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Abstract: This paper presents a nonlinear-model-based observer for the state of charge estimation of
a lithium-ion battery cell that always exhibits a nonlinear relationship between the state of charge
and the open-circuit voltage. The proposed nonlinear model for the battery cell and its observer
can estimate the state of charge without the linearization technique commonly adopted by previous
studies. The proposed method has the following advantages: (1) The observability condition of
the proposed nonlinear-model-based observer is derived regardless of the shape of the open circuit
voltage curve, and (2) because the terminal voltage is contained in the state vector, the proposed
model and its observer are insensitive to sensor noise. A series of experiments using an INR 18650
25R battery cell are performed, and it is shown that the proposed method produces convincing results
for the state of charge estimation compared to conventional SOC estimation methods.

Keywords: nonlinear battery model; state of charge estimation; lithium-ion battery; Lipschitz
nonlinear system; Luenberger observer

1. Introduction

Since the first development of hybrid electrical vehicles (HEVs), pure electric vehicles (EVs) have
been rapidly commercialized. In contrast to HEVs, the mileage range of EVs is directly affected by
the power and energy density of the battery itself and the performance of the battery management
system (BMS). Hence, many studies related to lithium-ion (Li-ion) batteries, including the development
of new materials and algorithms for inner state estimation, have been conducted by various research
groups [1–8]. Increasing the energy and power density via advancements in battery manufacturing
technology requires a higher level of monitoring of the battery states to fully and safely use the
potential of the battery.

In EV applications, the state of charge (SOC), which represents the amount of charge in the battery,
is the most important parameter because it directly relates to the number of miles that an EV can travel.
An inaccurate SOC information causes the driver to constantly worried about the EV stopping on the
road or the battery being overcharged/overdischarged, causing ignition or explosion. Therefore, it is
important to estimate the SOC and accurately determine the dischargeable capacity of the battery to
protect the battery itself and help reduce the driver’s anxiety [9–11]. However, unlike the voltage and
current, there is no way to measure the SOC directly. Hence, advanced algorithms for accurate SOC
estimation need to be researched.

Typically, there are two kinds of categories of SOC estimation methods: (1) model-less and
(2) model-based methods. The most famous example of a model-less algorithm is the Coulomb
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counting method [12,13]. This method estimates the SOC by integrating the current through the battery.
Its simplicity and low computational cost make this method valuable in the infancy of the BMS.
However, it has obvious limitations: it suffers from an initial condition problem and the accumulation
of sensor offset due to the integrator. Artificial neural networks (ANNs) and fuzzy algorithms are
also model-less methods that implement intelligent algorithms [14–16]. However, these data-driven
methods have inherent problems, such as a long training time and a large number of data sets.
In particular, when the type of battery cell is changed, the learning procedure has to be restarted.
This is far from a practical concept. On the other hand, model-based methods use an equivalent
electrochemical model (EECM) or electrical circuit model (ECM) to represent the current-voltage
relationship of the battery. The EECM formulates the key behaviors of the battery cell by deriving a
series of differential equations for the chemical reactions inside the battery cell [17,18]. The accuracy
of the EECM for SOC estimation is very high, but its practical usefulness is questionable, because a
very high complexity leads to a significant memory and computational burden. On the other hand,
the ECM represents the current-voltage relationship by using electric components such as resistance,
capacitance and a variable voltage source [19–22]. Although the ECM is relatively inaccurate compared
with the EECM, the ECM is commonly adopted for real-time SOC estimation because it can be
simply implemented and can achieve a high accuracy when the ECM cooperates with a state observer.
Therefore, there have been many studies on various state observers and various kinds of ECMs.

The Kalman-filter-based observer, Luenberger observer, sliding-mode observer and proportional-
integral observer are widely used for the SOC estimation [23–35]. Previous studies have verified that
all methods produce good performance for the online SOC estimation. However, while the battery
is a type of nonlinear system due to the nonlinear relationship between the SOC and open circuit
voltage (OCV), previous studies focused on linear systems and their observers. Therefore, linearization
techniques must be implemented. For example, Kalman-filter-based approaches apply a Taylor series
expansion to each operating point at each time step, and the other approaches apply the ’piece-wise’
linearization technique, which divides the nonlinear function into multiple linear functions according
to each operating region. Linearization techniques are useful for approximating a nonlinear system,
but when the operating point changes, the model of the linearized system changes. This means that
the performance of the designed observer based on a linearized model at a certain operating point
changes with respect to the operating region, and even worse, there can be a critical point where the
observer loses its stability. However, most previous studies did not consider time-varying conditions.

