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Abstract: Poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers were
synthesized as a positive electrode for high-performance asymmetric supercapacitor (ASC).
PVA/PEDOT nanofibers were prepared through electrospinning and electrodeposition meanwhile
reduced graphene oxide (rGO) was obtained by electrochemical reduction. The PVA/PEDOT
nanofibers demonstrated cauliflower-like morphology showing that PEDOT was uniformly coated
on the smooth cross-linking structure of PVA nanofibers. In addition, the ASC showed a remarkable
energy output efficiency by delivering specific energy of 21.45 Wh·kg−1 at a specific power
of 335.50 W·kg−1 with good cyclability performance (83% capacitance retained) after 5000 CV
cycles. The outstanding supercapacitive performance is contributed from the synergistic effects
of both PVA/PEDOT//rGO, which gives promising materials for designing high-performance
supercapacitor applications.
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1. Introduction

Electrochemical energy storage devices, such as fuel cells, batteries, and supercapacitors, apply
the principle of chemical-to-electrical energy conversion [1]. Supercapacitors possess significant
advantages compared to other energy storages due to its fast charging and discharging, long cycle
life, low cost and good environmental friendliness [2]. Supercapacitors bridging the energy storage
gap between batteries and conventional capacitors and widely being used for hybrid electric vehicles,
medical applications, military, and diesel locomotives [3,4]. However, high specific power, long cycle
life time and portability of supercapacitors make it more demand than batteries [5]. The energy storage
mechanism of a supercapacitor can be classified into the electrical double-layer capacitor (EDLC) and
pseudocapacitors [6,7]. EDLCs (carbon-based electrode materials) store charges via ion accumulation at
the interface of carbon-based electrodes [8] which has high specific power [9], large specific surface area
and controllable pore-characteristics for high cycling stability [10,11]. Unfortunately, it suffers from
low specific capacitance and specific energy which can affect the performance of supercapacitors [10].
Pseudocapacitors (transition metal oxide and conducting polymer) undergo highly reversible redox
reactions taking place on the surface or near the electrodes [12] and able to deliver a higher specific
capacitance and specific energy than EDLC because they have different oxidation states for rich redox
reactions [13].

An asymmetric supercapacitor (ASC) consists of EDLC (power source) and pseudocapacitor
(energy source) as negative and positive electrodes, respectively [10] where both electrodes have
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different charge storage mechanism and well separated potential windows are assembled in the same
electrolyte [14]. Thus, it exhibits a wide potential window which leads to higher specific energy and
specific power for asymmetric supercapacitors [14].

Reduced graphene oxide (rGO) can be prepared from graphene oxide (GO) through chemical,
electrochemical, thermal, hydrothermal, and photocatalytic routes. Among these methods,
electrochemical reduction of GO is easy, cheap, fast and environmentally friendly to yield the
bulk amount of graphene material. Jiang et al. [15] reported that nickel foam-reduced graphene
oxide//nickel-cobalt layered doubled layered hydroxide//nickel foam-reduced graphene oxide
(NF-rGO/Ni-Co LDH//NF-rGO) displayed outstanding gravimetric capacitance of 1454.2 F·g−1 at
1 A g−1 in 1 M KOH electrolyte. In addition, asymmetric Ni-Co-O-rGO//AC possessed 1903 F·g−1 of
specific capacitance using KOH/redox active K3Fe(CN)6 as electrolyte [16]. Huang et al. [17] fabricated
LDH/rGO-4//rGO composite via solvothermal approach and exhibited specific energy of 29.3 Wh·kg−1

and the capacitance can be retained from 82.5 F·g−1 to 21.9·Fg−1 at a current density between 0.5 Ag−1

to 7 Ag−1, proving its good rate capability.
Poly(3,4-ethylenedioxythiophene) (PEDOT) is used as a pseudocapacitive electrode in asymmetric

supercapacitors due to its high conductivity, excellent processability and economic [18]. In addition,
PEDOT is available in both an oxidized state and reduced state. Yang et al. [19] revealed that
NiO/Ni(OH)2/PEDOT electrodes could deliver 80.8 F·cm−3 of specific capacitance. An ASC of
PEDOT//activated carbon (AC) obtained a specific capacitance of 22 F·g−1 and 27 F·g−1 in 1 M
Et4NBF4/propylene carbonate and LiPF6/ethylene carbonate/dimethyl carbonate, respectively [20].

