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Abstract: In this paper, the Dual Kalman Filter (DKF) is used for the parametric identification of an
RC model of a Polymer Electrolyte Membrane Fuel Cell (FC) stack. The identification is performed
for diagnostic purposes, starting from time-domain voltage and current signals in the framework of
Electrochemical Impedance Spectroscopy (EIS) tests. Here, the sinusoidal input of the tests makes
the identification of DKF parameters challenging. The paper analyzes the filter performance and
proposes a possible approach to address the filter tuning to let it work with FC operating either in
normal conditions or in the presence of drying and flooding fault conditions, or in fuel starvation
mode. The analysis is mainly performed in a simulated environment, where the Fouquet model
is used to simulate the FC. Some criteria to tune the filter are derived from the analysis and used
also with experimental data produced by some EIS tests, to achieve the best estimate in constrained
conditions. The results show that the DKF can be turned into a valuable tool to identify the model
parameters even with signals developed for other scopes. The identification results envisage the
possibility of assisting the model-based FC diagnosis by means of a very simple tool that can run
on a low-cost embedded device. Indeed, the simplicity of the filter approach and a lightweight
implementation allow the deployment of the algorithm in embedded solutions.

Keywords: fuel cell systems; parameter identification; equivalent circuit model; Dual Kalman Filter;
diagnostic

1. Introduction

Fuel cells (FCs) are effective energy conversion devices, used in various application branches—for
instance, systems power auxiliaries, smart grids [1], automotive applications and transportation
systems [2], and portable devices. Many FC technologies are available. Solid Oxide Fuel Cell [3] and
Polymer Electrolyte Membrane FC (PEMFC) [4] are examples of hydrogen-based FC technologies.
Recently, some alternative liquid-based FCs are being considered for perspective applications, such as
direct ammonia FC [5] and acid–base FC [6]. Among these, PEMFCs, compared to other types of
FC, show various advantages. For instance, the high stack power density (greater than 1.3 kW kg−1),
the absence of corrosion problems typical of other cells with liquid electrolyte, the relative simplicity
of construction and, finally, the fast cold start (within a minute). These characteristics allowed
the development of PEMFCs for space applications and automotive applications [4], as well as for
stationary generation/cogeneration [7] and for portable generation [8].

Unfortunately, one of the main obstacles to the widespread diffusion of this technology is the
reliability of the stack, whose performance and life span depend strongly on a series of phenomena
regarding both the membrane and the reactants [9,10]. For instance, the membrane could be subject
to drying and flooding faulty conditions (i.e., lack or excess of water) when the water removal
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from the FC is not properly managed [11]. Another typical fault condition is the fuel starvation,
causing an irreversible reaction in the cell [12]. All these faults lead to a premature degradation of
the FC. For this reason, diagnosis has a crucial role in order to extend the overall lifetime of a cell
and improve its reliability. Many attempts have been made in literature to characterize faults [13],
especially in the framework of water management [14], aimed at developing monitoring and prognostic
methods [15,16].

In recent years, the fault detection calls for the online operability of this analysis, which can
be performed through a parametric identification of a PEMFC circuit model. The most popular
approaches for online monitoring and diagnostics are based on the FC polarization characteristics,
i.e., the voltage-to-current curve [17]. Despite this, some European projects have shown the
online applicability of diagnostic techniques based on the classical laboratory analysis called
Electrochemical Impedance Spectroscopy (EIS). The EIS is suitable for any electrochemical device,
including batteries [18], and it is usually performed with expensive laboratory equipment. Stimulating
the device with an appropriate input current signal, the EIS allows to analyze any electrochemical
device through the values of the impedance, which is computed on the basis of the measured output
voltage. Once the impedance plot is obtained, a parametric identification of the FC system, based on
the overall impedance plot, allows to make diagnosis [19]. The EIS is often performed with sinusoidal
input signals offline, i.e., by disconnecting the FC from the load. In the aforementioned projects,
the powerful capabilities of the FC interface DC-DC converter are exploited to inject sinusoidal current
perturbation when the fuel cell is operating online [20].