This paper proposes a nonlinear model for a battery cell and a nonlinear-model-based observer.
This work has two contributions. First, this paper proposes a nonlinear state space representation of
a 1st-order Thevenin equivalent circuit model. This allows the system to be time-invariant and the
eigenvalues of the designed observer to be fixed in all operating regions. The resulting observability
condition of the proposed model, which is generally used as the necessary condition for the design
of an observer, is derived regardless of the shape of the open-circuit voltage curve. This means that
the observability condition is always satisfied even if there is a voltage plateau on the open-circuit
voltage curve [36–38]. The proposed nonlinear model is also insensitive to sensor noise, because the
state vector contains the terminal voltage. Second, a nonlinear-model-based Luenberger observer
that can address the nonlinear system model is proposed. The stability condition of the proposed
observer is strictly derived using nonlinear system theories. The performance of the real-time SOC
estimation of the proposed method is evaluated by conducting experiments with INR 18650 25R from
SAMSUNG SDI.

2. Nonlinear System Model for a Single Battery Cell

There are many ECMs for battery cells. For an onboard BMS system, there is always a trade-off
between the model accuracy and complexity. Therefore, a suitable selection for the ECM must be made
according to the application. Generally, for real-time SOC estimation, the 1st-order Thevenin ECM [5]
is adopted because it is more suitable for real-time SOC estimation (see Figure 1).
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Figure 1. Thevenin’s equivalent circuit model with a single RC pair.

The dynamic equations of the selected ECM are derived as follows:

Vt = VOC (z)− ILR0 −V1, (1)

ż = − IL
Cn

, (2)

V̇1 = − 1
C1R1

V1 +
1

C1
IL (3)

where Vt is the terminal voltage of the battery cell, VOC(z) is the OCV function of z, z represents the
SOC, IL is the load current, R0 is the equivalent internal resistance, V1 is the voltage of the RC pair,
Cn is the nominal capacity, R1 is the equivalent resistance of the RC pair and C1 is the equivalent
capacitance of the RC pair. In the case of a Li-ion battery, the nonlinear function VOC(z) representing
the relationship between the SOC and OCV always exists. This makes it difficult to build a state space
model and design a state observer for the battery system.

2.1. Linearized System Model for a Single Battery Cell

Most previous studies related to observer-based SOC estimation [29,30,32,34,39] linearized VOC(z)
by using a piece-wise assumption. The linearized VOC(z) is defined as

VOC(z) = kiz + di , f or the ith SOC region (4)

where ki and di are the coefficients of each linearized VOC(z) and i is the number of divided sections of
the SOC. (1)–(3) can be rewritten as a linear state space representation by using (4).

ẋ = Ax + Bu,
yi = Cix + Du

(5)

where x =
[

V1 z
]T

, yi = Vt − di, A =

[
− 1

C1R1
0

0 0

]
, B =

[
1

C1
− 1

Cn

]T
, u = IL, Ci =[

−1 ki

]
and D = R0. By utilizing this linearized system model for a single battery cell, it is

easy to implement the state observer for an SOC estimation because the theories for linear systems are
applicable. However, a major concern of this linearized model is that when the operating point changes,
the linearized system model will change. If the change is large, the optimally designed observer will
no longer be optimal, and in the worst case, the observer will become unstable. Details about the
limitations of the linearized model for the battery system are mentioned in the discussion section.
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2.2. Nonlinear System Model for a Single Battery Cell

This paper proposes a nonlinear state space representation for the battery cell. Let us define the
nonlinear function VOC(z) as a summation of a linear term and a nonlinear term as

VOC (z) = αz + β + f (z) ,

f (z) =
N
∑

n=1
an sin (bnz + cn)

(6)

where α and β are the coefficients of the linear term, f (z) is a bounded nonlinear function consisting
of a sum of sine functions and an, bn, and cn are the coefficients of the sum of sine functions. Figure 2
conceptually represents (6).