Recently, the usage of electrospinning technique has been widely explored for preparing
nanofiber membranes in ASC devices due to its facile preparation and economical. For example,
manganese oxide/porous carbon nanofibers//activated carbon (MnO2/PCNFs/AC) was fabricated via
electrospinning and subsequent chemical precipitation approach and exhibited a specific capacitance
of 60.6 F·g−1 [21]. High specific energy of 15.0 Wh·kg−1 was achieved by the assembled ASC of cobalt
sulfides/carbon//porous carbon nanofibers (CoSx/C//PCNFs) which was fabricated using electrospinning
and hydrothermal routes [22]. Hollow carbon nanofibers (HCNFs) coated with MnO2 (HCNFs/HCNFs)
which were assembled with PCNFs in a coin cell set up producing a gravimetric capacitance of 63.9
F·g−1 with an extended operating voltage up to 2.0 V [23]. Production of PVA nanofibers has attracted
a lot of attention owing to its excellent mechanical properties, good adherence properties towards
porous and water surfaces and environmental friendly [24,25]. PVA is one of the biodegradable
polymers that has been used as a precursor to produce electrospun nanofibers. The abundance of
hydrophilic functional groups (−OH) on the PVA structure makes them highly soluble in an aqueous
medium. Pan et al. [26] have synthesized PVA-GO electrospun nanofibers which act as a separator
via drop casting and laser-writing process for solid-state supercapacitors. The porous architecture
of PVA-GO nanofibers and hygroscopic feature of GO could effectively improve the electrolyte
uptake during charging/discharging process. The solid-state supercapacitor using PVA-GO nanofibers
also showed high areal capacitance (9.9 mF·cm−2), remarkable specific energy (0.13 mW·cm−3) and
excellent cycling stability (88% capacitance retained after 1000 cycles). However, PVA nanofibers are
non-conductive materials which need to be incorporated with a conductive material such as PEDOT in
order to overcome the drawback. Therefore, the combination of PVA nanofiber and PEDOT could
synergistically improve the electrochemical behavior of the positive electrode. Inspired by this idea,
high-performance asymmetric supercapacitor was fabricated using PVA/PEDOT nanofibers and rGO
as a positive and negative electrode, respectively, with different potential windows to increase the
overall voltage of asymmetric supercapacitor. The extended potential windows and synergistic effect
of high capacitance, good conductivity and outstanding cycling stability of PVA/PEDOT//rGO can
deliver excellent capacitive performance of ASC device, implying a promising material for future
supercapacitor application.
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2. Materials and Methods

2.1. Materials

Indium tin oxide (ITO) glasses were obtained from Xin Yan Technology. Polyvinyl alcohol (PVA),
lithium perchlorate (LiClO4), sodium chloride (NaCl) and 3,4-ethylenedioxythiophene (EDOT) were
supplied by Sigma Aldrich. GO was obtained from Graphenea. Ethanol and potassium chloride (KCl)
were purchased from HmbG Chemicals and Fisher Scientific UK, respectively. Acetone was supplied
by Systerm. Acetonitrile and hydrochloric acid were obtained from J.T Baker. Deionized water (18.2
MΩ·cm) was used throughout the experiment.

2.2. Preparation of PVA Nanofiber via Electrospinning

ITO glasses (1 cm2) were cleaned with acetone followed by ethanol and deionized water for 10 min
using a sonicator bath. PVA solution (10 wt%, 0.4 g) was prepared and heated at 80 ◦C and continuously
stirred for 30 min until a clear solution was observed. The PVA solution was transferred into a 5-mL
syringe and connected to the syringe pump. The collector plate was covered with aluminum foil
and ITO glasses were attached on the plate surface. 15 kV of voltage was applied directly to the
stainless-steel needle. The operating flow rate of solution and the distance from the syringe nozzle to
the collector were controlled to 1.2 mL·h−1 and 15 cm, respectively.