In this paper, a time-domain identification method of a PEMFC system, based on the use of the
time-domain sinusoidal input signals in an online EIS experiment [21], is proposed and optimized in
terms of convergence performance. The method, suitable for implementation on small-cost embedded
devices, is based on the Dual Kalman Filter (DKF) [22,23]. This filter is well-known and widely used
in literature for various applications, including electrochemical ones. For instance, it is often used in
battery management systems for the online estimation of the battery’s state of charge [24]. The literature
highlights that the best performance in term of estimation is achieved for strong time-varying input
signals, e.g., a typical automotive driving schedule. In this paper, the framework proposed deeply
differs from the typical DKF application, because the input signals are not designed to work with the
DKF, and it is aimed at “scavenging” the information contained in the large amount of time-domain
data available from online acquisition of EIS for PEMFC system. These data are typically postprocessed
to achieve frequency-domain information. Critical convergence issues are documented in FC subject to
a sinusoidal input with a test case, where if the FC is simulated by a rough model consisting of linear
first-order dynamic circuits with constant parameters [25].

The method and the study carried out in this work are aimed at overcoming these problems
in a more realistic framework. The PEMFC is represented by an enhanced first-order circuit model,
characterized by frequency-varying parameters. A suitable choice of aggregate parameters is adopted
to improve the identification capabilities of the filter, as suggested in [26]. Frequency-dependent
parameters are identified, frequency by frequency. The peculiar shape of input signals requires a
suitable setting of the filter parameters, such as the initial covariance matrix and the sampling frequency,
to let the DKF work effectively with these signals. A novel approach for the determination of an optimal
initial covariance matrix and sampling frequency is proposed, allowing to get accurate identification
results over a wide frequency range. Three realistic FC operating cases are considered: Normal FC
operation; membrane drying; and flooding. The FC response is simulated using literature data and a
complex PEMFC model, called Fouquet model [27]. The frequency-dependent identification results
reflect the operating condition, allowing, in perspective, a preliminary FC diagnosis. An example
of application of the proposed method on experimental data is also provided. Here, the FC normal
and fuel starvation operating conditions are considered. The example confirms the validity of the
identification approach.
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The paper is organized as follows. Section 2 introduces equivalent circuit models of an FC used
for simulation and identification scopes, Section 3 outlines the identification approach and discusses
the main identification variables involved, Section 4 deals with the optimal choice of initial covariance
and sampling frequency of the DKF obtained on the basis of the identification results in a realistic
simulated environment, and Section 5 presents the identification results in an experimental case,
showing the effectiveness of the approach. Finally, Section 6 concludes the papers and outlines possible
future perspectives.

2. Fuel Cell Models

2.1. Fouquet Model

An accurate PEMFC model, often used in EIS analysis, is represented by the Fouquet impedance
(see Figure 1) This impedance includes the complex-valued Warburg element and a Constant Phase
Element (CPE), defined as follows:

ŻCPE =
1

Q(jω)φ , (1)

ŻW = Rd
tanh

√
jωτd√

jωτd
, (2)

where ω = 2π f is the angular frequency; Q and φ define the CPE, which models the behavior of
electrodes in the case of rough and porous surfaces (with φ ∈ [−1; 1]); and Rd represents the losses due
to the diffusion of reactants, characterized by the time constant τd. The Fouquet impedance is then
defined by

Ż = RΩ +
ŻCPE(Rct + ŻW)

ŻCPE + Rct + ŻW
. (3)

Here, RΩ represents the losses due to the resistance of the electrolyte to the flow of protons, and Rct,
named the charge transfer resistance, is the resistance at the interface electrode/electrolyte to the
flow of charges. The impedances ŻCPE, ŻW and the resistances Rd, RΩ, and Rct are measured in
ohms (Ω),τd is measured in seconds (s) and Q in Siemens (S). This assumption requires that (jω)φ

be adimensional.
The Fouquet model will be used in the following to simulate the behavior of a PEMFC, by using

the set of data identified in [28] from various experiment performed in [27], where an FC stack, made
of 6 cells, was operated in normal conditions as well as in membrane drying or flooding conditions.
The cell active area is 150 cm2, with an operating current of 70 A, at a constant temperature of 60 ◦C,
at atmospheric pressure on both sides, with stoichiometries at 1.2 on anode side and 4.0 on cathode
side. The faults were induced by modifying the relative humidity of the gas. In particular, to trigger the
flooding, the relative humidity was kept constant at 50% on cathode and 70% on anode. For the drying
condition, the inlet gas was kept at 10% on anode and 15% on cathode. The data used to simulate the
FC time-domain response are reported in Table 1. The response of the model is represented in Figure 2.