SOC (z)

 
 
 
 

SOC (z)

 
 

SOC (z)

 
 
 
                    

 

 

            

Figure 2. Reformulation of the open-circuit voltage representation.

Equations (1)–(3) can be rewritten as a nonlinear state space representation by using (6).
The terminal voltage of the ECM in (1) is

Vt = αz + β + f (z)−V1 − ILR0. (7)

Its time derivative can be calculated as follows:

V̇t = αż + d
dt f (z)− V̇1 − İLR0 = −α 1

Cn
IL +

d
dz f (z) ż−

(
− 1

C1R1
V1 +

1
C1

IL

)
= −α 1

Cn
IL − d

dz f (z) 1
Cn

IL +
1

C1R1
V1 − 1

C1R0
(αz + β + f (z)−V1 −Vt)

= 1
C1R0

Vt +
(

1
C1R1

+ 1
CnR0

)
V1 − α

C1R0
z +

{
− 1

Cn
IL

d
dz f (z)− 1

C1R0
f (z)

}
+
{
− α

Cn
IL − β

C1R0

}
.

(8)

The derivative of the state of charge in (2) is

ż = − 1
CnR0

(αz + β + f (z)−V1 −Vt)

= 1
CnR0

Vt +
1

CnR0
V1 − α

CnR0
z− 1

CnR0
f (z)− 1

CnR0
β.

(9)

Then, the nonlinear state space representation of the given ECM can be obtained as

ẋ = Ax + F (x, IL) + G (IL),
y = Cx,

A =


1

R0C1
1

R0C1
+ 1

R1C1
− α

R0C1

0 − 1
R1C1

0
1

R0Cn
1

R0Cn
− α

R0Cn

 , F (x, IL) =

 −
1

R0C1
f (z)− 1

Cn
d
dz f (z) IL

0
− 1

R0Cn
f (z)

 ,

G (IL) =

 −
1

Cn
αIL − 1

R0C1
β

IL
C1

− 1
R0Cn

β

 , x =

 Vt

V1

z

 , y = Vt

(10)
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where A is the state matrix, F (z, IL) is a nonlinear function with unknown states and G (IL) is
a nonlinear function with known parameters. It is noted that the time derivative of the current
IL can be negligible not only because the sampling time of the algorithm is much faster than
the current change [30] but also because its effect is much smaller than that of the other factors.
Different from the linearized model in (5), it is easily shown that the proposed nonlinear system
model in (10) does not change regardless of the SOC range, and the state vector contains the terminal
voltage Vt, which can lead to the model being insensitive to sensor noise when using the measured
value directly. However, because of the existence of the nonlinear functions F (z, IL) and G (IL),
the observers used previously for linear systems are no longer available, and the stability condition
for the nonlinear-model-based observer is not determined by considering the eigenvalues of the
linear stability matrix (A− LC), where L is the observer gain matrix. Hence, in the next section,
a nonlinear-model-based observer is proposed, and its stability condition is verified based on the
Lyapunov stability criteria.

3. Nonlinear-Model-Based Observer Design

Theorem 1. Under the assumptions that the linear observability matrix (A− LnC) of the given nonlinear
system model in (10) has full rank, and the nonlinear function F (z, IL) can be assumed to be a locally Lipschitz
continuous function with a Lipschitz constant χ, which satisfies (11) in the physically feasible range of space X
such that

‖F (x1, IL)− F (x2, IL)‖ ≤ χ ‖x1 − x2‖ , ∀x ∈ X, (11)

the observer given in (12) is asymptotically stable if the Luenberger observer gain Ln can be chosen to ensure
that the linear stability matrix (A− LnC) is Hurwitz and the inequality (13) is satisfied.

˙̂x = Ax̂ + F (x̂, IL) + G (IL) + Ln (y− Cx̂) , (12)

min
ω∈R+

σmin (A− LnC− jωI) > χ (13)

where χ is the Lipschitz constant in (11).

