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Abstract: Data-driven approaches using synchronous phasor measurements are playing an important
role in transient stability assessment (TSA). For post-disturbance TSA, there is not a definite conclusion
about how long the response time should be. Furthermore, previous studies seldom considered
the confidence level of prediction results and specific stability degree. Since transient stability can
develop very fast and cause tremendous economic losses, there is an urgent need for faster response
speed, credible accurate prediction results, and specific stability degree. This paper proposed a
hierarchical self-adaptive method using an integrated convolutional neural network (CNN)-based
ensemble classifier to solve these problems. Firstly, a set of classifiers are sequentially organized at
different response times to construct different layers of the proposed method. Secondly, the confidence
integrated decision-making rules are defined. Those predicted as credible stable/unstable cases are
sent into the stable/unstable regression model which is built at the corresponding decision time. The
simulation results show that the proposed method can not only balance the accuracy and rapidity of
the transient stability prediction, but also predict the stability degree with very low prediction errors,
allowing more time and an instructive guide for emergency controls.

Keywords: Transient stability assessment (TSA); intelligent system (IS); convolutional neural network
(CNN); ensemble learning; hierarchical self-adaptive method; integrated decision-making rule;
power systems

1. Introduction

Transient stability or large-disturbance rotor angle stability is referred to as the ability of an
interconnected power system to maintain synchronism when subjected to a large disturbance, such
as a three-phase short-circuit fault on a transmission line [1]. Transient instability may develop into
catastrophes, such as cascading failures and/or widespread blackouts. Therefore, transient stability
assessment (TSA) has significant importance in security monitoring of power systems. It is an essential
requirement to maintain transient stability in power system operation.

To achieve rapid real-time TSA, the data-driven artificial intelligence (AI) approach [2–7] was
identified as a novel and promising solution. First of all, through offline training on massive sets of data
generated through time-domain (T-D) simulation, it can capture the potential useful knowledge to map
the relationship between inputs (features of power system) and outputs (the corresponding dynamic
security indices, such as stability status or stability margin/degree). Then, when it comes to online
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application, the outputs can be given instantaneously once the inputs are available. Compared with
other traditional TSA methods, such as T-D simulation [8], transient energy function method [9], and
extended equal-area criterion [10], the merits of the data-driven AI approach are rapid decision-making
speed, fewer system physical parameters required, strong generalization capability, and powerful data
mining ability.

Post-disturbance TSA is different from pre-disturbance TSA. It predicts the system future
stability status under an ongoing disturbance by using post-disturbance dynamic features such as
variations of the rotor angles/speeds/accelerations/kinetic energy [11–13], voltage magnitudes [4,13,14],
electromagnetic power [11,13], etc. On the other hand, the pre-disturbance TSA evaluates the current
stability status for an anticipated fault which is yet to occur by using pre-disturbance steady-state
power system operating variables such as line flow, P, Q load, P, Q generation of each generator [2,3],
etc. The assessment result of post-disturbance TSA is used to trigger emergency controls to impede
the propagation of instability, while the pre-disturbance TSA is utilized to activate preventive
controls to preventively modify the system operating condition to withstand those possible potential
severe disturbances.

This paper focuses on post-disturbance TSA, which has stricter requirements for prediction
accuracy and speed because a fault is ongoing. Thanks to the development of wide-area measurement
systems (WAMS), the dynamic response of power system operating conditions after a fault can be
monitored by the widely deployed phasor measurement units (PMUs), enabling a data-driven AI
approach to real-time post-disturbance TSA [5,14,15]. Recently, the main research focused on generating
training and testing databases, feature selection, and improving the learning algorithms to increase
prediction accuracy; however, it seldom considered the reliability or credibility of the prediction result
and specific stability degree. It is a tough challenge to perfectly eliminate classification/prediction
errors by using an AI learning algorithm. Thus, the prediction result may be wrong if the TSA error
remains unavoidable. It is better to identify those unreliable prediction results as uncertain ones
temporarily rather than use such wrong prediction results. In addition, the existing data-driven AI
methods tend to use fixed duration times of the response data as predictors. They vary from 50
ms to 3 s [3,11,13,14,16] according to different inputs and classifiers. In reality, for different faults
with different severity, the instability occurs at different times. Therefore, a constant response time
may lead to inefficient decision-making. Concerning the above points, the contribution of this paper
consists of developing a novel intelligent system (IS) that can both achieve more efficient and reliable
post-disturbance TSA.

