capacity Offshore (MW) 43,848 1485 1410 188 4131
Capacity PV (MW) 43,848 35,633 3823 25,969 40,294
Wind Generation (MWh) 43,848 7205 6336 0 33,713
PV Generation (MWh) 43,848 3863 5998 0 28,829

Figure A1. The rendered coefficients in relation to different levels of α, from large to small (Vertical line
corresponds to the chosen value of α = 200). Source: own diagram.

Table A2. Variation Inflation Factors of all explanatory variables.

Variable VIF Variable VIF Variable VIF

y2 237.8 m2 2.4 Load × Price 514.8
y3 935.0 m3 4.1 Load × Wind 316.5
y4 2073.6 m4 6.8 Load × PV 295.4
y5 3683.4 m5 10.2 Load × CapOnshore 14,596.6
h2 1.9 m6 14.4 Load × CapOffshore 18,375.5
h3 1.9 m7 23.4 Load × CapPV 3374.2
h4 2.0 m8 32.9 Price2 10.5
h5 2.0 m9 41.1 Price × Wind 19.5
h6 2.0 m10 55.8 Price × PV 19.1
h7 2.0 m11 67.1 Price × CapOnshore 7763.4
h8 2.1 m12 92.2 Price × CapOffshore 2380.4
h9 2.5 FB 3,698,068.8 Price × CapPV 2124.7
h10 2.8 Load 1930.3 Wind2 29.8
h11 3.1 Price 2589.1 Wind × PV 6.2
h12 3.2 Wind 1127.4 Wind × CapOnshore 4887.1
h13 3.2 PV 990.5 Wind × CapOffshore 907.9
h14 3.1 CapOnshore 449,351.4 Wind × CapPV 1633.1
h15 3.0 CapOffshore 5,441,467.4 PV2 23.2
h16 2.8 CapPV 106,660.6 PV × CapOnshore 3718.5
h17 2.6 FB × Load 6690.1 PV × CapOffshore 433.3
h18 2.5 FB × Price 755.1 PV × CapPV 1629.5
h19 2.4 FB × Wind 243.6 Cap2

Onshore 992,523.5
h20 2.3 FB × PV 111.9 CapOnshore × CapOffshore 2,056,572.9
h21 2.1 FB × CapOnshore 981,605.4 CapOnshore × CapPV 3,133,442.6
h22 2.1 FB × CapOffshore 17,314.1 Cap2

Offshore 42,864.8
h23 2.0 FB × CapPV 7,933,493.7 CapOffshore × CapPV 11,591,561.5
h24 1.9 Load2 644.0 CapPV 100,965.2
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Table A3. Coefficients of the Ridge Regression at an α-level of 200. R-squared: 0.672, Adjusted
R-squared: 0.671, F-statistic: 884.6.

Variable Coefficient Std. Error t-Value p-Value Variable Coefficient Std. Error t-Value p-Value