Proof. Let us prove Theorem 1 by the method of contradiction. According to H∞ theory, the following
well-known condition is satisfied. If the Hamiltonian matrix

H =

[
A R
Q −AT

]
(14)

has no imaginary eigenvalues; then, there exists a symmetric matrix P satisfying the algebraic
Riccati equation

AT P + PA + PRP−Q = 0 (15)

(for a proof, see [40]). In the same context, it can said if that the Hamiltonian matrix

H =

[
(A− LnC) χ2 I
−I − εI −(A− LnC)T

]
(16)

has no imaginary eigenvalues, there exists a symmetric matrix P satisfying the algebraic Riccati
equation

(A− LnC)T P + P (A− LnC) + Pχ2P + I + εI = 0. (17)

From (13), there exists a finite ω0 such that

min
ω∈R+

σmin (A− LnC− jωI) > σmin (A− LnC− jω0 I) = χmin. (18)
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Then, we can say that for all ω > ω0, (A− LnC− jωI)∗ (A− LnC− jωI) ≥ χ2
min I is satisfied,

where ∗ indicates a Hermitian matrix. Choose ε such that

(A− LnC− jωI)∗ (A− LnC− jωI) ≥ χ2
min I > χ2 (I + εI) . (19)

The eigenvalues of the Hamiltonian matrix (16) are given by [41]

det
[
χ2 (I + εI) + {λI + (A− LnC)T}{λI + (A− LnC)}

]
= 0. (20)

Without loss of generality, it can assumed that an imaginary axis eigenvalue is represented by jω.
By substituting λ = jω in (20), we have

det
[
χ2 (I + εI) + {−jωI + (A− LnC)T}{−jω + (A− LnC)}

]
= 0. (21)

This means that

{(A− LnC)T − jωI}{(A− LnC)− jω} = χ2 (I + εI) . (22)

This contradicts (19). Hence, the matrix H in (16) cannot have any imaginary eigenvalues if
inequality in (13) satisfied.

Let us define the state estimation error vector as e = x− x̂ and consider the Lyapunov function
candidate V = eT Pe. Then, the derivative of V is

V̇ = ėT Pe + eT Pė
= eT

[
(A− LnC)T P + P (A− LnC)

]
e + 2eT P [F (x, I)− F (x̂, I)] .

(23)

Using the Lipschitz condition in (11) and the property eT P [F (x, I)− F (x̂, I)] ≤
‖Pe‖ ‖F (x, I)− F (x̂, I)‖, the derivative of V can be represented by an inequality as

V̇ < eT
[
(A− LnC)T P + P (A− LnC)

]
e + 2χ ‖Pe‖ ‖e‖ . (24)

Using
χ2eT PPe + eTe = 2χeT Pe ≥ 2χ ‖Pe‖ ‖e‖ , (25)

and the result of (16)–(22), the upper bound of the Lyapunov candidate can be obtained as

V̇ ≤ eT
[
(A− LnC)T P + P (A− LnC) + χ2PP + I

]
e = −eTεIe. (26)

Hence, the system is asymptotically stable.

There are two kinds of necessary conditions for Theorem 1: (1) the linear observability matrix
(A− LnC) of a given system has full rank, and (2) the nonlinear function is a local Lipschitz continuous
function. The linear observability matrix of the given nonlinear system model in (10) can be obtained

as O(A,C) =
[

C CA CA2
]T

.
The linear observability matrix of the given system is derived as

O(A,C) =

 1 0 0
p1 p1 + p2 −αp1

p2
1 − αp1 p3 p2

1 − p2
2 − αp1 p3 −αp2

1 + α2 p1 p3

 (27)
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where p1 = 1
R0C1

, p2 = 1
R1C1

and p3 = 1
R0Cn

. The determinant of the matrix OA,C is

det
∣∣∣O(A,C)

∣∣∣ = αp3 − p1 − p2. (28)

It is shown that the given observability condition is independent of the shape of the OCV function.
This is a function of the given parameters. Then, if the coefficient α is selected such that

α 6= p1 + p2

p3
, (29)

the given nonlinear battery model in (10) will satisfy the first necessary condition of Theorem 1.
The Lipschitz condition in (11) can be rewritten by the following partial differential equation [42] as

|F (x1, IL)− F (x2, IL)|
|x1 − x2|

=
∂F (x, IL)