The proposed IS was developed based on a popular deep learning network called convolutional
neural network (CNN) [11,17–19], which has strong recognition ability for highly nonlinear patterns,
learns more useful features automatically, and reduces the number of network structure parameters
dramatically. Constructing a CNN-based ensemble learning structure, the IS gathered several CNNs
with an integrated decision-making rule. Under a hierarchical self-adaptive method [5,14,20,21], the
decision can only be output when the prediction result meets the credibility requirement making the
accurate TSA decision at an appropriately early time. Additionally, the regression models for stable
and unstable instances are built, such that the transient stability degree of the instances can be predicted
accurately, which will give instruction on subsequent emergency control measures.

The main contributions of this paper are summarized as follows:

(1) A hierarchical self-adaptive framework based on CNN-based ensemble classifiers for
post-disturbance TSA is proposed. This framework is verified with high prediction accuracy and
reliability, and can balance the accuracy and rapidity of the transient stability prediction.

(2) A novel integrated decision-making rule based on multiple CNNs is presented. Through the
suitable setting of thresholds, it can achieve as high prediction accuracy as possible, and no
large false alarm (when predicting an actual stable instance as an unstable instance), with zero
misdetection (when predicting an actual unstable instance as a stable instance).
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(3) Through regression modeling and predicting of transient stability index (TSI), it provides
the stability degree of each instance, which is capable of providing a basis for subsequent
emergency control.

The remaining of this paper is organized as follows: Section 2 introduces the generation of
the dataset for TSA. Section 3 describes the learning algorithm of the CNN. Section 4 presents the
hierarchical self-adaptive IS model for TSA. Comprehensive case studies on a New England 10-machine
39-bus power system are conducted in Section 5. The discussion and conclusions are given in Sections 6
and 7, respectively.

2. Generation of Dataset

In terms of data-driven AI methods for TSA, an offline stage of training on a massive amount
of data generated by T-D simulations needs to be done at the first step. The methods aim to map
the relationship between the inputs (i.e., features) and the outputs (i.e., stability status or stability
degree) [4], expressed as follows:

y = f (x), (1)

where x represents the input predictors, namely, features of the power system, y denotes the
corresponding dynamic security indices, such as stability status or stability degree, and f represents
the mapping function. The training dataset can be simulated via T-D simulation on a certain power
system with various load/generation patterns, network topologies, and fault types, locations, and
duration times. TSI [4,22] is defined as follows:

TSI =
360◦ − |∆δ|max
360◦ + |∆δ|max

, (2)

where |∆δ|max is the maximum of the absolute value of the angle separation between any two generators.
For the classification of transient stability status in this paper, when TSI > 0, the system is considered
as stable and vice versa. For the regression of transient stability degree in this paper, a continuous
value of TSI is used as the label y. For a stable instance, the TSI is between 0 and 1. The greater the
value of TSI is, the more stable the system becomes. For an unstable instance, the TSI is between −1
and 0. The smaller the value of TSI is, the more unstable the system becomes.

Since the label of each simulation instance is determined by TSI, which is calculated in terms
of generator rotor angle, the rotor angle-related variables such as rotor angle/speed/acceleration and
kinetic energy are usually used as the input features [11–13]. The trajectory of relative electromagnetic
power, which represents the ratio of the electromagnetic and mechanical power, also contains abundant
information of system transient stability status, because it reflects the recovery of the electromagnetic
power after the fault clearance [13]. In the literature [4,14], the voltage magnitudes of all the generator
buses are often used as inputs. In this research, the dynamic trajectories of voltage magnitude,
relative rotor angles, speeds, accelerations, and kinetic energy, electromagnetic power, and relative
electromagnetic power of all the generators are used as the inputs.

The input feature types are described in Table 1, where n is the number of total generators in the
test system, and s is the number of feature sampling times, which reflects the response time after fault
clearance. When s = 1, t1 represents the first sampling time after fault clearing. The calculation of input
features and the data normalization process are explained in detail in Appendix A. Taking feature type
1 for example, the normalized input feature type 1 of each instance can be stored as an array which
has a similar data structure to that of an image, as shown in Figure 1. Its two axes named generator
and time can be viewed as the width and length axes of the image. This characteristic inspired us to
apply CNN, a widely recognized deep learning method for image classification, to extract the mapping
knowledge for TSA.
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Table 1. Descriptions of different input features.