RΩ

ZCPE

ZwarRct

Figure 1. Fouquet impedance model.
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Table 1. Fouquet model parameters in various fuel cell (FC) stack conditions, as reported in [28].

RΩ Rct Q
φ

Rd τd
(mΩ) (mΩ) (S) (mΩ) (s)

Normal 4.5 8.1 1.8056 0.8419 3.6 0.1919
Drying 9.3 12.1 0.8741 0.8389 10.5 0.3638
Flooding 4.1 16.7 0.9712 0.8155 30.9 0.1007
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Figure 2. Fouquet impedance model response for different operating conditions: Impedance plot (a),
real (b) and imaginary (c) parts.

2.2. First-Order Linear Fuel Cell Model

Despite its accuracy and widespread application, the Fouquet model is defined in frequency
domain and is not characterized by time-domain equations in closed form. The presence of the CPE
and of the Warburg impedance leads to a complicated and computationally ineffective use of the
model in the time domain, requiring approaches such as fractional order model [29]. Conversely, linear
lumped circuits, made of linear resistors and capacitors, are an effective model for electrochemical
devices for online control scopes. They can be easily and effectively used both in frequency and in time
domain. Due to their simplicity, they could be less accurate with respect to Fouquet model, unless a
large number of lumped elements are used.

Figure 3 shows the simplest version of the Randles cell, hereafter called RRC impedance (or RRC
model). In this circuit, the resistance R0, measured in Ω, models the ohmic losses caused by the
overlap of the ionic resistance of the electrolyte and of the electric resistances caused by electrodes
and connections. Among these, the dominant losses are those related to transport of protons in the
electrolyte resistance. On the other hand, the resistance R1, measured in Ω, models the charges’ flow
through the electrode/electrolyte interface and it is closely linked to kinetics of reactions. It is also
necessary to consider that, when different materials are in contact, a concentration of charges is stored
on their surfaces, adjusting the transfer of charges from one side to the other. Diffusive effects, reactions
between electrons and charges, or changes in the applied voltage can influence the dynamics of a
PEMFC generating a capacitive behavior. For this reason, the capacitance C1, measured in Farad (F),
is introduced [18].

R0
i

R1

C1

−+

vc

+ −vt

Figure 3. Equivalent RRC model (Randles cell).
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The model is described by the following state-space and output equations:

dvc

dt
(t) = − 1

R1C1
vc(t)−

1
C1

i(t), (4)

vt(t) = vc(t)− R0i(t), (5)

where t is the time, vc is the voltage across the capacitor, vt is the voltage across the FC terminals
(oriented according to vc), and i is the current (active sign convention is used). In the equations above,
a process noise and a measurement noise can be added to represent the uncertainty on input signal
and measurements.

Converting the model (4) and (5) into the discrete-time model for the implementation on a
computer, we get

vc,k+1 = e−
∆t

R1C1 vc,k − R1

(
1− e−

∆t
R1C1

)
ik, (6)

vt,k = vc,k − R0ik, (7)

where the subscript k indicates the variable sampled at the discrete time instant tk.
It is useful to introduce the following quantities:

fc =
1
τ
=

1
R1C1

, (8)

α = e−
∆t

R1C1 , (9)

β = R1(1− α), (10)

that allow to rewrite Equations (6) and(7) as follows:

vc,k+1 = αvc,k − βik, (11)

vt,k = vc,k − R0ik. (12)

Considering R0, α, and β as primal parameters of the model, it is easy to map them into the
original parameters R1 and C1, using the following formulas:

R1 =
β

1− α
, (13)

C1 = − ∆t
R1 log α

. (14)

The linearity of the model allows it to be used in a very simple way in time-domain numerical
schemes, useful for a time-domain identification approach. Obviously, in the presence of a small
number of circuit elements having constant value, a considerable deviation between the semicircular
Nyquist plot of the RRC circuit and the one typical of an FC is observed. In the following, R1 and C1

are assumed as frequency-varying, to improve the RRC model accuracy. R0 is constant, and its value
can be retrieved by inspecting the intersection of the impedance spectrum with the real axis (Table 2).

Table 2. R0 value in different operating conditions.