∂x

∣∣∣∣
∀x∈X

≤ χ. (30)

While there are three kinds of states to be considered for the Lipschitz condition, the state Vt

is measurable. Therefore, the two unmeasurable states, V1 and z, must be considered. The Lipschitz
conditions for the nonlinearities of V1 and z can be derived as follows:

∂F2 (x, IL)

∂x
= 0, (31)

∂F3 (x, IL)

∂x
= − 1

R0Cn

d
dz

f (z) (32)

where F2 and F3 are the nonlinearities of Vd and z. As mentioned above, the function f (z) is predefined
by the sum of the sinusoidal function, which has a certain boundary. The resulting function in (32)
is a function of only one state value z. Therefore, if the function values of (32) in the overall feasible
range of z are smaller than the Lipschitz constant χ, the inequality in (11) is satisfied. This means that
the second necessary condition of the Theorem 1 is satisfied. The specific parameters of the necessary
conditions will be verified in the next section.

4. Experiments

This section inspects the performance of the SOC estimation of the proposed nonlinear battery
model and the extended Kalman filter, which has commonly been applied for SOC estimation in
previous works in [11,24,38,43] by conducting a series of experiments.

4.1. Experimental Setup

To analyze the performance of the SOC estimation of the proposed observer and previous methods,
an experimental battery cell test bench is established. Experiments were conducted using the INR
18650-25R battery cell from SAMSUNG SDI. The test bench for the charge-discharge experiment
is shown in Figure 3. The setup consists of a bidirectional DC/DC converter (Maccor 4300 K),
a temperature chamber (Jeiotech TH-G-408) and a main PC. The current and terminal voltage of
the cell were measured accurately by the Maccor 4300 K converter with a full-scale range (FSR)
measurement error below 0.02%. This experiment was implemented with a controlled temperature of
25 ◦C.

In this paper, all of the charge-discharge experiments were conducted by: (1) charging the battery
with CC-CV mode until the battery reaches the charge cutoff voltage of 4.2 V; (2) discharging the battery
with CC mode until the SOC reaches the intended initial SOC, where the SOC is calculated by the
Coulomb counting method with a precise current sensor; and (3) conducting the target current cycle.
As an example, the sequential current and resulting terminal voltage for the UDDS current profile are
shown in Figure 4.
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To focus on the intended current cycle and target SOC area, the analysis was conducted only for
step 3.

���� 

�(1) �(2) �(3) �(4)

Figure 3. Experimental setup: (1) bidirectional DC/DC converter, (2) personal computer (PC) for data
acquisition, (3) temperature chamber, and (4) tied battery cells inside the temperature chamber.
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Figure 4. Experimental sequence: (a) engaging the current and (b) the resulting cell terminal voltage.

4.2. Target Battery Specification and Parameters Extraction

The target battery cell is an INR 18650-25R cylindrical Li-ion battery cell comprising GIC and NMC
from SAMSUNG SDI. Before extracting the parameters of the given ECM and SOC-OCV relationship,
the pre-cycling procedure including 10 fully charge-discharge cycles was conducted in order to the
target battery cell can be warmed-up and ready-to-use state. The equivalent parameters for the
1st-order Thevenin ECM are extracted using an offline hybrid pulse power characterization cycle
(HPPC) test at a constant temperature of 25 ◦C. The current profile and voltage profile of HPPC test
are shown in Figure 5.

1 C-rate (2.5A) is chosen for charge-discharge current, and by discharging 30 min with 1 C-rate
current, and discharge the battery during 30 min at every cycles so that the SOC level is dropped
by 5%. In order to measure the OCV at each SOC level, the battery is rested for an hour. According to
the voltage and current data, resulting equivalent parameters and SOC-OCV relationship for each
SOC level are shown in Figure 6.
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Figure 5. The HPPC test procedure: (a) engaged current profile and (b) resulting terminal voltage.
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Figure 6. Resulting equivalent parameters: (a) SOC-OCV relationship, (b) internal resistance
(c) resistance value of RC-pair and (d) capacitance value of RC-pair.

The equivalent parameters are obtained based on the method presented by Kim et al. [44].
The average parameters are listed in Table 1, and these values are used for establishing the state space
model and selecting optimal gain of observer.