Feature Type Feature Name Feature Number Description

1 Voltage magnitude k× n Ui(ts), i = 1, . . . , n; s = 1, . . . , k
2 Relative rotor angle k× n δ̃i(ts), i = 1, . . . , n; s = 1, . . . , k
3 Relative rotor speed k× n ω̃i(ts), i = 1, . . . , n; s = 1, . . . , k
4 Relative rotor acceleration k× n α̃i(ts), i = 1, . . . , n; s = 1, . . . , k
5 Relative kinetic energy k× n EKi(ts), i = 1, . . . , n; s = 1, . . . , k
6 Electromagnetic power k× n Pei(ts), i = 1, . . . , n; s = 1, . . . , k
7 Relative electromagnetic power k× n P̃ei(ts), i = 1, . . . , n; s = 1, . . . , k
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3. Convolutional Neural Network

As a well-known deep learning method, CNN works as a deep structure feedforward neural
network. It consists of an input layer, multiple hidden layers, and an output layer. There are three
types of common construction of hidden layers: convolutional layer, pooling layer, and fully connected
layer. Referring to the LeNet-5 [23], it can be found that the order of the layers in a common structure of
CNN is as follows: input layer–convolution layer–pooling layer–convolution layer–pooling layer–fully
connected layer–output layer, as illustrated in Figure 2. The difference in the forward propagation
process between the convolution layer and fully connected layer is the convolutional neuron, which
shares the same weights as each receptive field (i,j), greatly reducing the number of parameters of
network. The output g(n) of a convolution layer with input location (i,j) is as follows:

g(n) = f
(
(W·X)i, j + b

)
, (3)

where W is the weight of a filter, b is the bias, “·” is the dot product, representing the sum of the
product of the corresponding elements in the matrix, and f is the activation function Rectified linear
unit (ReLU), where ReLU(x) = max(0, x). The forward propagation process of the convolutional layer
is described in Appendix B which gives a simple example.
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A pooling layer is often added between the convolutional layers. It can effectively reduce the
size of the matrix, thereby reducing the parameters in the final fully connected layer. Using a pooling
layer can speed up calculations and prevent over-fitting problems. The most commonly used pooling
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layer, max-pooling, is utilized here. In CNN, a larger convolution kernel size corresponds to more free
parameters (i.e., weights and bias), which means more computation and more time to train the model.
The most commonly used convolution kernel size is 3 × 3, and the size of max-pooling is usually
selected as 2 × 2. After several convolutional and pooling layers, the output node matrix should be
flattened and connected to a fully connected layer, whereby the calculation process is the same as
an artificial neural network (ANN) with ReLU as the activation function. The training algorithm of
the CNN used in this paper is outlined in Appendix C [24]. The final output layer uses the softmax
function [11,23], described as follows:

P(Ck|X) =
eyk(X)∑2

k=1 eyk(X)′
(4)

where yk(X) is the k-th input data of the softmax layer with instance X, and P(C1|X) and P(C2|X)

are the probabilities of instance X identified as category-1 and category-2 for a binary classification
problem (i.e., transient stability status prediction). The final output of CNN is ŷi = (P(C1|X), P(C2|X));
if P(C1|X) > P(C2|X), the instance will be identified as category-1 and vice versa.

In previous literature [11,17–19], it was validated that the CNN is effective on a number of
benchmark models and actual life problems in both classification and regression fields. It shows
stronger recognition ability for highly nonlinear patterns, learns more useful features automatically
from a massive amount of time-series data, dramatically reduces the number of network structure
parameters, and has better generalization capacity than some conventional techniques [25–27].

4. The Proposed IS Model

In this section, following the basic idea illustrated in Section 3, we develop an IS model for TSA
based on CNN. The workflow chart of the proposed IS model is shown in Figure 3.

Energies 2019, 12, x FOR PEER REVIEW 5 of 16 

 

layer, max-pooling, is utilized here. In CNN, a larger convolution kernel size corresponds to more 
free parameters (i.e., weights and bias), which means more computation and more time to train the 
model. The most commonly used convolution kernel size is 3 × 3, and the size of max-pooling is 
usually selected as 2 × 2. After several convolutional and pooling layers, the output node matrix 
should be flattened and connected to a fully connected layer, whereby the calculation process is the 
same as an artificial neural network (ANN) with ReLU as the activation function. The training 
algorithm of the CNN used in this paper is outlined in Appendix C [24]. The final output layer uses 
the softmax function [11,23], described as follows: P(𝐶 |𝑋) = 𝑒 ( )∑ 𝑒 ( ), (4) 

where 𝑦 (𝑋) is the k-th input data of the softmax layer with instance X, and P(𝐶 |𝑋) and P(𝐶 |𝑋) 
are the probabilities of instance X identified as category-1 and category-2 for a binary classification 
problem (i.e., transient stability status prediction). The final output of CNN is 𝑦 =P(𝐶 |𝑋), P(𝐶 |𝑋) ; if P(𝐶 |𝑋) > P(𝐶 |𝑋), the instance will be identified as category-1 and vice versa. 