2.3. Electrodeposition of PEDOT on PVA Nanofibers

A non-aqueous EDOT solution which consists of 0.01 M EDOT and 0.1 M LiClO4 in acetonitrile
was prepared. Chronoamperometry (CA) was used to perform electrodeposition of PEDOT on PVA
nanofibers using a three-electrode system at 1.2 V for 15 min. ITO substrate coated with PVA nanofibers
was used as a working electrode, silver wire coated with silver chloride (Ag/AgCl) as a pseudo-reference
electrode and a platinum wire as a counter electrode.

2.4. Reduction of GO

A few drops of 1.0 mg·mL−1 GO were deposited onto the ITO substrate (1 cm2) through drop-casting
and dried out to form a GO-coated electrode. Electrochemical reduction of the GO-coated electrode
was carried out using cyclic voltammetry (CV) in 0.5 M NaCl electrolyte between −1.5 to 0 V for
20 cycles.

2.5. Characterizations

The surface morphologies of the samples were performed using a field emission scanning
electron microscope (FESEM, JEOL JSM-7600F). Fourier transform infrared spectroscopy (FTIR) was
observed using a Shimadzu. The ASC spectra were analyzed in the range of 400–4000 cm−1. The
electrochemical properties of PVA/PEDOT nanofibers//rGO were characterized by assembling a
two-electrode configuration with a piece of filter paper as separator soaked with 1.0 M KCl. CV
was conducted between 0 to 1.6 V at scanning rates from 5 mV·s−1 to 100 mV·s−1. Galvanostatic
charge-discharge (GCD) measurements were performed at different current densities of 0.4 to 0.9 Ag−1.
Electrochemical impedance spectroscopy (EIS) tests were carried at open circuit potentials with an
amplitude of 5 mV and frequency ranging from 0.01 Hz to 100 kHz. The stability test was examined
for 2000 cycles between 0 and 1.6 V. Figure 1 shows the schematic illustration of ASC design based on
PVA/PEDOT nanofibers and rGO electrodes. The mass loading of PVA/PEDOT nanofibers//rGO was
approximately 0.6 mg·cm−2.
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Figure 1. Schematic illustration of asymmetric supercapacitor (ASC) device consisting of the 
poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers (positive electrode), 
separator and reduced graphene oxide (rGO) (negative electrode). 

3. Results and Discussion 

3.1. Structural Morphology 

Figure 2 displays the FESEM images of PVA nanofibers, PVA/PEDOT nanofibers and rGO. A 
smooth cross-linked network structure of PVA nanofibers (Figure 2a) was observed with an average 
diameter of 72.65 ± 22 nm and beads-free, demonstrating better electrospinnability. The cauliflower-
like morphology of PVA/PEDOT nanofibers (Figure 2b) reveals that PEDOT was uniformly coated 
on the cross-linking morphology of PVA nanofibers without interfering the fibril-like structure of 
nanofibers [27]. Figure 2c represents the FESEM image of rGO which suggests the wrinkled and 
crumpled morphology can facilitate rapid ion diffusion and charge transfer at the electrode material 
[14,28]. 
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Figure 1. Schematic illustration of asymmetric supercapacitor (ASC) device consisting of the poly(vinyl
alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers (positive electrode), separator
and reduced graphene oxide (rGO) (negative electrode).

3. Results and Discussion

3.1. Structural Morphology

Figure 2 displays the FESEM images of PVA nanofibers, PVA/PEDOT nanofibers and rGO.
A smooth cross-linked network structure of PVA nanofibers (Figure 2a) was observed with an
average diameter of 72.65 ± 22 nm and beads-free, demonstrating better electrospinnability. The
cauliflower-like morphology of PVA/PEDOT nanofibers (Figure 2b) reveals that PEDOT was uniformly
coated on the cross-linking morphology of PVA nanofibers without interfering the fibril-like structure
of nanofibers [27]. Figure 2c represents the FESEM image of rGO which suggests the wrinkled
and crumpled morphology can facilitate rapid ion diffusion and charge transfer at the electrode
material [14,28].
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Figure 2. Field emission scanning electron microscope (FESEM) images of (a) PVA nanofibers, (b) 
PVA/PEDOT nanofibers and (c) rGO. Inset: high magnification of (b) PVA/PEDOT nanofibers and (c) 
rGO. 