Table 1. Average values of equivalent parameters of the 1st-order Thevenin ECM.

Parameter Value

R0 0.0172 Ω
R1 0.0097 Ω
C1 570.86 F
Cn 8972 As

VOC (z) was captured at 5% SOC intervals from 5% SOC to 95% SOC. The linear and nonlinear
functions of the proposed OCV representation, which are introduced in Figure 2, are shown in Figure 7.
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Figure 7. The proposed open-circuit voltage representation: the (a) linear term and (b) nonlinear term.

The nonlinear term of the OCV function is tuned by utilizing the curve fitting tool in MATLAB
(2017a academic version, Mathworks, Natick, MA, USA). The corresponding coefficients are listed
in Table 2.

Table 2. Coefficients of the proposed VOC (z) in (6).

Parameter Value

α 0.9878
β 3.2095

Parameter n = 1 2 3 4 5 6

an 0.07 0.05 0.04 0.02 0.23 0.22
bn 1.90 0.30 3.39 8.35 10.01 10.10
cn −3.30 0.49 −0.98 −1.27 1.74 −1.42

The measured OCV of each 5% SOC and the proposed nonlinear representation of the OCV curve
in (6) are shown in Figure 8.
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Figure 8. Captured OCV at each SOC point and the SOC-OCV curves fitted using the proposed
OCV representation.
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Accordingly, the corresponding matrices of the proposed nonlinear battery cell model in (10) are
obtained as

A =

 0.1018 0.2814 −0.1006
0 −0.1796 0

0.0065 0.0065 −0.0064

 , C =
[

1 0 0
]

. (33)

From the resulting coefficients, α = 0.9878, p1 = 0.1018, p2 = 0.1806, p3 = 0.0065 and the
condition in (29), it is known that the linear observability matrix of the given system has full rank.
The values of (32) in the overall feasible range of z are shown in Figure 9.
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Figure 9. Values of the partial derivative function in (32) for the state in the overall feasible range.

The resulting values are bounded from −0.005 to +0.002. This means that the Lipschitz condition
in (11) is satisfied if the Lipschitz constant is selected as χ > 0.005. All the necessary conditions of
(1) linear observability and the (2) local Lipschitz condition are satisfied. The Luenberger observer gain
is selected by utilizing the pole-placement technique so that the eigenvalues of the Luenberger observer

satisfy λ (A− LnC) =
[
−0.5 −0.1 −0.01

]T
and the sufficient condition in (13) is satisfied.

The minimum singular value of Ln min
ω∈R+

(A− LnC− jωI) is 0.0073. This value is larger than the

Lipschitz constant χ = 0.005. From the sufficient condition in (13) of Theorem 1, the proposed observer
in (12) with the selected observer gain is asymptotically stable and the state estimation error converges
to zero as time increases.

4.3. Experimental Results

The UDDS current profile, which is shown in Figure 4, was used for the experiments.
To evaluate the performance of the real-time SOC estimation and insensitivity to sensor noise,
two types of experiments were conducted. The first working condition is the noiseless condition.
Because the experimental setup has a high precise current and the voltage sensors are operated under
controlled conditions, it can be assumed that there is no external noise. There are only unknown
model uncertainties. To compare the performance of the SOC estimation of the proposed method with
that of previous methods, two types of SOC estimation methods are used: (1) a Luenberger observer
with a nonlinear model and (2) an extended Kalman filter (EKF) with following form [45]:

xk+1 = Axk + Buk + ωk,
yk+1 = Ckxk+1 + Duk+1 + vk,

A =

[
exp

(
− ∆T

R1C1

)
0

0 1

]
, B =

[
R1

(
1− exp

(
− ∆T

R1C1

))
∆T
Cn

]
,

Ck =
∂Vt
∂x

∣∣∣
x=x̂−k−1

=
[
−1 ∂VOC(z)

∂z

]∣∣∣
z=ẑ−k−1

, D = [R0]

(34)
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where xk =
[

V1,k zk

]T
, yk = Vt,k, uk = IL.k and ∆T is the sampling time.