In previous literature [11,17–19], it was validated that the CNN is effective on a number of 
benchmark models and actual life problems in both classification and regression fields. It shows 
stronger recognition ability for highly nonlinear patterns, learns more useful features automatically 
from a massive amount of time-series data, dramatically reduces the number of network structure 
parameters, and has better generalization capacity than some conventional techniques [25–27]. 

4. The Proposed IS Model 

In this section, following the basic idea illustrated in Section 3, we develop an IS model for TSA 
based on CNN. The workflow chart of the proposed IS model is shown in Figure 3.  

……

,2 1( )mX T,1 1( )mX T , 1( )m nX T

, 2( )m nX T,2 2( )mX T,1 2( )mX T

, ( )m n kX T,2 ( )m kX T,1( )m kX T

... ... ... ...

...

...

...

2,2 1( )X T2,1 1( )X T 2, 1( )nX T

2, 2( )nX T2,2 2( )X T2,1 2( )X T

2, ( )n kX T2,2( )kX T2,1( )kX T

... ... ... ...

...

...

...

……

Gen_1 Gen_2 Gen_n

1,2 1( )X T1,1 1( )X T 1, 1( )nX T

1, 2( )nX T1,2 2( )X T1,1 2( )X T

1, ( )n kX T1,2 ( )kX T1,1( )kX T

... ... ... ...

...

...

...

Time series of 
feature type 1

T1

T2

...

Tk

Time series of 
feature type 2

T1

T2

...

Tk

Time series of 
feature type m

T1

T2

...

Tk

…
…

CNN1

CNN2

CNNm

Training Ensemble classifications

Prediction 
probability of 

CNN1

Prediction 
probability of 

CNN2

Prediction 
probability of 

CNNm

Decision
-making 

rule

Single classifications Classification result

Credible 
stable 

instance

Credible 
unstable 
instance

Uncertain  
instance

Calculate 
transient 
stability 

index(TSI)

Calculate 
transient 
stability 

index(TSI)

Unstable 
regression 

model

Stable 
regression 

model

Next TSA 
Cycle

 
Figure 3. The workflow chart of the proposed intelligent system (IS) model. 

4.1. CNN-Based Ensemble Learning 

Ensemble learning was widely applied in many research fields, such as machine learning [28,29], 
electrical power systems [3,11,20], computational biology [30–33], and so on. It is an effective strategy 
to increase accuracy. Thanks to the diversity of individual learners, the single learners can adequately 
compensate for each other and tend to reduce aggregate variance, achieving better results. Different 
dynamic response trajectories of power systems contain rich dynamic information. Making full use 
of this information helps better predict the transient stability of power systems. However, the 
determination of a better classifier with favorable input features can only be done by repeated time-
consuming trials. Moreover, it is hard to say the selected features are versatile for all application 
scenarios. With this in mind, different CNNs with the same model structure but different types of 

Figure 3. The workflow chart of the proposed intelligent system (IS) model.

4.1. CNN-Based Ensemble Learning

Ensemble learning was widely applied in many research fields, such as machine learning [28,29],
electrical power systems [3,11,20], computational biology [30–33], and so on. It is an effective strategy
to increase accuracy. Thanks to the diversity of individual learners, the single learners can adequately
compensate for each other and tend to reduce aggregate variance, achieving better results. Different
dynamic response trajectories of power systems contain rich dynamic information. Making full
use of this information helps better predict the transient stability of power systems. However, the
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determination of a better classifier with favorable input features can only be done by repeated
time-consuming trials. Moreover, it is hard to say the selected features are versatile for all application
scenarios. With this in mind, different CNNs with the same model structure but different types of
features as inputs were trained to construct an ensemble classifier. The obtained single CNN models
were different even with the same network structure and learning rate, because the input features
were different and the initial weights and bias were randomly selected. With this stochastic nature,
comprehensively utilizing the diversity of these single classifiers can further improve classification
performance. On the basis of previous work [3,11,14,20], this paper proposes a novel IS based on
CNN-based ensemble classifiers to more efficiently achieve post-disturbance TSA of power systems.
As mentioned in Section 2, seven kinds of input features are utilized, which means that there are
seven individual CNN classifiers, and each is constructed using an individual input feature type. The
ensemble classifier consisting of m (m = 1, 2, . . . , 7) different individual CNNs is defined as type m.
The performance of different types of classifiers is analyzed in Section 5.4.

4.2. Integrated Decision-Making Rule

Different from most ensemble models, which determine the final output by voting the majority
or average value of the individual outputs [28,29,34], a tailored integrated decision-making rule is

proposed in this paper. Each individual CNN classifier exports two probabilities ŷn =
(
ŷ(1)n , ŷ(2)n

)
,

where ŷ(1)n + ŷ(2)n = 1 [11,23]. They represent the confidence of instance X belonging to each class. The
specific integrated decision-making rule [35] for ensemble classification is described in Algorithm 1.

