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Abstract: With increasing size and flexibility of modern grid-connected wind turbines, advanced
control algorithms are urgently needed, especially for multi-degree-of-freedom control of blade
pitches and sizable rotor. However, complex dynamics of wind turbines are difficult to be modeled in
a simplified state-space form for advanced control design considering stability. In this paper, grey-box
parameter identification of critical mechanical models is systematically studied without excitation
experiment, and applicabilities of different methods are compared from views of control design.
Firstly, through mechanism analysis, the Hammerstein structure is adopted for mechanical-side
modeling of wind turbines. Under closed-loop control across the whole wind speed range, structural
identifiability of the drive-train model is analyzed in qualitation. Then, mutual information calculation
among identified variables is used to quantitatively reveal the relationship between identification
accuracy and variables’ relevance. Then, the methods such as subspace identification, recursive least
square identification and optimal identification are compared for a two-mass model and tower model.
At last, through the high-fidelity simulation demo of a 2 MW wind turbine in the GH Bladed software,
multivariable datasets are produced for studying. The results show that the Hammerstein structure
is effective for simplify the modeling process where closed-loop identification of a two-mass model
without excitation experiment is feasible. Meanwhile, it is found that variables’ relevance has obvious
influence on identification accuracy where mutual information is a good indicator. Higher mutual
information often yields better accuracy. Additionally, three identification methods have diverse
performance levels, showing their application potentials for different control design algorithms. In
contrast, grey-box optimal parameter identification is the most promising for advanced control design
considering stability, although its simplified representation of complex mechanical dynamics needs
additional dynamic compensation which will be studied in future.

Keywords: wind turbine; dynamic modeling; grey-box parameter identification; subspace
identification; recursive least squares; optimal identification

1. Introduction

Upsizing capacity of wind turbines to megawatt-class can increase wind energy capture and has
great potential to reduce the LCOE (levelized cost of energy) per kilowatt hour for grid-connected
wind power [1]. Yet, larger wind turbine causes higher fatigue load, greater rotational inertia and
more challenging control difficulty [2,3]. Then, advanced control of the modern VSVP (variable-speed
variable-pitch) wind turbine becomes very important, to fully utilize the multiple-degree-of-freedom
control potentiality of blade pitches or sizable rotor while considering the multi-objectives such as
maximizing conversion efficiency and alleviating fatigue load [4]. However, advanced control design
usually depends heavily on a state-space model of the physical system [5,6]. Nowadays, it is still
widely studied by industry and academia.
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For wind turbine modeling, there are mainly three routes in the literature, shown in Table 1.

Table 1. Summary of different identification methods.

Methods Model Forms Applications References

Data-driven
input-output modeling

(black-box)

Machine-learning-based
modeling, such as neural

network and deep learning
neural network.

Dynamic modeling,
anomaly identification [7–10]

Standard-model-set-based
modeling, such as ARX,

ARMAX, BJ and OE with LS or
PEM criterion

Dynamic modeling,
control design [11–13]

Subspace identification Dynamic modeling [14–16]

Mechanism-oriented
Modeling (white-box)

Complex mechanism model High-fidelity simulation [17–19]

Simplified mechanism model Control verification of
theoretic algorithms [20–22]

Combination-based
modeling (grey-box)

RLS parameter identification Dynamic modeling [23]
Optimization-based parameter

identification Dynamic modeling [24,25]

Data-driven modeling of input–output characteristics is a common way, including machine-
learning [7–10], standard-model-set approximation [11–13] and subspace identification [14–16]. In [7–10],
machine learning algorithms, such as artificial neural network (ANN), support vector machine (SVM),
random forest and deep neural network were useful for black-box modeling. Yet, trial-and-error
often existed to select neural network structure and to tune parameters. If optimization is used,
computation burden is non-negligible. In [11–13], model structures such as ARX (auto-regressive),
ARMAX (auto-regressive moving average), BJ (Box-Jenkins) and OE (Output-Error) were adopted
for identification with LS (least square) or PEM (prediction-error method) criterion, where PRBS
(pseudo-random binary excitation signal) was often used as input excitation. To get numerical solution,
it usually has requirements about forms and amplitudes of excitation signals, open-loop or closed-loop
structure and sampling period, etc. In [14–16], subspace identification via MOESP (multivariable
output error state space) and PBSIDopt (prediction-based subspace identification) were studied for
wind turbine modeling. A state-space model could be obtained via subspace identification, but the
reconstructed states did not have physical meanings. Besides, this method suffered great influence from
excitation signals, control system structure and sampling period, etc. In general, the above black-box
identification methods only focused on the external input–output characteristics of system and bypass
the internal operation mechanism. Thus, these black-box models had poor interpretability, unsuitable
for control design with stability.

From the first-principle, high-fidelity models of wind turbines were obtained undoubtedly for
digital design and simulation [17–19]. Yet, the model structures were too complex to be used for
control design. Relatively, control design models were often simplified in continuous or discrete
state-space form, just reflecting leading dynamics of the system [20–22]. For an actual wind turbine
with high-order dynamics, only leading dynamics represented by simplified models are concerned for
control design while how to accurately identify their parameters is a still key problem.

Utilizing a simplified mechanism model of a wind turbine, only the unknown parameters need
to be identified where grey-box parameter identification is useful to combine mechanism-oriented
modeling and data-driven modeling. In [23], a normal five-order model of DFIG (double-fed induction
generator) in d–q axis was adopted and an RLS (recursive least square) algorithm was used to identify
model parameters. Through transforming DFIG model into ARX structure, a LS identification problem
was built. Then, excitation signals, sampling period and control structure were also concerned. In
contrast, optimal parameter identification provided a different way, where an optimization problem is
formed to search parameters with optimal objective. In [24], Cava et.al. brought in an evolutionary
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multi-objective optimization problem to identify parameters of symbolic model under preselected
nonlinear structure, where only tower and rotor speed dynamics versus wind speed, pitch angle and
aerodynamic torque were studied. In [25], grey-box parameter identification was applied on five-order
DFIG model and one-mass drive-train model via particle swarm optimization (PSO). Due to the
model structure preselected, only optimal parameters estimation was needed. It was more insensitive
to sampling period and more accommodative to closed-loop and process noises. Identification of
complexity and difficulty were also greatly reduced. Additionally, value ranges of parameters based
on their physical meaning could be set as constraints for optimal search and then to guarantee
reasonableness of identified models. It was very important for advanced control design to be based on
state-space models considering multi-objectives such as robust H∞ control or mixed H2/H∞ control
for maximum power tracking and fatigue load alleviation of the wind turbine [2–4]. Furthermore,
intuitiveness of the control design model was helpful not only for steady-state performance but also
for transient performance.

In summary, grey-box parameter identification is more advantageous in the three routes to get
state-space models, so it is adopted in this paper. Different types of methods will be compared to show
their diverse performances and features for advanced control design.

In spite of what control algorithms are used, critical equipment such as aerodynamic system,
tower system and drive-train system play the dominant roles. With consideration of multi- objectives
for control design such as dispatched-power-point-tracking and fatigue load alleviation, the tower
model along fore–aft direction and the two-mass model of drive-train are generally used due to their
appropriate representations to mechanical dynamics. However, identification research of them has
not been conducted, especially for parameter identification of the two-mass model under closed-loop
structure without excitation experiment. In this paper, it will be carefully discussed. As a result, the
main contributions of the paper are as follows:

• Structural identifiability analysis of the two-mass model under general closed-loop control
conditions across the whole wind speed range is presented and is useful to judge feasibility of
parameter identification in the closed-loop.