4.3.1. Case 1: Noiseless Condition

The real-time SOC estimation results of the two methods under noiseless condition are shown in
Figure 10. The percentage error is calculated by

Percent error (%) =
True value − Estimated value

True value
× 100. (35)

At the beginning of the experiment, the initial SOC value is set to be far from the true SOC value.
This shows the observer’s robustness to the initial state error. As shown in Figure 10, both SOC
estimation methods have good performance. Because the EKF is an adaptive and optimal version
of the Luenberger observer, it usually shows better performance when the accuracy of the model is
sufficiently high and the external noise can be assumed to be Gaussian noise. The EKF also shows
a shorter offset compensation time for a well-conditioned experiment than the proposed method.
However, after the offset compensation time, the percentage errors of the SOC estimation of the
proposed method and the EKF are under ±5%.
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Figure 10. SOC estimation results under noiseless conditions: (a) SOC estimation results of the two
types of methods and the (b) percentage error of each method.

The sensor noise is considered for the other working condition. Two types of sensor noise,
voltage sensor noise nV and current sensor noise nI , are considered as random noise with zero mean
and different peak-to-peak values of |nV |max = 0.02 V and |nI |max = 2.5 A. Although the given
voltage and current sensor noise conditions are quite severe, this level of sensor noise can occur in
a real implementation of an onboard BMS as a result of external noise due to an unstable ground,
electromagnetic interference (EMI) from electronic equipment or a low sensor resolution, and as a
result, the advanced performance of the proposed method can be emphasized. The current and voltage
signals with sensor noise are shown in Figure 11.
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Figure 11. Voltage and current signals: (a) original and noisy current signal and (b) original and noisy
voltage signal.

4.3.2. Case 2: Voltage Sensor Noise Condition

Figure 12 shows the SOC estimation results with only voltage sensor noise.
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Figure 12. SOC estimation results with voltage sensor noise: (a) SOC estimation results of the two
types of methods and (b) percentage error of each method.

As shown in (34), the output vector y is the measured terminal voltage. Because the EKF is a
good estimator whether the measurement noise can be assumed Gaussian noise, EKF shows better
SOC estimation performance compared with proposed method by suppressing the voltage noise well.
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The percentage error and offset compensating time are slightly increased compared with the results of
the noiseless condition.

4.3.3. Case 3: Voltage and Current Sensor Noise Condition

Figure 13 shows the SOC estimation results with voltage and current sensor noise.
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Figure 13. SOC estimation results with voltage and current sensor noise: (a) SOC estimation results of
the two types of methods and (b) percentage error of each method.

Table 3 summarizes the results of the two types of experiments using both methods.
Compared with the results of the noiseless experiment, the SOC estimation error is larger with
both methods because of the sensor noise. However, in the case of the proposed method, the increases
in the mean absolute error (MAE) and the maximum error (after the offset compensation) are relatively
smaller than those of the errors of the EKF. The time for compensating the initial offset (when the
percentage error is less than 5%) is less affected by the sensor noise.

Table 3. SOC estimation results for different experimental conditions using both methods.

Method Experiment Offset Compensation Time (s) MAE (%) Absolute Maximum Error (%)

Extended Kalman filter Noiseless condition 174.59 2.9099 4.1340
Noise condition 294.62 4.8255 7.8403

Proposed method Noiseless condition 274.36 3.7413 3.3539
Noise condition 278.96 3.7646 3.6544

This result occurs because the proposed method includes the terminal voltage in the state vector.
Although the terminal voltage of the battery is information that can be measured, the result of adding
this information to the state vector is that it is updated when integrating the error between the noisy
measurement signal and the estimated value. The block diagram of proposed method is shown in
Figure 14.

It is shown that at the last sequence, the state vector is passed through the integrator.
This integrator can suppress the zero mean noisy signal in the state vector, which it is similar to
the low-pass filter. As a disadvantage, this can decrease the state estimation response. Therefore, it is
necessary to set an appropriate gain and achieve a trade-off between these characteristics. On the other
hand, the EKF directly updates the state values by using the noisy measurement signal. According to
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the given model in (34), different from the voltage sensor noise, the current sensor noise is applied
to not only the output vector through the matrix D but also the state vector through the matrix B.
It means that if there exists current sensor noise, both the measured value y(k) and the estimated states
x(k) based on the system model are inaccurate. Therefore, Kalman filter cannot show the convincing
performance under this kinds of condition because Kalman filter is designed to estimate the state with
a more accurate value between the measured value and the estimated value. This condition occurs
neither of these values is accurate. Figure 15 shows the estimated voltage of both the proposed method
and the original voltage signal.