3.2. Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) was employed to identify the functional groups 
and bonding configuration present [17] in PVA nanofibers, PVA/PEDOT nanofibers, GO and rGO. 
The FTIR spectrum of PVA nanofibers as depicted in Figure 3 shows the existence of symmetric 
stretching of C–H and stretching band of C-O group at absorption bands 2906 cm−1 and 1087 cm−1, 
respectively [27]. The broad peak observed at 3284 cm−1 and peak at 1438 cm−1 are attributed to 
hydroxyl (O–H) group and C–OH stretching vibration in PVA structure, respectively. From the 
PVA/PEDOT nanofiber spectrum, peaks of PVA nanofibers can still be seen, proving the presence of 
PVA nanofibers after electrodeposition of PEDOT. Three characteristic peaks of PEDOT are observed 
at 775, 1318 and 1602 cm−1, indicating the C=S, C–C [29], C–C [30] stretching band of thiophene ring 
in PEDOT structure, respectively. In addition, the C–C stretching of the thiophene ring of PEDOT 
was observed at 1602 cm−1 [30]. The FTIR spectrum of GO reveals the presence of C–O epoxide group, 
C–OH bond, aromatic C=C bending, C=O group in carboxy and carbonyl groups and O–H stretching 
vibration at 1107, 1423, 1616, 1732 and 3176 cm−1, respectively. It was also observed that the FTIR 
spectrum of rGO shows less oxygenated functional groups after electrochemical reduction of GO, 
indicating rGO has been successfully prepared [31,32]. 

Figure 2. Field emission scanning electron microscope (FESEM) images of (a) PVA nanofibers, (b)
PVA/PEDOT nanofibers and (c) rGO. Inset: high magnification of (b) PVA/PEDOT nanofibers and
(c) rGO.

3.2. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) was employed to identify the functional groups
and bonding configuration present [17] in PVA nanofibers, PVA/PEDOT nanofibers, GO and rGO. The
FTIR spectrum of PVA nanofibers as depicted in Figure 3 shows the existence of symmetric stretching of
C–H and stretching band of C-O group at absorption bands 2906 cm−1 and 1087 cm−1, respectively [27].
The broad peak observed at 3284 cm−1 and peak at 1438 cm−1 are attributed to hydroxyl (O–H)
group and C–OH stretching vibration in PVA structure, respectively. From the PVA/PEDOT nanofiber
spectrum, peaks of PVA nanofibers can still be seen, proving the presence of PVA nanofibers after
electrodeposition of PEDOT. Three characteristic peaks of PEDOT are observed at 775, 1318 and 1602
cm−1, indicating the C=S, C–C [29], C–C [30] stretching band of thiophene ring in PEDOT structure,
respectively. In addition, the C–C stretching of the thiophene ring of PEDOT was observed at 1602
cm−1 [30]. The FTIR spectrum of GO reveals the presence of C–O epoxide group, C–OH bond, aromatic
C=C bending, C=O group in carboxy and carbonyl groups and O–H stretching vibration at 1107, 1423,
1616, 1732 and 3176 cm−1, respectively. It was also observed that the FTIR spectrum of rGO shows
less oxygenated functional groups after electrochemical reduction of GO, indicating rGO has been
successfully prepared [31,32].
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Figure 3. Fourier transform infrared spectroscopy (FTIR) spectra of PVA nanofibers, PVA/PEDOT
nanofibers, graphene oxide (GO), and rGO.

3.3. Electrochemical Characterizations

The electrochemical performances of both anode and cathode materials were initially evaluated
using a three-electrode system in 1 M KCl electrolyte as shown in Figure 4. Figure 4a display to
CV profiles of the individual PEDOT and PVA/PEDOT at a sweeping rate of 25 mV·s−1 which noted
that PVA/PEDOT nanofibers exhibit higher integrated CV area in comparison with PEDOT. This
suggests that the formation of PVA nanofibers via electrospinning could provide more accessible sites
for electron transfer [33]. The specific capacitance of the ASC is obtained from the CV curve using
Equation (1) [10].