Operating Condition R0(mΩ)

Normal 4.5
Drying 9.3

Flooding 4.1
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3. Time-Domain Identification in the EIS Framework

The flow-chart in Figure 4 depicts how to integrate the parametric identification technique optimized
in this work (red zone) into the EIS-based diagnostic framework, in which a frequency-domain parametric
identification (blue zone) is associated to a diagnostic tool. The EIS-based fault detection is performed
by executing multiple steps. First, the duty cycle of the DC-DC converter is perturbed with the goal
of generating a small-amplitude sinusoid superimposed to the actual DC output current of the FC.
The FC voltage (V) and current (I) are sampled and suitably processed with a Fast Fourier Transform
(FFT), allowing the computation of the FC impedance [21]. This procedure is repeated at various
input frequencies. The whole impedance spectrum allows one to perform an equivalent circuit model
identification, and, consequently, a fault detection. The fault detection stage begins after the whole
impedance spectrum is acquired and the equivalent circuit model are extracted.

Frequency set

Perturbation
V-I Measure

Perturbation
V-I Measure

f (Hz)

t-domain
parametric

identification
(DKF)

Impedance
computation

f-domain
parametric

identification

Preliminary
diagnosis

Filter
settings

Time-domain based
approach

F.C.

DC/DC

CONVERTER
LOAD

Set Current

I

+

V

-

EIS-based approach

Diagnosis

Figure 4. Electrochemical impedance spectroscopy (EIS)-based approach to fault detection and
complementary time-domain scheme.

A complementary approach supporting the EIS-based one can be established by exploiting
time-domain data from the I-V measurement step (red dashed box). In particular, time-domain I
and V signals can be used by a DKF to perform a time-domain-based parametric identification of a
very simple circuit model, such as the RRC model, where the parameters are functions of the input
frequency. The identification is performed, frequency by frequency, in a sequential way, allowing a
preliminary diagnosis based on the RRC parameters. The information on the parameter variation with
respect to nominal condition is available at a very early stage, even after one or few I-V signals are
acquired. This information is harvested from the time-domain signals before the whole data acquisition
is performed. For this reason, this strategy appears suitable for increasing the diagnostic capabilities of
the overall system, based on parametric identification.

The use of a low-order model within the DKF algorithm has a direct impact on the dimension of the
matrices involved in the identification process. It follows that the number of floating point operations
required by the identification is limited, reducing the overall computational burden. Despite the
effective computational performance, the setting of the DKF to achieve satisfactory identification
results in this peculiar context is a challenging task because of the input signals characteristics required
by the EIS. This is worth investigating in detail.

3.1. Dual Kalman Filter

The DKF is a time-domain approach to perform the estimate of state and parameters of a dynamic
system. The mathematical formulation of the DKF is based on the discrete state-space model of the
system, allowing to update the state and parameter estimate by using their previous values and
suitable correction terms. Indeed, for the estimate of the state, the discretized equations are used for
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the FC state output and the goal of the filter is to overlap the output of the model with the measured
output of the FC. This is achieved by stimulating both the system and the model with the same input,
and by measuring the output and comparing them. The estimate output is given in terms of state
and output variable values and covariance of these two. These values, together with the system
input and output measurements, are used recursively to produce an updated estimate. In particular,
the covariance of measurements and state are used to calculate the Kalman gain, which is used to give
more weight to the state estimate or to the system measurements. The same concept can be applied
to the parameters estimate. In this case, it is necessary to provide a space-state representation of the
parameters evolution. This is modeled as a random walk, where the updated parameters vector is
obtained by adding a Gaussian noise to the previous values. In this way, the parameters are assumed
to vary slowly and the added noise is used to account for uncertainty of the values.

The DKF used for the identification of the linear RRC impedance under stimuli typical of an EIS
experiment was implemented as described in [24]. The voltage across the capacitor C1 is the state
variable and the parameter vector to be identified is θ = [R0, α, β]T , from which R1 and C1 can be
found using Equations (13) and (14).

3.2. Sequential Identification with DKF

The input signal of the EIS experiment is a sequence of N sinusoidal stimuli. Each sinusoid is
characterized by the value of its frequency fin,i, with i = 1 . . . N. Here, the sequence of sinusoids
goes from the highest frequency, fin,N , to the lowest, fin,1. The reversed sequence of stimuli allows
to perform the identification process in a sequential way, using the principle adopted in [25] for
a set of constant parameters. Indeed, first R0 is identified at high frequency and kept constant in
the successive identifications of α and β, which are the frequency-dependent parameters. In other
words, for each frequency stimulus fin,i, the values αi = α( fin,i) and βi = β( fin,i) have to be found.
To do this, the filter parameters need to be rearranged frequency by frequency because the same filter
initialization at each frequency does not allow convergence and a good parameter estimation for all
frequencies.For these reasons, a tuning of the filter, frequency-by-frequency, is required to achieve a
good identification result.