• Influence of identified data to identification performance is discussed based on mutual information
analysis of identified variables and is helpful to select great identified datasets.

• Grey-box identifications for mechanical dynamics of a wind turbine, including the two-mass
model of drive-train and the two-order damping model of tower-top, are studied where subspace
identification, RLS and optimal identification are compared under wind scenarios with different
turbulence intensities.

• Identification performances and features of different methods are analyzed from views of control
design, providing guiding opinions for further improvement.

The rest of this paper is organized as follows. Section 2 introduces basic knowledge of the
VSVP wind turbine including rationality analysis of the Hammerstein structure and selected models.
Section 3 analyzes structural identifiability of models in closed-loop and nonlinear correlations among
identified variables. The executable identification procedure is proposed in Section 4. Simulation and
comparative analysis are shown in Section 5. Section 6 concludes the paper.

2. Basic Knowledge of The Modern VSVP Wind Turbine

In this section, rationality of the Hammerstein structure is analyzed to simplify the identification
process. Meanwhile, the selected mechanism models are introduced for parameter identification.

2.1. Rationality of Hammerstein Structure

In [14], wind turbine dynamics were approximated by the connection of a static nonlinear
aerodynamic mapping and a linear time invariant mechanical subsystem—the so-called Hammerstein
structure. In this paper, this structure is also adopted, shown in Figure 1. From Figure 1, the modern
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VSVP wind turbine usually has mechanical-side, including an aerodynamic system, drive-train system
and tower system, and electrical-side, including an electrical system. The electrical-side has faster
response than the mechanical-side. In this paper, only the mechanical-side identification is studied
under the Hammerstein structure.
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During wind energy capture, the aerodynamic system contributes the main nonlinearity. Response
to varying wind speeds, the three flexible blades and their vibration modes yield both low and high
frequency dynamics. However, due to the low-pass filtering effects of the wind turbine rotor,
the variables such as rotor thrust, torque and speed often manifest themselves. Their spectrum
characteristics mainly concentrate in the low-frequency part. Then, the aerodynamic system can be
represented by its static nonlinearity where aerodynamic thrust and torque are used for modeling.

For drive-train with gearbox, the two-mass model is capable enough to represent the required
leading dynamics for control design. For the tower system, the motion in side–side direction,
caused by drive-train and generator dynamics, is often neglected. Only the motion in fore–aft
direction is concerned and can be modeled by a mass-spring-damper. The two-mass model and the
mass-spring-damper model are tightly coupled with aerodynamic torque and thrust, respectively.
Under the Hammerstein structure, aerodynamic torque and thrust become known nonlinear inputs
and then drive-train and tower systems are simplified into linear dynamic models.

The electrical subsystem mainly consists of an asynchronous generator and PWM (pulse width
modulation) inverter where the generator produces the main nonlinearity. Taking DFIG for example,
although its nonlinearity in the five-order model is greatly weakened under d–q rotating-coordinate
system, structural nonlinearity between generator rotor speed and current still exists. However, in
a sampling period of generator rotor speed, it can be seen to be fixed, relative to the fast change of
the current. Then, the five-order model becomes a linear time invariant one. Considering the rapid
response ability of the electrical system, it is often simplified as a first-order inertial process.

In summary, the Hammerstein structure is reasonable for wind turbine modeling and helpful to
reduce modeling complexity. Considering the different time-scales, only parameter identification of
mechanical-side including drive-train and tower systems will be studied in this paper.

2.2. Selected Subsystem Models

Under the Hammerstein structure, models of the mechanical-side with required leading dynamics
for advanced control design are selected and introduced.
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2.2.1. Aerodynamic Subsystem

In theory, captured wind power of a wind turbine rotor is defined by:

P =
1
2
ρπR2CPV3 (1)

where ρ is air density; R is rotor radius; V is upstream wind speed; CP is the dimensionless power
coefficient, adjusted by rotor speed ωr and pitch angle β. The nonlinear relationship among them is:

CP = f (V,ωr, β) = f (λ, β) (2)

where ωr is turbine rotor speed; λ = Rωr/V is tip-speed-ratio. Usually, CP can be used as fitted three-
dimensional surface or look-up table. Torque of turbine rotor is defined by:

Tr =
1
2
ρπR3CT(λ, β)V2 =

1
2
ρπR3 CP(λ, β)

λ
V2 =

1
2
ρπR5 CP(λ, β)

λ3 ω2
r = Krω

2
r (3)

where CT (λ,β) is torque coefficient; Kr is torque gain. When optimal λ and CP are adopted, the optimal
Kr can be generated. Aerodynamic thrust to tower is defined by:

Ft =
1
2
ρπR2CF(λ, β)V2 (4)

where CF is thrust coefficient.
Equations (1)–(4) represent static characteristics, different from that based on BEM (blade element

momentum) theory and AEC (aero-elastic code) [26]. Front inflows are often low-pass filtered even
facing rapidly changing inflow angles and wake effects. For a larger size megawatt wind turbine,
low-pass filtering effect is more significant in yielding relatively steady characteristic.

2.2.2. Drive-Train Subsystem

Drive-train mainly consists of a low-speed shaft, gearbox and high-speed shaft. The torsional
stiffness of them can be considered optionally. Total torsional flexibility in the low-speed side is caused
by turbine rotor, tower top, rotor hub, low-speed stage of gearbox, yaw bearing roll and low-speed
shaft, etc. In the high-speed side, total torsional flexibility involves high-speed stage of gearbox,
high-speed shaft and generator rotor, etc. Equivalent inertias of both sides depend on the drive-train
structure, which can be measured via the inertial measurement unit. Usually, equivalent inertia of the
low-speed side is ten times more than that of the high-speed side while gearbox inertia is less than
that of the high-speed side. Thus, gearbox inertia is often merged into the high-speed side. Then, the
main inertia sources are simplified into two parts, yielding the two-mass model. Considering torsional
flexibility of the low-speed shaft while taking the high-speed shaft to be rigid, the two-mass model
is shown in Figure 2. Torque of the turbine rotor is an input from the aerodynamic subsystem. It
drives the turbine rotor to rotate. Due to the existence of torsional flexibility of the low-speed shaft,
the transmitted torque of the low-speed shaft is different from torque of the turbine rotor, yielding
a torsional angle by different rotation speeds and angle displacements of two-ends. Torque of the
generator rotor is a reaction input to balance torque of the turbine rotor. Because the high-speed shaft
is taken to be rigid, two-ends of the high-speed shaft have the same torque, rotation speed and angle
displacement. The mathematical description of the two-mass model is represented by:

Jr
.
ωr = Tr − Tls

Tls = Als
stif(δr − δls) + Bls

damp(ωr −ωls)

Jg
.
ωg = Ths − Tg

(5)
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where Jr and Jg are equivalent inertias of the low-speed and high-speed sides; Tls and Ths are mechanical
torques of the low-speed and high-speed shafts in the gear-box; Tg is generator reaction torque; Astif

ls

and Bdamp
ls are equivalent stiffness and damping coefficients of the low-speed shaft; ωls and ωg are

speed of the low-speed shaft and generator rotor; δr, δls, δg and δhs are angle displacements of the
turbine rotor, low-speed shaft, generator rotor and high-speed shaft, respectively. Note that d(δr)/dt =