C =

∫
Idv

vm∆V
, (1)

where C refers to the specific capacitance (F·g−1), Idv is the integrated area of a CV curve, v represents
the sweeping rate (mV·s−1), m is the mass of the electroactive material (g) and ∆V indicates the potential
(V). The calculated specific capacitances for PVA/PEDOT, PEDOT and rGO are plotted against scan
rates as shown in Figure 4b. The result proves that PVA/PEDOT nanofibers still displays the highest
specific capacitance of 331.49 F·g−1, rather than individual PEDOT (250.02 F·g−1) and rGO (85.92
F·g−1) at a scan rate of 5 mV·s−1. However, the rGO electrode shows good rate capability with 83%
capacitance retention as compared with PVA/PEDOT (66%) and PEDOT (60%). This indicates that the
presence of carbon material could provide good mechanical strength for the remarkable capacitive
performance of the electrode [34]. In addition, the electrochemical performance of as-prepared GO
and rGO as anode material were also investigated with an applied potential range from −1 to 0 V
(Figure 4c). It is obvious that rGO possesses an ideal rectangular CV shape with a higher current
response, owing to superior specific capacitance. In Figure 4d, the potential range was measured
within −0.2 V to 0.6 V for PVA/PEDOT nanofibers (positive electrode) and −1.0 V to 0 V for RGO
(negative electrode) at 25 mV·s−1. Since both electrodes have different potential windows, the charge
storage for both electrodes have to be balanced based on the Equations (2)–(4) [14]:

Q+ = Q− (2)
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Q = C× ∆U ×m (3)

m+ = C+ × ∆U+

m− = C− × ∆U−
, (4)

where Q+ and Q− represent charges stored in the positive electrode and negative electrodes, C+

and C− indicate the capacitance for both electrodes, m is the mass loading of electroactive electrode
and ∆U represents the potential. A high-performance asymmetric supercapacitor (PVA/PEDOT
nanofibers//rGO) of 1.6 V can be constructed based on the sum of potential ranges of two electrodes to
further examine the performance of the asymmetric device [35].
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Figure 4. (a) Cyclic voltammetry (CV) profiles of PEDOT and PVA/PEDOT at 25 mV·s−1, (b) Capacitance
values of PVA/PEDOT, PEDOT and rGO against sweeping rates (5–100 mV·s−1). (c) CV profiles of GO
and rGO at 25 mV·s−1. (d) CV profiles of rGO and PVA/PEDOT nanofibers measured in a three-electrode
configuration in a 1.0 M KCl electrolyte at a sweeping rate of 25 mV·s−1).

Figure 5a indicates the CV profiles of ASC at various sweeping rates (5–100 mV·s−1) at potential
window from 0 to 1.6 V. The ASC possesses a specific capacitance of 113.48 F·g−1 at 5 mV·s−1 and the
rectangularity of CV curves is slightly distorted due to the combination of double-layer capacitance
of rGO and pseudocapacitance of PEDOT. The specific capacitance obtained from PVA/PEDOT
nanofibers//rGO is higher than those of ASC-carbon fiber composites [36,37]. Figure 5b shows that
the capacitance decreased gradually when the scan rates increased due to the reduced accessibility of
electrolyte ions to fully diffused the interior surface of electrodes during the redox process [10]. Figure 5c
indicates the CV curves of as-prepared PVA/PEDOT nanofibers//rGO asymmetric supercapacitor at
a different operating potential (1.0 to 1.6 V) at a sweeping rate of 25 mV·s−1. Based on this result,
the asymmetric composite obtained works stably until 1.6 V with nearly rectangular CV shape [11].
However, extending potential more than 2.0 V causes an obvious redox peak which leads to oxygen
evolution [38].
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ranging from 5 to 100 mV·s−1, (b) specific capacitance of PVA/PEDOT nanofibers//rGO cells at different
sweeping rates, (c) CV profiles at potential windows from 1.0–1.6 V at sweeping rate of 25 mV·s−1.