3.3. Filter Parameters and Response to Sinusoidal Input

The DKF performance is characterized by many parameters. For instance, the initial covariance
vector, namely, σ2, whose components σ2

R0
, σ2

α , σ2
β are associated to parameters to be identified.

The covariance matrix σ2 impacts in a significant way on the response of the algorithm. In general,
the higher the covariance associated to the j-th parameter, the faster, and more unstable, the response
on the j-th parameter. For the sake of simplicity, hereafter, instead of referring to the covariance values
σ2, their logarithm γ is given: γ = log10(σ

2). Two more parameters have to be chosen carefully.
First, the sampling frequency fs, then, the acquisition buffer size Nsmp. The first one deeply affects
the identifiability of the parameters. Figure 5 shows the identification of the parameter C1 for a
zero-mean input sinusoid at frequency fin = 0.1 Hz and for various sampling frequencies in normal
conditions where fc = 25 Hz. In these tests, the covariance values are kept constant. Figure 5c shows
the estimation obtained for sampling below the characteristic frequency. The filter cannot identify the
correct parameter as it is not able to describe the system transient being fc � fs.

Raising the sampling frequency to 100 Hz allows to correctly estimate the parameter (Figure 5b).
Here, fc � fs, and the system dynamics can be described by the inner model of the filter in an
appropriate way. The inset in the figure also shows that the stepwise evolution of the estimation is led
on by the number of observed semiperiods of the input signal, namely, the number of zero-crossing
points of the sampled sinusoid. In other words, when a change in the sign of the current is detected,
an evolution of the estimate is observed.
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Figure 5. Estimation of the parameter C1 at fc = 25 Hz for various sampling frequencies and fixed
covariance values. (a) Relationship between the sampling frequency fs and characteristic frequency fc.
(b) A correct estimate is obtained when sampling above fc. (c) Oscillating and biased estimate obtained
by sampling below fc, where the DKF fails.

This behavior of the filter leads to two practical considerations. First, the mean value of the DC
operating point of the current has to be subtracted from the measured value. This is not considered
to be a problem, since the operating point of the fuel cell is known, provided that the FC is in
stationary conditions. Second, the acquisition buffer size Nsmp could indirectly affect the result of the
identification, as it modulates the number of zero-crossing points that would produce an evolution in
the estimation.

Here, the considered maximum sampling frequency was fixed to fs,M = 20 kHz, and the number
of samples was set to Nsmp = 10 kSample, so that the time window to perform the estimate is
determined as Nsmp/ fs. These values are compatible with the specification of low-cost embedded
systems performing the voltage and current measurements. The discussed behavior of the filter
leads to the definition of an identifiability domain area, represented in Figure 5a, and described by
the following conditions linking the sampling frequency, the characteristic frequency, and the input
stimulus frequency: 

fs > 2 fin
fc < fs < fs,M
1 mHz < fin < 10 kHz.

(15)

The first equation in (15) is the Nyquist rate condition, allowing to correctly sample the input sinusoid.
The second identifies the area where the estimation is feasible, and it is based on the previously
discussed filter behavior. The last equation in (15) identifies the frequency range where the EIS
experiments are taken. This set of conditions allows us to bound in a narrower area the analysis of the
filter response. The part of the plane where the identification is unfeasible is highlighted in gray color
in Figure 5a.

4. Identification Performance Analysis in Simulated Environment

The response of the filter was analyzed on the fin− fs plane, in a simulated environment, where the
behavior of the FC is simulated by running the Fouquet model.

Here, the Fouquet model is stimulated with a single tone, and its output is brought back into the
time-domain through an Inverse Fast Fourier Transform (IFFT) to obtain the waveform of the voltage
response. The impact of the covariance on the identification performance is evaluated by sampling the
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fs − fin domain in a suitable way. For each input frequency fin, the characteristic frequency fc has to
be evaluated. Then, the sampling frequency axis fs is sampled, starting from fc up to the maximum
sampling frequency fs,M.