ωr, d(δg)/dt = ωg and δhs = δg, ωhs = ωg, Ngear = Tls/Ths = δhs/δls = ωhs/ωls. Ngear is the gearbox ratio.
Then, the equivalent of Equation (5) is:

Tr = Jr
.
ωr + Tshaf

Tshaf = Astif

(
δr −

δg
Ngear

)
+ Bdamp

(
ωr −

ωg
Ngear

)
−Tg = Jg

.
ωg −

Tshaf
Ngear

(6)

where Tshaf = Tls, Astif = Astif
ls and Bdamp = Bdamp

ls; Tshaf is internal shaft torque; Jr and Jg can be
measured by inertial measurement unit. Torsional flexibility, represented by Astif and Bdamp, needs to
be identified. Effective wind speed can be usually estimated via a LIDAR (Light Detection and Range)
system in nacelle or soft sensing methods. Giyanani et al. [27] studied the estimation of effective wind
speed using LIDAR data. Assume that CP, CT and CF are known from design parameters. Then,
aerodynamic torque Tr can be calculated.
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Figure 2. Two-mass model.

In addition to the two-mass model, drive-train can also be modeled as one-mass model or
three-mass model. If low-speed and high-speed shafts are both deemed to be rigid, the one-mass
model can be obtained. If torsional flexibility is considered, the three-mass model can be obtained.
Because the mechanical load is paid more and more attention, the one-mass model is too simplified.
The two-mass model is sufficient to represent drive-train dynamic while the three-mass model appears
to be complex and unnecessary [26].

2.2.3. Tower Subsystem

Tower dynamics mainly include two aspects, bending motions of fore–aft direction and side– side
direction. The former is often caused by wind thrust on turbine rotor. Because the turbine rotor, linked
to the low-speed shaft of drive-train, is mounted in the nacelle on a flexible tower top, effects of wind
on the rotor can be transmitted to the tower top. Additionally, the latter is caused by coupling effects
of drive-train and generator dynamics, etc.

Serving for control design, dominant tower dynamics are considered. In this case, only the tower’s
first bending mode of fore–aft direction is modeled by an equivalent mass-spring-damper system,
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where tower torsion deformation, yawing effects and higher bending modes are neglected. As a result,
a sufficiently simplified tower model can be obtained as follows:

Mt
..
d + Dt

.
d + Ktd = Ft (7)

where Mt, Dt and Kt are mass, damping and spring coefficients; d is fore–aft motion displacement.

3. Identifiability Analysis under Closed-Loop Condition

3.1. Control Strategy of Modern VSVP Wind Turbine

Below rated wind speed, OTC (optimal torque control) strategy is adopted by many industrial
wind turbines and seen as a variable-speed controller. Generator torque demand is given by Equation (3)
using optimal Kr. Measuring rotor speed, generator torque demand can be derived to control wind
turbine operating around optimal operation points.

Above rated wind speed, generator rotor speed is limited below the maximum or rated value,
which can be taken as set point. To track it, a variable-pitch controller is activated to regulate pitch angle.
Due to the nonlinear dynamics of a wind turbine, in practice, a gain scheduling PI (proportional-integral)
controller is generally used, changing with quasi-steady wind speeds.

Both the two control strategies and their switching mechanism are shown in Figure 3.

Energies 2019, 04, x FOR PEER REVIEW  8 of 26 

 

3. Identifiability Analysis under Closed-Loop Condition 

3.1. Control Strategy of Modern VSVP Wind Turbine 

Below rated wind speed, OTC (optimal torque control) strategy is adopted by many industrial 

wind turbines and seen as a variable-speed controller. Generator torque demand is given by 

Equation (3) using optimal Kr. Measuring rotor speed, generator torque demand can be derived to 

control wind turbine operating around optimal operation points. 

Above rated wind speed, generator rotor speed is limited below the maximum or rated value, 

which can be taken as set point. To track it, a variable-pitch controller is activated to regulate pitch 

angle. Due to the nonlinear dynamics of a wind turbine, in practice, a gain scheduling PI 

(proportional-integral) controller is generally used, changing with quasi-steady wind speeds. 

Both the two control strategies and their switching mechanism are shown in Figure 3. 

Set point of 
rotor speed

Measured 
rotor speed

_
+

Variable-speed 

controller

Variable-pitch 

controller

Generator torque demand

Blade pitch demand

> Rated

Above Rated

Below Rated

 

Figure 3. VSVP control loops of modern wind turbine. 

3.2. Structural Identifiability Analysis of Closed-Loop Control System 

The modern wind turbine works in closed-loop which cannot be cut off during operation. As a 

result, closed-loop identification is necessary. There are mainly two ways for this—direct and 

indirect methods. Direct identification uses input–output data of controlled object even under 

closed-loop condition. The indirect method identifies the augmented closed-loop system and 

deduces the model of the controlled object based on the known controller structure and parameters. 

When the input–output data of the forward channel is measurable and disturbance signal exists in 

the feedback channel, the direct method should be preferentially considered as it is more 

convenient than indirect method. 

A typical closed loop is shown in Figure 4. P(z−1) is transfer function in forward channel; C(z−1) 

is that in feedback channel; R(k) is set point signal; E(k) is deviation signal between set point and 

output; U(k) is controller output with noise; Z(k) is process output with noise; v(k) and w(k) are 

noise signals. A closed-loop system is identifiable if any one of the following conditions is satisfied 

[28]: 

1. If feedback channel is linear and invariant while no disturbance signal exists and set-point is 

constant, the identifiable condition is that cancellation between zeros and poles of closed-loop 

transfer function does not happen, caused by model structure of the feedback channel. 

Meanwhile, np ≥ nb, nq ≥ na−dt where np and nq are denominator and numerator order of C(z−1); na 

and nb are those of P(z−1); dt is time delay between output and input of the forward channel. 

2. If continuous excitation signal with enough order exists on the feedback channel and is 

irrelevant with the noise on the forward channel, a closed-loop system is structurally 

identifiable. 

3. If controller is time-varying or nonlinear, a closed-loop is structurally identifiable. 

4. If the controller switches among several regulation laws, closed-loop is structurally identifiable. 

For a multi-variable control system, it requires l ≥ 1 + r/m, where l is number of feedback 

controllers; r and m are input and output dimensions of closed-loop. 

Figure 3. VSVP control loops of modern wind turbine.

3.2. Structural Identifiability Analysis of Closed-Loop Control System

The modern wind turbine works in closed-loop which cannot be cut off during operation. As a
result, closed-loop identification is necessary. There are mainly two ways for this—direct and indirect
methods. Direct identification uses input–output data of controlled object even under closed-loop
condition. The indirect method identifies the augmented closed-loop system and deduces the model of
the controlled object based on the known controller structure and parameters. When the input–output
data of the forward channel is measurable and disturbance signal exists in the feedback channel, the
direct method should be preferentially considered as it is more convenient than indirect method.