Algorithm 1: Integrated decision-making rule for CNN-based ensemble classification

Given m single CNNs with different types of input features, CNN1, CNN2, . . . , CNNm, whose first outputs

are represented by ŷ(1)1 , ŷ(1)2 , . . . , ŷ(1)m :

If min
(
ŷ(1)1 , ŷ(1)2 , . . . , ŷ(1)m

)
> α, then it is a credible stable instance;

Else if max
(
ŷ(1)1 , ŷ(1)2 , . . . , ŷ(1)m

)
< β, then it is a credible unstable instance;

Else it is an uncertain instance at the current decision time,
where α and β are user-defined thresholds to judge whether the instance is credible stable/unstable or an
uncertain instance.
end

With the integrated decision-making rule, the ensemble classifier can identify the credible
stable/unstable instances and uncertain instances. For those credible instances, they are sent into the
corresponding regression model to regress TSI, which reflects their stability degree. Those uncertain
instances need further identification at the next TSA decision time. The stable regression model and
the unstable regression model were built based on CNN by training a stable dataset and unstable
dataset, respectively, with inputs corresponding to time series of post-disturbance voltage magnitude
trajectories of the duration from the first post-disturbance sampling to different decision times.

4.3. Hierarchical Self-Adaptive Method for TSA

The structure of the proposed hierarchical self-adaptive IS is described in Figure 4. There are a
series of individual CNN-based ensemble classifiers, each performing the TSA at a different response
times (note that each of the classifiers is trained using different time series of features mentioned above
from the first post-disturbance sampling time to the corresponding response time). For an ensemble
classifier at response time t = Ts, only when the minimum value of these first outputs of these single
CNN classifiers is greater than α can this instance be determined as credible stable. Only when the
maximum value of these first outputs of these single CNN classifiers is smaller than β can this instance
be determined as credible unstable; then, the IS delivers the transient stability prediction result at t
= Ts. Otherwise, this instance should be determined as an uncertain instance and the classification
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continues at time t = Ts+1. The instances far away from the classification boundary are easier to identify
even at a very short response time. As time goes by, the dynamic characteristics of the power system
become more and more obvious and separable. Thus, the uncertain instances are recognized as credible
instances at longer response times. Therefore, this proposed hierarchical self-adaptive method allows
balancing the rapidity and accuracy of transient stability prediction. Then, the instances that were
identified as credible stable and credible unstable instances can be predicted using the stable regression
model and the unstable regression model, respectively.
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5. Case Study

The developed IS was tested on a popular benchmark system: IEEE 10-machine 39-bus system.
Detailed parameters of this system can be found in Reference [36]. The system frequency was 60 Hz.
The IS network was implemented in TensorFlow, a state-of-the-art open-source machine learning
framework, by using the computer programming language of Python [37]. Experiments were carried
out on a 64-bit personal computer with an Intel Core i5-7200U central processing unit and 4.00 GB of
random-access memory. The T-D simulations were conducted by MATLAB Power System Toolbox 3.0.

5.1. Data Generation

During the generation of the dataset, the system generation and load patterns were randomly
varied within the 75–120% level of the initial operation condition. The contingencies were mainly
three-phase permanent short-circuits at ten locations ranging from the beginning to 90% of the length
of each transmission line with an increment of 10%. The simulation time was 5 s, and the simulation
step was 0.0167 s (one cycle was 0.0167 s for the 60-Hz system). There were 11 assumed types of failure
duration times, ranging from 0.0167 s to 0.1837 s with an increment of 0.0167 s. For this test system,
37,400 instances including 24,864 stable instances and 12,536 unstable instances were generated. For
the proposed IS model, 22,400 instances were selected for model training, 5000 instances were selected
to build the validation dataset which was used for model selection and prevented over-fitting, and the
remaining 10,000 instances were selected to form the testing dataset.

5.2. Indices for Performance Evaluation

Transient stability prediction is a typical imbalanced classification task, where the number of stable
cases is more than that of unstable cases. In the meantime, the costs of misdetections and false alarms
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are quite different. It is much more serious to misclassify an unstable instance as a stable instance. If a
stable case is misclassified as unstable, it may cause malfunction of some control devices, but it has
little effect on the safe and stable operation of the entire system. If an unstable case is misclassified
as stable, no measure is taken to prevent the instability accident, which causes tremendous financial
losses and disastrous consequences. Therefore, the accuracy of the overall dataset does not quite reflect
the classification performance of the classifier. With this in mind, in addition to the accuracy of the
whole dataset, a new index named HRP (harmonic mean of recall and precision) [4] is introduced to
better evaluate the performance of unstable instance identification. It was modified to focus on the
unstable instances. According to the confusion matrix of TSA shown in Table 2, the related indices are
defined as follows:

• Accuracy, abbreviated as ACC, is the proportion of instances that are correctly predicted by
the classifier.