The identification performance on the parameter p in the operating condition x, namely px,
is evaluated by means of the error Ep,x of p with respect to its theoretical value p(th)x —being p ∈
{R0, R1, C1} and x = {N, D, F} for normal, drying, or flooding operating conditions. The theoretical
value p(th)x is extracted on the basis of frequency-domain impedance data after an assessed identification
procedure based on the known Fouquet model. All errors, either in normal or in faulty operating
conditions, are normalized with respect to the theoretical value in normal conditions, p(th)N , to get a
percentage error. In formulas:

ER0,x =
|R(th)

0,x − R̂0x|

R(th)
0,N

, (16)

ER1,x =
|R(th)

1,x − R̂1x|

R(th)
1,N

, (17)

EC1,x =
|C(th)

1,x − Ĉ1x|

C(th)
1,N

, (18)

where p̂ stands for the identification result.
The maximum relative error among the three operating conditions is also considered:

ER0,M = max{ER0,x}, (19)

ER1,M = max{ER1,x}, (20)

EC1,M = max{EC1,x}. (21)

In some cases, the maximum error among the parameters R1 and C1 is also considered:

EM = max{EC1,M, ER1,M}. (22)

The identification process starts with the parameter values set to R(th)
0,N /2, R(th)

1,N /2 and C(th)
1,N /2

(50% of the true value in normal condition), and has to lead to the estimate values R̂0,x, R̂1,x, and Ĉ1,x.
This means that the simulation is set in the conditions of determining the parameters values without a
significant prior knowledge of the system state. The pseudo-code shown in Algorithm 1 resumes the
procedure used to explore the identifiability domain.

Looking at the real and imaginary parts of the Fouquet impedance (Figure 2), three frequency
ranges where the filter response should be analyzed can be identified. Hereafter, the low frequency
range (LF) is defined as fin < 10 mHz, the middle frequency (MF) as 10 mHz < fin < 500 Hz, and the
high frequency range as fin > 500 Hz (HF).
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Algorithm 1: Analysis of the identifiability domain

Input: Set of initial covariance σ2

Output: Error plot on the fs- fin plane

1 for fin from 10 mHz to 10 kHz do
2 for fs from fc( fin) to fs,M do
3 I=generateStimulus( fin, fs);
4 for x in {N, D, F} do
5 V=IFFT( FouquetModel( FFT(I), x) );
6 [R̂0,x, R̂1,xĈ1,x]=DKF( I, V, fs, σ2);
7 Calculate ER0,x, ER1,x, EC1,x;
8 end
9 Calculate ER0,M, ER1,M, EC1,M, EM;

10 end
11 Return error plot;
12 end

4.1. Parameter Estimation at High Frequency

At HF, the real part of the Fouquet impedance is constant and equal to R0. To identify only this
parameter, the estimate for α and β were locked at the starting value and ignored by using an extremely
small covariance value. This ensures that the DKF will not modify these parameter values to match
the output voltage of the RRC model with the voltage measurement.

Figure 6 shows the series resistance R0 identification performance in the whole domain by setting
γR0 = −7. In particular, R0 is correctly identified in all the domain areas with ER0,M < 30%, with very
good performance in HF. In the MF, the error starts to rise, reaching 20–30% in LF. Although the
increased error does not affect the region of interest (HF), further insights on the rising trend of the
error will be clarified by analyzing the LF region.
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Energies 2019, 12, 3377 11 of 18

4.2. Parameter Estimation at Low Frequency

At LF, the effect of the resistance R1 is important on the real part of the impedance. Around the
LF zero-crossing point in the impedance plot (Figure 2a), the impedance tends to be real and equal
to R0 + R1. In this neighborhood, the effect of the capacitance C1 is poor. Hence, the parameter to be
further estimated at LF is mainly R1, since R0 has already been estimated at HF.

To achieve this result, it is worth maximizing the part of the domain where ER1,M < 30%. This will
be done by changing the parameter covariances and evaluating the percentage of the domain in which
the error goes below the indicated threshold. In particular, both the total domain area and the LF one
are considered Table 3.

Table 3. Domain area where ER1,M < 30%.

Covariance Vector Domain Area
γα γβ (% of LF Region) (% of Total Domain)

−7 −6 88.06 51.48
−7 −7 88.06 52.22
−7 −8 88.06 52.61
−7 −9 86.57 56.32

The best performance is achieved by tuning the covariance vector as γα = −7 and γβ = −8,
since this configuration allows maximizing of both the areas. In these tests, the values of R0 are locked
at the previously identified value.