A typical closed loop is shown in Figure 4. P(z−1) is transfer function in forward channel; C(z−1) is
that in feedback channel; R(k) is set point signal; E(k) is deviation signal between set point and output;
U(k) is controller output with noise; Z(k) is process output with noise; v(k) and w(k) are noise signals.
A closed-loop system is identifiable if any one of the following conditions is satisfied [28]:

1. If feedback channel is linear and invariant while no disturbance signal exists and set-point is
constant, the identifiable condition is that cancellation between zeros and poles of closed-loop
transfer function does not happen, caused by model structure of the feedback channel. Meanwhile,
np ≥ nb, nq ≥ na−dt where np and nq are denominator and numerator order of C(z−1); na and nb are
those of P(z−1); dt is time delay between output and input of the forward channel.

2. If continuous excitation signal with enough order exists on the feedback channel and is irrelevant
with the noise on the forward channel, a closed-loop system is structurally identifiable.

3. If controller is time-varying or nonlinear, a closed-loop is structurally identifiable.
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4. If the controller switches among several regulation laws, closed-loop is structurally identifiable.
For a multi-variable control system, it requires l ≥ 1 + r/m, where l is number of feedback
controllers; r and m are input and output dimensions of closed-loop.Energies 2019, 04, x FOR PEER REVIEW  9 of 26 
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All the above conditions provide a decision support to determine whether the system can be
successfully identified from a view of structure. This is a fundamental step before identification.

For a VSVP wind turbine, closed-loops below and above rated wind speed are shown in Figure 5.
In Figure 5, the variable-speed controller is nonlinear and variant with rotor speed. The variable-pitch
controller is usually a gain scheduling proportional-integral controller which is linear and variant.
No continuous excitation signals exist on feedback channels. Both of them are single-variable control
systems. When wind speed varies around the rated value, the two control strategies with their
regulation laws also switch. Thus, condition 3 can be fulfilled and condition 4 can be partially fulfilled.
As a result, the closed-loop of a modern VSVP wind turbine is structurally identifiable. This suggests
that system or parameter identification can be executed for the controlled objects on forward channel
under a closed-loop condition using direct or indirect methods.
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3.3. Correlation Analysis of Identified Data

Structural identifiability analysis is qualitative, judging whether the closed-loop identification
can succeed. This suggests that enough dynamic information may be contained in the data samples
of system variables. In execution, appropriate data samples need to be selected according to their
correlations from a relative point. Usually, correlations among system variables are nonlinear. Linear
correlation analysis methods such as Person coefficient, linear regression and path analysis, are
unsuitable while MI (mutual information) [29] becomes an efficient tool. It is defined by probability
density of data without requirements to data distribution and both linear and nonlinear correlation
can be analyzed. Firstly, define information entropy H(X) of a time series X as:

H(X) = −

∫
p(x) log p(x)dx (8)
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where H(X) is also called Shannon entropy [28]; p(X) is probability density function of X. Then, the
numerical form of uncertainty degree of X can be used to represent its information content. Greater
entropy value means stronger information uncertainty. On this basis, MI between X and Y is:

I(X, Y) =
x

pXY(x, y) log
pXY(x, y)

pX(x)pY(y)
dxdy (9)

where pXY(x, y) is joint probability density function. If X and Y are independent, I(X, Y) = 0; if X and Y
are highly dependent, I(X, Y) becomes greater.

In order to keep proper correlations among variables, MI values can be calculated for quantitative
analysis. In this paper, pXY(x, y) are calculated by kernel density estimation [30]. As a result, appropriate
data can be determined for identification.

4. Execution of Identification

4.1. Data Acquisition and Preprocessing

For parameter identification, the sampling period is mainly concerned during data acquisition. It
depends on maximum or cut-off frequency of the identified object. However, before identification, the
frequencies are difficult to be determined, which can be estimated according to the power spectral
densities of signals. Of course, trial and error can be used. To avoid missing important information, a
smaller sampling period should be preferred to try.

For the data acquired from field, inappropriate low or high frequency components may exist,
which affects the parameter identification effect. Low-frequency component mainly refers to slowly
changing drift or trend characteristics. High-frequency component refers to interference noise. In this
case, band-pass filter design is a feasible solution.

Additionally, if identification results are sensitive to the starting point of time, zero initialization
of sampled data may be necessary but optional. Subtracting the mean value of several initial points by
the acquired signal can realize zero initialization.

4.2. Optimization Criterion

The two-mass model of drive-train can be seen as a two-input two-output system. Inputs are
aerodynamic torque and generator torque. Outputs are generator rotor speed and internal shaft speed.
The tower model in fore–aft direction can be seen as a one-input one-output system. The input is
aerodynamic thrust. The output is displacement of fore–aft direction. Then, parameter identification
of multiple-input multiple-output system appears. Adopting the weighted loss function, optimization
criterion in the LS form is defined by:

Omin =

NOut∑
j=1

N∑
i=1

α j
[
y j(i) − ỹ j(i)

]2
(10)

where NOut is number of outputs; N is number of sampled data points; Ts is sampling period; αj is
weighting coefficient of each output; y is measured output; ỹ is estimated output. To evaluate the
fitting degree between estimated output and measured output, the fitting percent is used

rFitPercent =
‖ỹ− y‖
‖y− y‖

× 100% (11)

where ӯ represents average value. It is actually the normalized root mean squared error.
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4.3. Brief Introduction of Identification Algorithms

Facing the advanced control design of the wind turbine in future, only the identification methods
applicable for the state-space model are adopted. Among the black-box identification methods,
subspace identification is very representative with great performance and convenient executability
under state-space structure. Then, for grey-box identification methods using selected mechanism
state-space models, there are mainly two categories: RLS and optimal parameter identification.
As a result, the three methods are adopted for comparison in this paper.

4.3.1. Subspace Identification

From a statistical perspective, CVA (canonical variate analysis) method was early proposed by
Larimore et al. [31]. Based on a geometric concept, Verhaegen et al. [32] proposed MOESP method.
Using ARX estimation, SSARX (space state autoregressive exogenous) was given by Jansson et al. [33].
In the simulation, all three methods can be used as candidate methods. For parameter identification of
the two-mass model or tower model, the subspace identification method with less MSE (mean squared
error) and better fitting percent in Equation (11) can be selected to compare with the other classes of
methods. They are applicable for a multi-input multi-output system using Equation (10) as objective.

4.3.2. Grey-Box Parameter Identification via Recursive Least Squares Algorithm

RLS algorithm is used for online parameter estimation of single-input single-output or multi-input
single-output system. For the two-mass model (Equation (6)), approximate discretization is used
where

.
ωr ≈ (ωr(k + 1) −ωr(k))/T,

.
ωg ≈

(
ωg(k + 1) −ωg(k)

)
/T (T is sampling period). Taking Jr, Jg,

Astif and Bdamp as identified parameters, the discrete model is:

[
Tr(k)
Tg(k)

]
=


ωr(k+1)−ωr(k)

T 0 δr(k) −
δg(k)
Ngear

ωr(k) −
ωg(k)
Ngear

0
ωg(k+1)−ωg(k)

T
1

Ngear

(
δr(k) −

δg(k)
Ngear

)
1

Ngear

(
ωr(k) −

ωg(k)
Ngear

) 


Jr

Jg

Astif

Bdamp

 (12)

Taking Mt, Dt and Kt as identified parameters, discrete model of the tower model (Equation (7)) is

Ft(k) =


d(k+1)−2d(k)+d(k−1)

T2
d(k+1)−d(k)

T
d(k)


T

Mt

Dt

Kt

 (13)

Based on the discrete model, the infinite-history recursive estimation algorithms [34] via forgetting
factor are used for parameter identification.