The performance of the assembled ASC is further evaluated by GCD analysis at current densities
from 0.4 to 0.8 A·g−1 at 1.6 V operating potential as shown in Figure 6a. PVA/PEDOT nanofibers//rGO
shows a nearly symmetric triangular shape, showing an ideal capacitive behavior of PVA/PEDOT
nanofibers//rGO [33]. A slight IR drop is observed at the beginning of these discharging curve,
illustrating the influence of the internal resistance of electrode [39]. The ASC device displays equivalent
series resistance (ESR) of about 33.33 Ω at a current density of 0.4 A·g−1. However, the initial voltage
drops are small at higher current densities, implying small internal resistance of the asymmetric
device [10]. As a result, the PVA/PEDOT nanofibers//rGO composite can achieve a total potential of
1.6 V at high current density, in agreement with a potential window of CV. The specific energy and
specific power of ASC are obtained based on these equations [8]:

E =
1
2

C× ∆V2 (5)

P =
E
∆t

, (6)

where E represents the specific energy (Wh·kg−1), P indicates the specific power (W·kg−1), C refers to
the specific capacitance (F·g−1), ∆t is the discharge time (h) and ∆V is the potential (V). Ragone plot
(Figure 6b) of ASC PVA/PEDOT//rGO can deliver reasonably high specific energy of 21.25 Wh·kg−1 at



Energies 2019, 12, 3382 9 of 13

a specific power of 335.51 W·kg−1. Interestingly, the superior specific energy of ASC surpasses other
PEDOT-based electrodes [4,27,40–42]. This remarkable supercapacitor behavior is due to the high
specific capacitance obtained from the discharged time and extended potential window [43].
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EIS measurements were performed to study the charge-transfer resistance (Rct) and ESR of
PVA/PEDOT nanofibers//rGO ASC (0.01 Hz to 100 kHz) as shown in Figure 7. From the Nyquist plot,
two major parts can be identified. At the high-frequency region, the semicircle arc corresponds to the Rct,

where transport of ions at the electrode/electrolyte interface take place [33]. ESR comprises of intrinsic
resistance of the electrode, ionic resistance of electrolyte and contact resistance at electrode/current
collector [14]. The ESR is obtained from the x-intercept on the real axis (Z’) at the high-frequency
region. It is observed that the values for Rct and ESR of ASC are 13.10 Ω and 37.81 Ω, respectively.
Furthermore, the presence of a nearly vertical line along the imaginary axis in the low-frequency region
suggests the good capacitive behaviors of the electrode [44]. The equivalent circuit fitting based on the
Nyquist plot of PVA/PEDOT nanofibers//rGO ASC is shown in the inset of Figure 7. Rs represents the
solution resistance, Rct is charge transfer resistance and W is the Warburg impedance that related to
the ionic diffusion. Constant phase element (CPE) was used to replace double layer capacitance due to
the inhomogeneity and porous structure of the electrode surface [45].
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The cycling stability of the asymmetric PVA/PEDOT nanofibers//rGO supercapacitor was
investigated at 100 mV·s−1 for 5000 cycles. From Figure 8, the ASC presents excellent cycling stability
by maintaining 83% of the initial capacitance after 5000 cycles. It is noted that a small increase of
specific capacitance at cycle 600 is due to the improved wettability of PVA/PEDOT nanofibers//rGO [46]
and high favorable of ions diffusion into the electrode surface [47]. As the cycle number continued,
the capacitance decayed slightly with considerable retention, representing good cycling durability.
The rGO as a negative electrode primarily provides high mechanical strength for the excellent cycling
stability of the supercapacitor [48].
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4. Conclusions

In conclusion, an ASC of PVA/PEDOT//rGO was successfully prepared using facile electrospinning
and electrodeposition techniques. The PVA nanofibers provide a large surface area, enhancing more
ion migration of electrolyte onto the electrode surface, resulting to a better specific capacitance at the
maximum potential window of 1.6 V. A wrinkled morphology of rGO contributes good mechanical
strength of ASC for high cycling stability over 5000 cycles. Interestingly, the synergistic effects of both
electrodes illustrate remarkable specific energy (21.25 Wh·kg−1) at 0.4 A·g−1. Therefore, these favorable
capacitive performances of PVA/PEDOT//rGO can be served as a highly potential ASC electrode for
future development supercapacitor application.
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