In these cases, in an area of about 88% of the domain, the identification of the parameter R1 is
feasible. Figure 7 shows in details the area for the set with γα = −7 and γβ = −8. A wide area, up to
fs =1 kHz allows us to identify the parameter. Similar areas of the domain are obtained for γβ ranging
from −12 and −10, meaning that an accurate tuning of the covariance vector is not required at LF.
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4.3. Parameter Estimation at Middle Frequency

In the MF range (Figure 2a), the contribution on the impedance spectrum comes both from the
real and the imaginary parts. Thus, the information on the FC state has to be extracted by both R1 and
C1, which need to be estimated. To evaluate the filter performance, EM, i.e., the maximum error over
both R1 and C1, is considered and the results are reported in Table 4.

Table 4. Domain area where EM < 30%.

Covariance Vector Domain Area
γα γβ (% of MF Region) (% of Total Domain)

−7 −10 27.02 18.82
−7 −11 40.02 28.78
−7 −12 39.45 26.94
−7 −13 35.13 23.99
−7 −14 27.56 19.56
−7 −15 27.02 12.18

This first analysis suggests a further investigation of the covariance sets, choosing
γβ = {−11,−12,−13}. In these cases, the identification is more critical than in HF or LF.
The identification of parameters is well achieved in an area of about 35–40% of the MF domain,
correctly identifying both parameters. Figure 8 shows the distribution of the successful tests on the
fs− fin plane. In this case, the set with γβ = −13 (Figure 8c), despite the narrower area produced, is the
most suitable for the identification up to fin = 0.5 Hz. From this value down to 10 mHz, the covariance
σ2

β must be increased to achieve a good estimation performance (Figure 8a,b). This issue will be
discussed further in the next Section.

For all the analyzed covariance sets, it is worth noticing the discontinuity of the EM indicator in
the upper part of the fs − fin plane, where one or both parameters are wrongly estimated. In order to
retrieve a deep understanding of the filter response, and to understand whether the estimation of one
parameter is more critical than the other one, it is worth inspecting the maximum errors EC1,M and
ER1,M. As an example, the estimate results obtained with the set γα = −7, γβ = −13 are considered.
Figure 9 shows the maximum error on the parameter C1, EC1,M. Comparing this figure with Figure 8c,
the area is wider, and, obviously, includes the one produced by EM (Figure 8c). It follows that, at high
sampling frequencies, the discontinuity of EM is mainly due to high errors in the estimate of R1. Here,
an increase of the sampling frequency does not lead to any benefit for the parameter identification.
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Figure 9. Error EC1,M for covariance set γα = −7, γβ = −13.

4.4. Sampling Frequency and Covariance Adaptivity

Within the MF interval, the identification remains critical in the lowest part of the spectrum. Here,
the identification can be improved by adjusting the covariance to the sampling frequency. From a
graphical point of view, this approach allows to close the impedance curve towards the real axis.

Figure 10 summarizes the results obtained by adjusting the covariance vector according to the
sampling frequency. At 0.5 Hz, the sampling frequency profile changes, and this is remarked with a
dashed line. Figure 10c shows that more than 80% of the FC spectrum can be identified with a single
covariance set, provided that fs and fin are linked as shown by the green curve of figure Figure 11a.
The identified impedance, and the related parameters R1 and C1, are marked with diamonds in all
cases (Figure 10).

In the lowest part of the MF, below 0.5 Hz, the covariance was increased and fs adjusted as shown
in Figure 11b. It is worth observing that the optimal fs scales proportionally with fc and an increase in
the covariance value of the parameter β has to follow. Square markers in Figure 10 highlight the few
points earned with this approach.

Figure 10c allows one to understand the effect of faults on the impedance plot, while Figure 10a
and Figure 10b illustrate the corresponding impact of the fault conditions on the first-order model
parameters. An increment of the resistance R1 with respect to normal condition is related to a possible
water management fault. This increment is higher at low frequency, but it is detectable since the
beginning of the considered EIS test, i.e., at high frequency. Its magnitude, in correspondence of a
valuable reduction of capacitance, allows one to distinguish between drying and flooding conditions.
In addition to the R1-C1 branch results, the increase of the resistance R0 also helps in detecting the
drying condition.
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5. Parametric Identification from Experimental EIS Data

The previously discussed results were obtained by following a model-driven procedure. In particular,
the choice of the input frequency ranges to be analyzed as well as the error figures to be considered
for each particular frequency region, were derived by observing the real and the imaginary parts of the
Fouquet model. For this reason, a further investigation is required in real case tests.