4.3.3. Grey-Box Parameter Identification via Optimization Algorithm

Using Equations (6) and (7), discrete grey-box models can be established via zero-order holder.
Then, optimization algorithms are adopted to optimize model parameters, using Equation (10) as loss
function. The methods such as Gauss-Newton, Levenberg-Marquardt and trust-region- reflective are
candidate optimization algorithms. Then, dominant dynamics of drive-train and tower systems can be
approximated. Optimal parameter identification procedure mainly includes:

Step 1: Set sampling period, acquire data samples and execute data preprocessing.
Step 2: Set weighting coefficients of optimization criterion.
Step 3: Estimate and set initial domains of identified parameters.
Step 4: Identify unknown parameters using optimization algorithms.
Step 5: Test identified dynamics of each input–output channel. If huge deviation happens, adjust

certain steps and repeat Step 4. If required performance is fulfilled, the procedure is over.
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5. Simulation

Based on the benchmark simulation demo for a 2 MW wind turbine in GH Bladed software, no
excitation signals are applied on the controller or the output. Meanwhile, wind speeds with different
turbulence intensities are produced to stimulate the benchmark demo where operation data under
different wind scenarios can be acquired. The defaulted controllers in the benchmark demo are used as
shown in Figures 3 and 5. The controllers can arbitrarily switch with the varying wind speed.

5.1. Parameters Setting

GH Bladed is a high-fidelity software for wind turbine simulation. In this software, a benchmark
simulation demo of a 2 MW wind turbine with gear-box and DFIG is adopted. It uses the controllers
and control strategies shown in Figures 3 and 5. The main parameters are listed as follows: rated
capacity (2 MW), radius (40 m), hub height (61.5 m), gear-box ratio (83.33), cut-in wind speed (4 m/s),
rated wind speed (10m/s), cut-out wind speed (25 m/s), generator inertia (60 kg·m2), stiffness coefficient
(1.6 × 108 Nm/rad), damping coefficient (2.5 × 105 Nm·s/rad), variable speed controller (OTC), variable
pitch controller (gain scheduling PI controller). Concretely, for this benchmark 2 MW wind turbine
model, the horizontal-axis three blades are controlled integratively. For each blade, the blade length is
38.75 m where thickness to chord ratio, Reynolds number, pitching moment center and deployment
angle are set as 21%, 2 × 106, 25% and 0◦. More information of the turbine blades such as blade
structure and aerofoil parameters are shown in Figure A1, Tables A1 and A2 in the ‘Appendix A’ part.

5.2. Scenarios Setting and Simulation

Under the closed-loop condition, four types of wind scenarios with different turbulence intensities
are produced to stimulate the benchmark demo of a 2 MW wind turbine along the whole wind speed
range. For each wind scenario, operation data are acquired for identification.

Wind speeds excite wind turbine dynamics. To evaluate volatility of wind speed, turbulence
intensity is used, calculated as follows:

Itur =
σstd

Vmean
(14)

σstd =

√√√
1

NWS − 1

NWS∑
i=1

(Vi −Vmean)
2 (15)

where Vmean is mean wind speed in time window TWS with sampling period Tsp; NWS = TWS/TSP

is number of sampling points; σstd is standard deviation; Itur is turbulence intensity; Vi is sampled
values. According to IEC 61400-1 [35], three grades of turbulence intensity such as A(0.16), B(0.14) and
C(0.12) are given. In this section, using wind-generation function of GH Bladed [19], wind scenarios
with different mean values and turbulence intensities are generated, shown in Figure 6. Equations (14)
and (15) were used to calculate mean values and turbulence intensities with different time windows,
shown in Table 2. Different wind scenarios’ settings have some differences but the whole wind speed
range and the whole intensity range of turbulence can both be tested. Finally, the identified datasets
with different operation information caused by different wind scenarios and switched controllers can
be obtained for further grey-box parameter identification and validation.
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Figure 6. Wind scenarios.

Table 2. Characteristic parameters of wind scenarios.

Scenario Types
Mean Wind Speed (m/s)/Turbulence Intensity

0–10 min 10–20 min 0–20 min

Type 1 7.02/0.15 6.30/0.13 6.66/0.15

Type 2 8.62/0.13 7.72/0.14 8.17/0.15

Type 3 12.31/0.13 11.68/0.18 12.00/0.16

Type 4 15.23/0.15 14.76/0.17 15.00/0.16

Using wind speeds in Figure 6 as inputs of a 2 MW wind turbine model in GH Bladed, operation
data can be acquired. Using the benchmark demo of a 2 MW wind turbine in the GH Bladed software,
the virtual sensors and their measuring points are shown in Figure 7. For the identification of
the two-mass model, the measuring points include ‘Nominal wind speed at hub position’, ‘Rotor
speed’, ‘Rotor azimuth angle’, ‘Generator speed’, ‘Generator azimuthal position’, ‘Generator torque’,
‘Aerodynamic torque’ and ‘Low speed shaft torque’. For the identification of the tower model, the
measuring points include ‘Nominal wind speed at hub position’, ‘Tower Fx–Tower station height =

60 m’, ‘Nacelle x-deflection’, ‘Nacelle x-velocity’ and ‘Nacelle x-acceleration’.
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Then, MI values of two-mass model and tower model were calculated under different wind
scenarios, shown in Tables 3 and 4. In Table 3, divided by the maximum value of each row, normalized
MI values of each row can be obtained.

Table 3. Mutual information (MI) values of two-mass model under different wind scenarios.

Scenarios
MI Values of Two-Mass Model

Tr–Tg Tr–ωr Tr–ωg Tr–Tshaf Tg–ωr Tg–ωg Tg–Tshaf ωr–ωg ωr–Tshaf ωg–Tshaf

Type 1 0.4856 0.4555 0.4552 0.5442 3.0705 3.1005 2.5336 5.5664 2.2144 2.2122
Type2 0.6511 0.5651 0.5643 0.7068 2.2504 2.2601 2.5607 5.2716 1.9310 1.9292
Type 3 1.3548 0.2447 0.2417 1.4188 0.2759 0.2751 3.2777 3.2968 0.2760 0.2746
Type 4 0.1381 0.0479 0.0467 0.2241 0.0590 0.0601 0.6571 2.2888 0.0656 0.0658

Scenarios
Normalized MI Values of Two-Mass Model

Tr–Tg Tr–ωr Tr–ωg Tr–Tshaf Tg–ωr Tg–ωg Tg–Tshaf ωr–ωg ωr–Tshaf ωg–Tshaf

Type 1 0.0872 0.0818 0.0818 0.0978 0.5516 0.5570 0.4552 1 0.3978 0.3974
Type2 0.1235 0.1072 0.1070 0.1341 0.4269 0.4287 0.4858 1 0.3663 0.3660
Type 3 0.4109 0.0742 0.0733 0.4304 0.0837 0.0834 0.9942 1 0.0837 0.0833
Type 4 0.0603 0.0209 0.0204 0.0979 0.0258 0.0263 0.2871 1 0.0287 0.0287

Table 4. MI values of tower model under different wind scenarios.