Intercept 5.51 × 10+03 3.61 × 10+03 1.52 0.13 Price 2.48 × 10+01 2.19 × 10+01 1.13 0.26
y2 1.31 × 10+03 2.54 × 10+02 5.14 0.00 Wind 1.44 × 10−01 3.77 × 10+02 3.82 0.00
y3 −6.26 × 10+02 7.10 × 10+02 −0.88 0.38 PV 2.04 × 10−01 4.10 × 10+02 4.95 0.00
y4 2.51 × 10+03 1.46 × 10+03 1.71 0.09 CapOnshore 6.95 × 10−02 7.28 × 10−01 0.09 0.92
y5 −1.01 × 10+03 2.56 × 10+03 −0.39 0.69 CapOffshore 1.14 × 10−01 8.78 × 10+00 0.01 0.99
h2 2.61 × 10+03 3.23 × 10+02 8.07 0.00 CapPV 9.39 × 10−02 2.81 × 10−01 0.33 0.74
h3 1.45 × 10+03 3.31 × 10+02 4.38 0.00 FB × Load −1.35 × 10−02 1.78 × 10−02 −0.75 0.45
h4 −1.36 × 10+03 3.26 × 10+02 −4.16 0.00 FB × Price 9.54 × 10−01 8.61 × 10+00 0.11 0.91
h5 −2.41 × 10+03 3.27 × 10+02 −7.36 0.00 FB × Wind 1.08 × 10−01 1.34 × 10+02 8.09 0.00
h6 −9.39 × 10+02 3.22 × 10+02 −2.91 0.00 FB × PV 5.99 × 10−02 1.09 × 10+02 5.47 0.00
h7 −2.03 × 10+03 3.15 × 10+02 −6.44 0.00 FB × CapOnshore −1.35 × 10−02 2.24 × 10−01 −0.06 0.95
h8 −3.99 × 10+03 3.24 × 10+02 12.32 0.00 FB × CapOffshore 5.65 × 10−01 3.61 × 10−01 1.56 0.12
h9 −2.88 × 10+03 3.26 × 10+02 −8.86 0.00 FB × CapPV −8.39 × 10−03 8.14 × 10−01 −0.01 0.99
h10 −1.08 × 10+03 3.46 × 10+02 −3.12 0.00 Load2 −3.20 × 10−07 1.70 × 10−07 −1.96 0.05
h11 −1.43 × 10+03 3.60 × 10+02 −3.97 0.00 Load × Price −8.17 × 10−04 1.43 × 10−04 −5.71 0.00
h12 −2.40 × 10+03 3.73 × 10+02 −6.42 0.00 Load × Wind −2.70 × 10−07 3.60 × 10−07 −0.75 0.45
h13 −1.06 × 10+03 3.75 × 10+02 −2.81 0.00 Load × PV 6.90 × 10−07 3.70 × 10−07 1.84 0.07
h14 5.09 × 10+02 3.74 × 10+02 1.36 0.17 Load × CapOnshore −2.00 × 10−08 1.80 × 10−06 0.00 0.99
h15 1.84 × 10+03 3.61 × 10+02 5.09 0.00 Load × CapOffshore −5.23 × 10−06 1.09 × 10−05 −0.47 0.63
h16 1.52 × 10+03 3.57 × 10+02 4.24 0.00 Load × CapPV 4.90 × 10−07 9.30 × 10−07 0.52 0.60
h17 1.37 × 10+03 3.39 × 10+02 4.03 0.00 Price2 1.09 × 10−01 1.41 × 10−02 7.76 0.00
h18 −1.78 × 10+03 3.42 × 10+02 −5.20 0.00 Price × Wind 6.54 × 10−04 1.48 × 10−04 4.42 0.00
h19 −4.38 × 10+03 3.28 × 10+02 13.35 0.00 Price × PV 2.36 × 10−03 1.58 × 10−04 14.88 0.00
h20 −5.40 × 10+03 3.27 × 10+02 16.54 0.00 Price × CapOnshore 1.18 × 10−03 1.22 × 10−03 0.97 0.33
h21 −3.64 × 10+03 3.28 × 10+02 11.09 0.00 Price × CapOffshore −3.71 × 10−03 4.87 × 10−03 −0.76 0.45
h22 −2.18 × 10+03 3.20 × 10+02 −6.81 0.00 Price × CapPV −3.14 × 10−04 5.69 × 10−04 −0.55 0.58
h23 6.72 × 10+02 3.25 × 10+02 2.06 0.04 Wind2 −7.10 × 10−06 2.80 × 10−07 25.52 0.00
h24 4.04 × 10+03 3.22 × 10+02 12.57 0.00 Wind × PV 1.02 × 10−06 3.90 × 10−07 2.61 0.01
m2 6.04 × 10+03 1.83 × 10+02 33.03 0.00 Wind × CapOnshore 8.50 × 10−07 2.24 × 10−06 0.38 0.70
m3 2.71 × 10+03 1.76 × 10+02 15.34 0.00 Wind × CapOffshore −6.35 × 10−05 8.04 × 10−06 −7.90 0.00
m4 −4.30 × 10+03 1.90 × 10+02 22.66 0.00 Wind × CapPV 7.93 × 10−06 1.26 × 10−06 6.29 0.00
m5 −1.29 × 10+04 1.95 × 10+02 66.37 0.00 PV2 7.09 × 10−06 3.60 × 10−07 19.79 0.00
m6 −1.03 × 10+04 2.13 × 10+02 48.30 0.00 PV × CapOnshore −1.10 × 10−06 2.18 × 10−06 −0.50 0.61
m7 −1.21 × 10+04 2.26 × 10+02 53.42 0.00 PV × CapOffshore −3.29 × 10−05 6.36 × 10−06 −5.16 0.00
m8 −9.16 × 10+03 2.44 × 10+02 37.59 0.00 PV × CapPV −2.73 × 10−06 1.39 × 10−06 −1.96 0.05
m9 1.59 × 10+01 2.62 × 10+02 0.06 0.95 Cap2

Onshore 5.90 × 10−07 1.53 × 10−05 0.03 0.97
m10 2.75 × 10+03 2.75 × 10+02 10.01 0.00 CapOnshore × CapOffshore −1.45 × 10−06 1.46 × 10−04 0.00 0.99
m11 3.69 × 10+03 3.07 × 10+02 12.03 0.00 CapOnshore × CapPV 5.00 × 10−07 3.86 × 10−05 0.01 0.99
m12 4.54 × 10+03 3.42 × 10+02 13.25 0.00 Cap2

Offshore 1.25 × 10−05 1.40 × 10−04 0.08 0.93
FB −1.84 × 10+02 6.55 × 10+04 0.00 1.00 CapOffshore × CapPV 1.45 × 10−06 3.77 × 10−04 0.00 1.00
Load −7.73 × 10−03 2.85 × 10−02 −0.27 0.79 CapPV −9.80 × 10−07 5.72 × 10−06 −0.17 0.86
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