ACC =
(Ts + Tus)

(Ts + Tus + Fs + Fus)
(5)

• HRP is the abbreviation of harmonic mean of recall and precision. It is commonly used in
evaluation classifiers.

recall =
Tus

(Tus + Fs)
, (6)

precision =
Tus

(Tus + Fus)
, (7)

HRP = 2× recall×
precision

(recall + precision)
=

2
1

recall +
1

precision

(8)

Table 2. Confusion matrix of transient stability assessment (TSA).

Confusion Matrix Stable (Actual) Unstable (Actual)

Stable (Predicted) Ts Fs
Unstable (Predicted) Fus Tus

5.3. Implementation Details

In this research, each individual CNN classifier consisted of two convolution layers, two pooling
layers, and two fully connected layers. The detailed parameters of each individual CNN classifier
are shown in Table A1 (Appendix C). Both the fully connected layer 1 and fully connected layer 2 use
dropout technology with the dropout rate as 0.5. For specific details of dropout technology, the reader
can refer to Reference [38]. Each individual CNN classifier was trained with a mini-batch stochastic
gradient descent with an exponential decay learning rate. Its pre-set initial learning rate was set to 0.01
with an attenuation coefficient of 0.99. The exponential decay learning rate allows the model to quickly
approach the best solution in the early stage of training, without too much fluctuation in the later stage
of training. Thus, it will be much closer to the local optimum. For specific details of the exponential
decay learning rate, the reader can refer to Reference [37]. The scripts of the proposed hierarchical
self-adaptive post-disturbance TSA method and the training process of a single CNN are described in
Appendix D, where Figure A2 illustrates the processes of offline training and online application of the
proposed method.

5.4. Parameter Determination

In this test, it was assumed that the generator voltage phasor measurements, rotor angles,
electromagnetic power, and mechanical power were sampled at a rate of one sample per cycle.
Therefore, we trained each individual CNN classifier with different input trajectories during the
period of the first sampling time after the clearance of the fault for each response time. To build the
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CNN-based ensemble classifier, the number of selected features m in Figure 4 should be determined. It
is helpful to evaluate the performance of the CNN-based ensemble classifier without the integrated
decision-making rule, just using the average value of the individual outputs [11]. We randomly selected
m (m = 1, 2, . . . , 7) individual CNNs from the seven kinds of individual CNNs to construct classifier
type m and calculated the ensemble performance. Then, this operation was repeated many times.
Lastly, the average value of these performances was calculated as the performance of classifier type
m. The performances of these seven types of classifiers defined in Section 4.1 are shown in Figure 5.
The values of the two evaluation indices ACC and HRP obviously increased with the increment of the
response time. In addition, the type 7 classifier performed the best among the others. That means that
the ensemble classifier with all seven individual CNN classifiers was a good choice. Therefore, m was
set as 7 in this paper.

Energies 2019, 12, x FOR PEER REVIEW 9 of 16 

 

times. Lastly, the average value of these performances was calculated as the performance of classifier 
type m. The performances of these seven types of classifiers defined in Section 4.1 are shown in Figure 
5. The values of the two evaluation indices ACC and HRP obviously increased with the increment of 
the response time. In addition, the type 7 classifier performed the best among the others. That means 
that the ensemble classifier with all seven individual CNN classifiers was a good choice. Therefore, 
m was set as 7 in this paper.  

 
(a)                                          (b) 

Figure 5. Performance of different types of CNN-based ensemble classifiers with different response 
cycles: (a) accuracy (ACC); (b) harmonic mean of recall and precision (HRP). 

After determining the specific composition of the ensemble CNN, we further propose a 
hierarchical self-adaptive method using an integrated decision-making rule to improve the credibility 
of prediction results and balance the trade-off between TSA speed and accuracy. Before analyzing 
the results, for the sake of convenience, several definitions are introduced. 𝑇  is the i-th decision time; CS(𝑇) and CU(𝑇) are the total numbers of credible stable instances and credible unstable instances 
as of the current decision time, respectively; U(𝑇) and 𝑈 (𝑇) are the total number of uncertain 
instances and the rate of uncertain instances (the percentage of the uncertain instances with respect 
to the total testing instances) as of the current decision time; M(T ) and M(𝑇) are the total numbers 
of misdetections at and as of the current decision time, respectively; F(T ) and F(𝑇) are the total 
numbers of false alarms at and as of the current decision time, respectively; A(T ) and A(𝑇) are the 
current and accumulative TSA accuracy at and as of the current decision time, respectively, calculated 
as follows: A(𝑇 ) = 𝐶𝑆(𝑇 ) + 𝐶𝑈(𝑇 ) − 𝑀(𝑇 ) − 𝐹(𝑇 )𝐶𝑆(𝑇 ) + 𝐶𝑈(𝑇 ) , (9) 