Scenarios Type 1 Type 2 Type 3 Type 4

MI values Ft–z 1.3200 1.3080 1.1340 1.0938

According to MI values in Table 3, ωr–ωg has the highest correlation. Correlation of Tg–Tshaf is
relatively high, reflecting the similar dynamics of Tg and Tshaf. Correlation of Tg–ωr is similar to Tg–ωg.
Correlations of ωr–Tshaf and ωg–Tshaf are similar. Correlation of Tr–ωr is similar to that of Tr–ωg.
Obviously, due to different control strategies and controllers being used below or above rated wind
speed, MI values are different under different wind scenarios. From Figure 5, the two-mass model
locates at the forward channel of a closed loop. Scenarios Type 1 and Type 2 work below rated wind
speed where OTC controller acts. Scenarios Type 3 and Type 4 work above rated wind speed where
variable-pitch controller acts. Depending on the acquired data, different data sets yield different MI
values. Then, through analysis, connection of control loops and information contained in the acquired
data can be preliminarily understood according to control strategies in Figure 5.

The tower model (Equation (7)) is an open-loop system. As a result, in Table 4, correlations
between Ft and z are very similar under different wind scenarios.

From the view of basic principle, subspace identification is different from grey-box identification.
For subspace identification, estimating the Kalman state vector from the input–output data is the first
step and using the Kalman state vector to reconstruct the state space model is the second step. Among
them, how to estimate the Kalman state vector from the input–output data is a critical step for subspace
identification. For grey-box identification including RLS identification and optimal identification,
estimating the model parameters from input–output data based on the selected state-space model
structure is the first step and using the obtained state-space model to estimate the Kalman state vector
is the second step. The above three identification methods have different basic principles.

Firstly, due to the identified two-mass model including no-self-balancing channel, which is
unstable, exploration of different identification methods for direct identification of the two-mass model
without excitation experiment under closed-loop condition is mainly studied as follows.

For two-mass model (Equation (6)), define x = [ωr, ωg, ∆δ]T, u = [Tr, Tg]T, y = [ωg, Tshaf]T. Then,
the state-space equation and transfer function matrix can be obtained, shown as following

MTwo-mass =

 b1s2+b2s+b3
s(s2+a1s+a2)

−(b4s+b5)

s(s2+a1s+a2)
b6s+b7

s2+a1s+a2

b8s+b9
s2+a1s+a2

 (16)
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where a1 = Bdamp/Jr + Bdamp/[Jg (Ngear)2], a2 = Astif/Jr + Astif/[Jg (Ngear)2]; b1 = 1/Jr, b2 = Bdamp/[JrJg

(Ngear)2], b3 = Astif/[JrJg (Ngear)2]; b4 = Ngear b2, b5 = Ngear b3; b6 = Bdamp b1, b7 = Astif b1; b8 = Jr b4, b9 =

Jr b5. Obviously, for the input–output channels from Tr to ωg and Tg to ωg, transfer functions with
no-self-balancing ability are obtained. For the input–output channels from Tr to Tshaf and Tg to Tshaf,
transfer functions with self-balancing ability are obtained. In execution, no-self-balancing object is
difficult to be identified.

For the two-mass model, the measured data are obtained from operation of the two megawatts
wind turbine in GH Bladed using wind speed inputs in Figure 6. Under the Hammerstein structure,
inputs are turbine rotor torque, Tr, and generator reaction torque, Tg, for two-mass model. Outputs
are generator rotor speed, ωg, and internal shaft torque, Tshaf. Then, measured data can be used
for identification. Utilizing the identified state-space model with Tr and Tg as inputs, the estimated
generator rotor speed and internal shaft torque can be acquired. Herein, all the measured data for
identification are produced by the wind turbine model in GH Bladed with high-order nonlinear
characteristics. As a result, comparisons of the three identification methods under different wind
scenarios are shown in Table 5 and Figures 8–11.

Table 5. Comparison of identification methods for two-mass model.

Scenarios Methods nx, Jr, Jg, Astif, Bdamp MSE Fit-Percent Stability

Type 1

Subspace
(MOESP) nx = 10 7.964 × 107 −175.6%; 96.3%

−0.090 ± 0.951i; −0.284 ± 0.934i;
−0.010 ± 0.627i; −0.866 ± 0.365i;

0.995; −0.437; Instability.

RLS 3.544 × 106; 1;
2.388 × 105; 1.010 × 107

4.214 × 107

3.073 × 1011
−2.785 × 105%
−130.064%

−1.458 × 103; −2.363 × 10−2; 0;
Instability.

Optimization 1.381 × 105; 31.8;
2.101 × 108; 1.655 × 105 8.932 × 108 −1.37 × 105%;

87.67%
−0.974±49.719i; −0. Stability.

Type 2

Subspace
(MOESP) nx = 10 8.883 × 107 53.76%;

89.39%

0.784 ± 0.521i; 0.259 ± 0.841i;
−0.286 ± 0.824i; −0.712 ± 0.592i;
−0.570; 0.994; Instability.

RLS 5.776 × 106; 1;
1.028 × 105; −2.706 × 106

7.466 × 106;
5.547 × 1010

−206.69%;
−165.14% 390.057; 0; 0.038; Instability.

Optimization 2.063 × 105; 19.43;
2.062 × 108; 1.702 × 105 7.774 × 108 −1.69 × 104%;

72.67%
−1.043 ± 50.266i; −0; Stability.

Type 3

Subspace
(MOESP) nx = 10 3.502 × 107 90.11%;

89.53%

−0.878 ± 0.384i; −0.244 ± 0.939i;
0.435 ± 0.796i; 0.112 ± 0.974i;

0.997; 0.680; Instability.

RLS 6.366 × 106; 1;
6.920 × 104; −4.531 × 106

3.187 × 106;
2.443 × 1010

−1.527 × 104%
−176.42%

653.17; 0; 0.0152; Instability.

Optimization 2.197 × 105; 20.06;
2.153 × 108; 1.901 × 105 4.559 × 108 −1.768 × 104%;

63.28%
−1.115 ± 50.241i; −0; Stability.

Type 4

Subspace
(MOESP) nx = 10 3.733 × 108 −449%;

70.33%

−0.789 ± 0.405i; −0.400 ± 0.791i;
0.084 ± 0.722i; 0.922 ± 0.362i;
−0.845; 0.979; Instability.

RLS 4.686 × 107; 1;
2.767 × 105; 1.620 × 107

4.650 × 107;
3.395 × 1011

−4.955 × 105%;
−794.72%

−2.336 × 103; 0; −0.017;
Instability.