It is known that in the case of the EKF, the noisy voltage signal is directly used for updating
the SOC, but in the case of the proposed method, although the estimation speed is relatively slow,
the noisy signal is filtered out.

Proposed method

+

+ +

F

G

L

A

∫

C

+

+

+

       

  

  

  

Figure 14. The block diagram of proposed method.
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Figure 15. (a,b) Estimated voltage of both methods and the original voltage signal.

Therefore, the proposed method can robustly estimate the SOC in the presence of sensor noise.
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5. Discussion

Although not experimentally verified in this paper, the proposed nonlinear battery cell model can
solve the critical limitation of the linearized model in (5). The observability matrix of a given linearized
model is calculated as

O (A, C) =
[

C CA
]T

=

[
−1 ki

1
C1R1

0

]
. (36)

By calculating the determinant of the observability matrix, the observability condition of the
linear system is obtained as

det |O (A, C)| = −ki
1

C1R1
. (37)

The condition directly states that the given linearized system is observable only if ki 6= 0.
That is, if there is a flat voltage region in the open-circuit voltage curve, the linearized model loses
its observability. This situation can occur in certain battery types: e.g., LiFePO4 (LFP). The LFP-type
battery has voltage plateaus in the SOC-OCV curve [36–38,46]. Therefore, when the SOC range is
within such an area, the linearized model cannot estimate the SOC from the OCV curve because there
is no state excitation. Previous studies did not consider such problems.

Simulation Study with a Virtual Battery Cell Having Wide Range of Flat OCV Curve

Let assume that there exist a virtual battery cell having flat OCV curve from 20 % to 80 % SOC
range. The SOC-OCV relationship of this battery cell is shown in Figure 16, and two kinds of model
(1) proposed OCV curve representation in (2) and (2) linearized OCV curve representation in (4) are
used for SOC-OCV curve fitting.
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Figure 16. SOC-OCV relationship with wide flat area and two kinds of representation of OCV curve.

The SOC estimation results of proposed nonlinear-model in (10) and linearized model in (5) are
shown in Figure 17.

As derived in (37), the linearized model loses its observability when there exists flat area on the
OCV curve. Thus, the estimated SOC cannot converge to the true value. However, the observability
condition of the proposed nonlinear-model is independent of the form of the OCV curve. It is shown
that the estimated SOC based on the nonlinear-model converges to the true value. This result has been
obtained empirically, and mathematical validation remains as a further research.
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Figure 17. SOC estimation result with nonlinear model and linearized model.

6. Conclusions

This study has proposed a nonlinear state space representation for a Li-ion battery cell and
Luenberger observer for a class of nonlinear systems. The proposed nonlinear battery cell model
contains the terminal voltage in the state vector, improving the robustness against sensor noise
caused by the external operating environment or sensor faults. The proposed method has improved
SOC estimation performance in the presence of sensor noise. The improvements of the proposed
nonlinear-model-based method are demonstrated with experiments; however, there is room for
improvement in this study. Because the proposed observer is a Luenberger observer, an additional
performance enhancement can be achieved by adding adaptive observe gain, such as sliding-mode
gain and integral gain. However, verifying the stability condition of these observers for nonlinear
systems is much more challenging. Thus, this will be considered in a future study.
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Abbreviations

The following abbreviations are used in this manuscript:

HEV Hybrid electric vehicle
EV Electric vehicle
BMS Battery management system
Li-ion Lithium-ion
SOC State of charge
ANN Artificial neural network
EECM Equivalent Electrochemical model
ECM Equivalent circuit model
OCV Open-circuit voltage
HPPC Hybrid pulse power characterization
UDDS Urban dynamometer driving schedule
MAE Mean absolute error
LFP LiFePO4; Lithium-ion phosphate battery
EKF Extended Kalman filter
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