A(𝑇) = 𝐶𝑆(𝑇) + 𝐶𝑈(𝑇) − 𝑀(𝑇) − 𝐹(𝑇)𝐶𝑆(𝑇) + 𝐶𝑈(𝑇)  (10) 

The credibility estimation parameters 𝛼  and 𝛽  in the integrated decision-making rule for 
CNN-based ensemble classification mentioned in Algorithm 1 are very important, since they directly 
determine the performance of the IS. The value of parameter 𝛼 is usually set as 0.5 to 0.95, and 𝛽 is 
usually set as 0.05 to 0.5. We now use the control variable method to observe the effect of varying α 
while fixing 𝛽 as 0.05. The results are shown in Figure 6. We also observed the effect of varying 𝛽 
while fixing 𝛼 as 0.95. The results are shown in Figure 7. The results are based on response time t 
equal to 30 cycles (0.5 s). 

It can be observed in Figure 6 that, with 𝛼 increasing, the rate of uncertain instances 𝑈 (𝑇) and 
the accumulative accuracy A(𝑇) increased, the count of F(𝑇) remained unchanged as three, and the 
count of M(𝑇) decreased to 0 when 𝛼 increased to 0.9; the reason is that a larger 𝛼 means the 
credibility estimation criterion of stable instances is more strict; thus, there tend to be more 
classifications being evaluated as uncertain instances, while those classified as credible stable 
instances become much more accurate with less misdetection. According to Figure 7, it is shown that, 
with 𝛽  increasing, the rate of uncertain instances 𝑈 (𝑇)  and the accumulative accuracy A(𝑇) 
reduced, the count of M(𝑇) remained unchanged as zero, and the count of F(𝑇) increased; the 

Figure 5. Performance of different types of CNN-based ensemble classifiers with different response
cycles: (a) accuracy (ACC); (b) harmonic mean of recall and precision (HRP).

After determining the specific composition of the ensemble CNN, we further propose a hierarchical
self-adaptive method using an integrated decision-making rule to improve the credibility of prediction
results and balance the trade-off between TSA speed and accuracy. Before analyzing the results, for the
sake of convenience, several definitions are introduced. Ti is the i-th decision time; CS(T) and CU(T)
are the total numbers of credible stable instances and credible unstable instances as of the current
decision time, respectively; U(T) and Ur(T) are the total number of uncertain instances and the rate of
uncertain instances (the percentage of the uncertain instances with respect to the total testing instances)
as of the current decision time; M(Ti) and M(T) are the total numbers of misdetections at and as of the
current decision time, respectively; F(Ti) and F(T) are the total numbers of false alarms at and as of
the current decision time, respectively; A(Ti) and A(T) are the current and accumulative TSA accuracy
at and as of the current decision time, respectively, calculated as follows:

A(Ti) =
[CS(Ti) + CU(Ti) −M(Ti) − F(Ti)]

[CS(Ti) + CU(Ti)]
, (9)

A(T) =
[CS(T) + CU(T) −M(T) − F(T)]

[CS(T) + CU(T)]
(10)

The credibility estimation parametersα andβ in the integrated decision-making rule for CNN-based
ensemble classification mentioned in Algorithm 1 are very important, since they directly determine the
performance of the IS. The value of parameter α is usually set as 0.5 to 0.95, and β is usually set as 0.05
to 0.5. We now use the control variable method to observe the effect of varying α while fixing β as 0.05.
The results are shown in Figure 6. We also observed the effect of varying β while fixing α as 0.95. The
results are shown in Figure 7. The results are based on response time t equal to 30 cycles (0.5 s).
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It can be observed in Figure 6 that, with α increasing, the rate of uncertain instances Ur(T) and
the accumulative accuracy A(T) increased, the count of F(T) remained unchanged as three, and the
count of M(T) decreased to 0 when α increased to 0.9; the reason is that a larger α means the credibility
estimation criterion of stable instances is more strict; thus, there tend to be more classifications being
evaluated as uncertain instances, while those classified as credible stable instances become much more
accurate with less misdetection. According to Figure 7, it is shown that, with β increasing, the rate of
uncertain instances Ur(T) and the accumulative accuracy A(T) reduced, the count of M(T) remained
unchanged as zero, and the count of F(T) increased; the reason is that a larger β means the credibility
estimation criterion of unstable instances is looser; thus, there tend to be fewer classifications being
evaluated as uncertain instances, while those classified as credible unstable instances become not that
accurate and, as such, the count of F(T) increases. As mentioned before, the costs of misclassification
of unstable instances (misdetection) are enormous and unacceptable for real-time utilization. Thus,
combining the impact of these two parameters on the classification results of TSA, we chose parameters
with high accumulative accuracy, a low uncertain instance rate, few false alarms, and zero misdetection.
Therefore, in this paper, α and β were set as 0.9 and 0.1, respectively, achieving 99.97% accumulative
accuracy, 8.87% uncertain instance rate, zero misdetection, and three false alarms at response time t
equal to 30 cycles (0.5 s). The results are shown in Table 3.
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Table 3. Prediction results of the hierarchical self-adaptive method.