The identification procedure was run on EIS experimental data performed in the framework of
the H2020 HEALTH-CODE project [20]. The tests were conducted for a 12-cell PEMFC stack from
Ballard Power System. The active cell area of each cell in the stack is 100 cm2. The data used hereafter
were tested for 35 A operating point, at a temperature of 57 ◦C both in nominal and in air starvation
conditions. The sampling frequency fs, plotted in Figure 12 as a function of fin with solid lines,
was determined by the experiment manager.

In this case, no prior characterization of the FC was done, thus, the characteristic frequency
fc( fin) is unknown. It is worth noticing that, in this case, it is not possible to clearly define the LF, MF,
and HF ranges.

The results of the identifications are reported in Figures 12 and 13 for the nominal and air starvation
conditions. The markers are the results produced by the DKF-identified model. These results were
obtained by identifying R0 with γR0 = −7, while the other parameters were locked at their initial value.
Then, on the basis of the estimate of R0, the remaining parameters were identified by setting γα = −5
and γβ = −7.
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Figure 12. Characteristic frequency and sampling frequency in experimental tests. (a) Nominal
condition, (b) air starvation.
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Figure 13. Results of the identification procedure: impedance. (a) Nominal condition, (b) air starvation.

In Figure 12, the estimated characteristic frequency f̂c is plotted with markers. Most of the markers
lie below fs, thus indicating identifiability. Some markers, especially those at very high frequency, lie
above fs, or very close. In this case, obviously, an accurate identification is not guaranteed.

Figure 13 shows the impedance plots. The solid line represents the impedance computed by
means of the EIS-based analysis of the voltage and current signals (e.g., FFT). The nominal impedance,
in Figure 13a, is reproduced with high fidelity by the DKF approach. In Figure 13b, the less accurate
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reconstruction of the air starvation spectrum could be ascribed to less-clean time-domain data.
Despite this, Figure 14 shows that a valuable deviation of R1 and C1 is observed with respect to
the nominal condition. In particular, a decrease of the resistance R1 in conjunction with the decrease of
the resistance R0 is observed. These deviations allow, in perspective, the detection of this fault.

It is worth remarking that, in this experiment, fs is not optimized for the DKF identification.
A higher sampling frequency would have given a more accurate result, especially at LF, where fs

should have been adapted as shown in Section 4.4. The identified parameters, in particular, Ĉ1 in
Figure 14b and fc in Figure 12, are clearly affected by a lack of fidelity at LF, where an unexpected
sign-change of the slope occurs.

Similar considerations hold for HF, where a higher fs would have led the system into
the identifiability.
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Figure 14. Estimated parameters from experimental data. (a) Nominal condition, (b) air starvation.

However, when R0 is estimated in the same frequency range, the result is consistent with the
left-side real axis intersect of the EIS spectrum.

6. Conclusions

A performance analysis of the Dual Kalman Filter identification capabilities in Electrochemical
Impedance Spectroscopy tests was proposed for polymer electrolyte membrane fuel cells. In simulation,
the fuel cell behavior is replaced by the Fouquet model, and the filter sequentially identifies the
frequency-varying parameters of a simple first-order RC model. The main factors influencing the
filter performance are successfully correlated to one another, and the relation between the sampling
frequency fs, the characteristic frequency fc, the input signal frequency fin, and the initial covariance
matrix of the filter is analyzed through a numerical study. The relationship is graphically represented to
allow an easy a priori tuning of the filter to be done offline before using the filter in online applications.
This allows for retrieval of the best sampling frequency offline and, after, to deploy the Dual Kalman
Filter for the online tracking of the parameters in spectroscopy tests. Considering the simplicity
and the low computational burden achieved, such an approach constitutes a supporting tool to the
frequency-based fault detection that can be implemented onto low-cost embedded devices.

As a future perspective, the proposed approach could be extended to other kinds of fuel cell
systems, such as to solid oxide fuel cells under impedance spectroscopy tests, even if the analysis has
to be renewed considering two main changes. First, an extension of the analyzed frequency range
towards higher frequencies (few tens of kilohertz) could be required to see a whole impedance arc in
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an impedance plot. Additionally, the characteristic frequency curves might change their shape with
respect to the case considered in this paper. This is a worthy matter for further work.
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