Optimization 2.578 × 105; 15.89;
1.954 × 108; 2.087 × 105 2.742 × 109 −2.734 × 105%;

33.22%
−1.351 ± 50.274i; −0; Stability.
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Subspace identification—a data-driven black-box identification method—is mainly realized via
robust numerical solution with QR decomposition or singular value decomposition. All the subspace
identification methods assume that input signal and process noise signal are independent with each
other. It suggests that the system does not have a feedback loop and all poles strictly fall in the
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left-half-plane, and thus subspace identification can have unbiased estimation for open-loop system.
Under closed-loop condition, input signal becomes dependent with process noise, so the closed-loop
system identification via subspace identification is difficult. If directly using subspace identification
for the closed-loop condition, a biased estimate or even error estimate may happen. Then, eliminating
the dependence between input signal and process noise becomes a basic step when using subspace
identification for a closed-loop system. In this case, if sufficient excitation can be designed and injected
into the closed-loop system and higher signal-to-noise ratio can be yielded, better results can be
obtained by subspace identification for the closed-loop system. Its identification accuracy highly
depends on the design of the test signal. However, in this paper, system identification under closed-loop
condition without excitation signal is mainly studied for the wind turbine model in GH Bladed with
high-order nonlinear characteristics. In theory, the identified system will remain biased or with error
if no-excitation signal is used under closed-loop condition. From Table 5 and Figures 8–11, these
methods all have limited identification performance. Through comparison, subspace identification
via MOESP has the best performance, showing its good adaptability to closed-loops. Even for the
mixed input–output channels, where Tg–ωg and Tr–ωg represent no-self-balancing channels and
Tg–Tshaf and Tr–Tshaf represent self-balancing channels, subspace identification has good fit-percent
using weighted loss function. However, reconstructed states of the discrete high-order system have
no-physical-meanings and are disadvantage for control design to improve dynamic performance of the
system. Besides, the identified system cannot guarantee its autonomous stability. As a result, subspace
identification only yields a good black-box result from the view of fit-percent based on its high-order
discrete model structure, whereas the identified system is still unbiased both in theory and in practice.

RLS identification—a black-box or grey-box identification method—is a generalization to LS
identification and is mainly solved by numerical solution algorithm. Herein, the drive-train model
structure has been selected, so a grey-box problem is formed. RLS identification can have unbiased
estimation for an open-loop system without feedback loop where the process noise signal and input
signal are independent. Yet, the drive-train model is a no-self-balancing and instable model where
closed-loop identification is necessary. Under closed-loop condition, the system needs to be fully
excited where a suitable excitation signal should be designed and injected into the system to reduce
or even eliminate the dependence between process noise signal and input signal. In this case, the
RLS algorithm may have a better identification result. Herein, the simplest identification condition is
provided for RLS identification where no-excitation-signal is injected into the closed-loop of drive-train
and the data yielded by the closed-loop system are directly acquired for identification. In theory, only
unbiased or error estimate may be obtained. RLS identification is just applicable for single output
system. Based on Equation (12), Tr is used to estimate parameters. Fit-percent and estimation error
of the identification results for the two-mass model performs the worst, as shown in Table 5 and
Figures 8–11. Besides, for the identified parameters, negative values often appear. These parameters
does not always keep consistent with their physical meanings and cannot guarantee autonomous
stability of system. Using the estimated parameters, the simulated outputs deviate a lot to the measured
outputs and error estimate happens in practice. As a result, for the direct identification of the two-mass
model using operation data under the closed-loop condition, RLS identification is difficult to have
proper results. It reflects that RLS method hugely relies on the acquired data and excitation experiment.

Grey-box identification utilizes the physical structure and input–output data to establish a system
model where a priori physical knowledge and model uncertainty caused by process noise are both
considered. It has obvious advantages for capturing the natural behavior of the actual system. Usually,
the selected model structure needs include the noise terms to describe model uncertainty. Yet, many
unknown noise signals are difficult to be estimated and improper estimation may yield bad results.
Herein, the two-mass model is selected as the identified model structure whereas its noise terms are
not added, so the approaching ability of the identified two-mass model may limited to the high-order
nonlinearity. Then, based on the two-mass model structure, optimization search algorithm is used to
find the parameters with the best estimation performance. Shown in Table 5 and Figures 8–11, grey-box
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optimization identification has moderate performance. Although it is applicable for multi-output
system, it performs poorly for the mixed channels. Because estimation bias always exists and even
diverges for the no-self balancing channels, the fit-percent and estimation error have poor performance.
To display the performance, single-step estimates of grey-box optimization identification are also shown
in Figure 8a, Figure 9a, Figure 10a, and Figure 11a. It can be found that the single-step estimates are
convergent and show their trend tracking abilities to the measured data. For the self-balancing channels,
only limited estimation performance is obtained due to the simplified model structure without noise
terms and weighted identification with the no-self-balancing channels. Even so, grey-box identification
has obvious advantages such as better adaptability to identified data for direct identification under
closed-loop condition and is a more convenient identification procedure. Besides, it has the most
important advantage that the estimated parameters have physical meaning and they can guarantee
autonomous stability of the identified system. As a result, even if the grey-box identification may
have limited accuracy, it is still very useful for control design. Especially, through choosing better
identified data, a better result of grey-box identification can be yielded. For wind scenarios with higher
MI values, better identification performance can be obtained. In Type 1, Type 2 and Type 3, Tr–ωg,
Tg–ωg, Tr–Tshaf and Tg–Tshaf have higher MI values than that of Type 4, so the identification results of
Type 1, Type 2 and Type 3 have less MSE and better fit-percent.

In summary, for parameter identification of the two-mass model, subspace identification gets the
best fit-percent. It is suitable for the predictive control design while unsuitable for many advanced
optimal control design methods, such as H∞ control and linear quadratic regulator control, etc. RLS
identification is proved to be invalid for the two-mass model under the simple identification condition
in this paper. Optimization identification has moderate performance. It is suitable for all kinds
of control design algorithms. However, dynamics based on the simplified model structure need
to be compensated. Besides, a novel method is needed to realize accurate identification for the
no-self-balancing channel. Comparison analyses of above identification results for the two-mass model
are briefly summarized and shown in Table 6.

Table 6. Comparison analyses of identification results for two-mass model.

Identification Methods Identification
Condition Herein Identification Results Reason Analysis to Identification

Results

Subspace (MOESP) Direct identification
under closed-loop
condition without
excitation signal

Valid: best fit-percent;
instability

Black-box high-order model;
closed-loop condition without

excitation; no-self-balancing channel

RLS Invalid: worst fit-percent;
instability

Grey-box low-order model without
process noise term; closed-loop

condition without excitation;
no-self-balancing channel

Optimization Valid: moderate
fit-percent; stability

Grey-box low-order model without
process noise term; no-self-balancing

channel

Then, open-loop identification of the tower model is studied as follows. It can directly show the
identification performance of different methods.

For tower model (Equation (7)), define x = [d,
.
d]T, u = Ft, y = d. Then, state-space equation and

transfer function of this two-order spring-damping model can be obtained, shown as follows:

MTower =
1

s(Mts + Dt) + Kt
(17)

For the input–output channel from Ft to d, it has self-balancing ability.
Under open-loop condition, performance of the three identification methods are strongly

dependent on that whether the identified data contain fully excited dynamic information. Herein, only
a very simple identification condition is set without excitation signal, so the identification result only
depends on the acquired operation data.
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For tower model, comparisons of three identification methods are shown in Table 7 and
Figures 12–15. RLS identification and grey-box optimization identification both performs better
than the subspace identification. It suggests the great advantage of priori model structure information
to accurately approach the high-order nonlinear dynamics of tower system. Meanwhile, the arbitrarily
acquired data may contain insufficient excited dynamic information which affect the estimation of
Kalman state vector form the input–output data, so subspace identification performs the worst. It
also suggests that subspace identification is a data-driven black-box identification method and its
performance strongly depends on the acquired data and excitation signal.

Table 7. Comparison of identification methods for tower model.

Scenarios Methods nx, Mt, Dt, Kt MSE Fit-Percent Stability

Type 1
Subspace (CVA) nx = 7 2.64 × 104 55.53% 0.698 ± 0.633i; −0.573 ± 0.620i;

−0.071 ± 0.596i; 0.191; Instability.

RLS 4.54 × 104; −1.68 × 104;
1.09 × 106. 8.70 × 10−5 74.55% 0.185 ± 4.896i; Instability.

Optimization 1.16 × 104; 1 × 103;
1.099 × 106. 1.38 × 10−4 67.93% −0.129 ± 9.728i; Stability.

Type 2
Subspace (CVA) nx = 3 2.72 × 10−4 55.66% −0.318 ± 0.589i; 0.535; Instability.

RLS 2.88 × 104; −8.93 × 103;
1.13 × 106. 1.04 × 10−4 72.61% 0.155 ± 6.25i; Instability.

Optimization 1.155 × 104; 1 × 103;
1.151 × 106 1.49 × 10−4 67.33% −0.130 ± 9.98i; Stability.

Type 3
Subspace (CVA) nx = 7 2.20 × 10−4 48.09% −0.549 ± 0.575i; −0.907 ± 0.203i;

0.707 ± 0.482i; 0.921; Instability.

RLS 4.14 × 104; −7.06 × 103;
1.18 × 106 9.24 × 10−5 66.52% 0.0852 ± 5.343i; Instability.

Optimization 1.239 × 104; 1 × 103;
1.257 × 106 1.63 × 10−4 55.53% −0.121 ± 10.072i; Stability.

Type 4
Subspace (CVA) nx = 3 6.72 × 10−4 38.35% 0.623; −0.150 ± 0.347i; Instability.

RLS 1.00 × 104; 2.12 × 103;
1.07 × 106 1.79 × 10−4 68.35% −0.106 ± 10.358i; Stability.

Optimization 1.116 × 104; 1 × 103;
1.127 × 106 3.07 × 10−4 58.48% −0.134 ± 10.049i; Stability.
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Especially, RLS achieves the best fit-percent, while parameters incongruent with its physical
meaning may be identified and they cannot guarantee autonomous stability of the system. Subspace
identification via CVA has the worst fit-percent, which just uses input–output data and reconstructs
the states with no-physical meanings. It also cannot guarantee autonomous stability of the identified
system. In contrast, optimization identification has moderate fit-percent, but it is sensitive to the set
of initial domains of parameters. Its advantage is that the identified parameters have clear physical
meanings and they can guarantee autonomous stability of the identified system. However, the
simplified model structure limits its representational ability to the nonlinear tower dynamics. For the
subsequent applications, subspace identification is suitable to test identifying feasibility of acquired
data in the early stage. RLS is suitable to determine the rough range of identified parameters in the
middle stage. Then, optimization identification is suitable for the final stage to obtain parameters
with physical meaning while guaranteeing autonomous stability of the open-loop tower system. Of
course, if simplified mechanism model is adopted and the fit-percent does not perform well, reasonable
dynamic compensation can be added. Besides, because the two-order spring-damping model of the
tower system lies in an open-loop, similar MI values are obtained under different wind scenarios. As a
result, identification performance under different wind scenarios are very similar, too. Comparison
analyses of the above identification results for the tower model are briefly summarized and shown
in Table 8.

Table 8. Comparison analyses of identification results for tower model.

Identification Methods Identification
Condition Herein Identification Results Reason Analysis to Identification

Results

Subspace (CVA) Direct identification
under open-loop

condition without
excitation signal

Valid: worst fit-percent;
instability

Black-box high-order model;
insufficient excitation of operation data

RLS Valid: best fit-percent;
instability

Grey-box low-order model without
process noise term

Optimization Valid: moderate
fit-percent; stability

Grey-box low-order model without
process noise term
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The main purpose of this paper is to explore the identification performance of three representative
methods under a simple condition with minimal complexity. At last, application potential and features
of these identification methods are summarized and shown in Figure 16. Overall, using the minimal
complexity for identification, grey-box optimization identification has the best adaptability to obtain
a valid state-space model with physical meaning and guaranteed stability. It is very helpful for
subsequent control design to improve both the stable and dynamic performance of the system. The
work herein will be part of a hybrid modeling method in future where the biased estimation of the
identified state-space model will be compensated by a non-parametric machine learning algorithm.
As a result, the hybrid modeling method can efficiently balance modeling complexity and accuracy
where the state-space model with high-precision approaching ability to high-order nonlinearity can
be obtained.
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6. Conclusions

In this paper, identification of wind turbine mechanical dynamics is studied under non-excitation
condition. Identification performance under different wind scenarios is tested using three types
of methods. For VSVP wind turbine, the drive-train subsystem is structurally identifiable under
closed-loop condition and direct identification is feasible for the two-mass model. Through MI
calculation, nonlinear correlations among identified variables can not only validate whether the linkage
of these variables are consistent with the control loop but also reveal the relationship between identified
data and identification performance. It can be found that higher correlations among identified variables
can yield better identification performance. In contrast, state-space model from optimal identification
can reflect the physical meaning of parameters and natural stability of the identified system which
is important for advanced control algorithms. In summary, grey-box optimal identification shows
its feasibility to identify complex wind turbine dynamics and its great potential in advanced control
design. Additionally, the limitation of the simplified mechanism model to represent complex and
practical dynamics should be paid attention. In future, dynamic compensation to the identified simple
mechanism model based on machine-learning will be studied. It may balance modeling complexity
and difficulty and would be attractive to the application of digital-twin modeling of wind turbines.
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Abbreviations

AEC aero-elastic code
ANN artificial neural network
ARMAX auto-regressive moving average
ARX auto-regressive
BEM blade element momentum
BJ Box-Jenkins
CVA canonical variate analysis
DFIG double-fed induction generator
LCOE levelized cost of energy
LIDAR light detection and range
LS least square
MI mutual information
MOESP multivariable output error state space
MSE mean squared error
OE output-error
OTC optimal torque control
PBSIDopt prediction-based subspace identification
PEM prediction-error method
PI proportional-integral
PRBS pseudo-random binary excitation signals
PSO particle swarm optimization
PWM pulse width modulation
RLS recursive least square
SSARX space state autoregressive exogenous
SVM support vector machine
VSVP variable-speed variable-pitch

Appendix A

Detail information of blade is shown as following.
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Table A1. Design parameters of blades.

Distance from root (m) 0 3.44444 5.74074 9.18519 16.0741 26.4074 35.5926 38.75
Centre of mass (%) 50 38 29 29 29 29 29 29

Mass per unit length
(kg/m) 1084.77 277.356 234.212 209.558 172.577 103.546 55.4713 24.6539

Flapwise stiffness
(Nm/rad) 7.472 × 109 1.408 × 109 8.341 × 108 5.561 × 108 2.058 × 108 2.954 × 107 2.259 × 106 3127.98

Edgewise stiffness
(Nm/rad) 7.472 × 109 2.085 × 109 1.425 × 109 1.286 × 109 5.648 × 108 1.216 × 108 2.433 × 107 8167.51

Table A2. Aerofoil parameters of blades.

Angle of incidence
(deg) −180 −141.27 −100.65 −19 0 21.61 115.85 150.54 180

Lift coefficient −0.088 0.716 0.094 −0.354 0.449 0.806 −0.539 −0.674 −0.088
Drag coefficient 0.036 0.772 1.167 0.191 0.007 0.288 1.094 0.466 0.036
Pitch coefficient −0.041 0.362 0.313 0.042 −0.079 −0.097 −0.363 −0.301 −0.041
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