i
(Cycles)

Response
Time (s)

Classified as Stable Classified as Unstable A(Ti)
(%)

A(T)
(%)

U(T) Ur(T)
(%)CS(T) M(Ti) M(T) CU(T) F(Ti) F(T)

0 0 - - - - - - - - 10,000 100
3 0.05 4265 0 0 1991 0 0 100 100 3744 37.44
6 0.10 516 0 0 251 0 0 100 100 2977 29.77
9 0.15 363 0 0 271 2 2 99.68 99.97 2343 23.43

12 0.20 276 0 0 214 1 3 99.80 99.96 1853 18.53
15 0.25 255 0 0 101 0 3 100 99.96 1497 14.97
18 0.30 110 0 0 34 0 3 100 99.97 1353 13.53
21 0.35 174 0 0 8 0 3 100 99.97 1171 11.71
24 0.40 42 0 0 22 0 3 100 99.97 1107 11.07
27 0.45 84 0 0 10 0 3 100 99.97 1013 10.13
30 0.50 102 0 0 24 0 3 100 99.97 887 8.87

5.5. Hierarchical Self-Adaptive Method for Transient Stability Prediction

To balance the rapidity and accuracy of TSA, the hierarchical self-adaptive method was used. The
response times of each layer were set to three cycles (0.05 s), six cycles (0.10 ms), nine cycles (0.15 ms),
. . . , 30 cycles (0.50 s), which can be adjusted in different situations. The prediction results are shown
in Table 3. It is illustrated in Table 3 that the test instances can be identified at an earlier time with
high accuracy, and there is no misdetection. In total, 4265 instances and 1991 instances out of 10,000
instances were classified as credible stable instances and credible unstable instances, respectively,
at the first layer with response time as 0.05 s, and the accuracy was as high as 100%, without any
misdetections and false alarms. The remaining 3744 uncertain instances moved to the next layer with
response time as 0.10 s, where 516 and 251 of them were classified as credible stable instances and
credible unstable instances, respectively, with an accuracy of 100%. Then, the remaining 2977 uncertain
instances moved to the third layer with response time as 0.20 s, where 363 and 271 of them were
classified as credible stable instances and credible unstable instances, respectively, with an accuracy
of 99.68% (i.e., two false alarms). There still remained 887 uncertain instances at a response time of
0.50 s, of which 455 instances were unstable. Further observation of uncertain unstable instances is
done through comparing the instability occurrence time, which is calculated by the difference between
fault clearance and unstable occurrence. Figure 8 shows the instability occurrence time histogram for
the total testing of unstable instances and uncertain unstable instances.
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For the sake of easy observation and comparison, the red line in Figure 8a illustrates the maximum
vertical axis value in Figure 8b. It can be observed in Figure 8a that the majority of unstable instances
in the total testing dataset had shorter instability occurrence times. Figure 8b shows that the instability
of the remaining uncertain unstable instances occurred more than 3 s after the clearance of the faults.
This implies that the proposed self-adaptive method can rapidly identify a large number of instances
which are far away from the classification boundary. The sooner it identifies unstable instances, the
more time will be reserved for emergency control. Those instances with longer instability times are
always critical unstable instances near the classification boundary. It is very difficult to identify these
instances quickly and accurately with the existing approaches. It is more reasonable to identify them
as uncertain ones temporarily, rather than directly deliver wrong prediction results. Therefore, they
need further identification at the next decision time. As time goes by, the dynamic characteristics of
the power system become more and more obvious and separable. Thus, the uncertain instances are
recognized as credible instances at longer response times.

5.6. TSI Regression Results

Through the above hierarchical self-adaptive transient stability prediction, credible stable and
unstable instances were exported at each decision time. Then, the TSIs of credible stable and unstable
instances were regressed using the stable regression model and unstable regression model, respectively.
TSI is the transient stability index defined in Equation (2) reflecting the stability degree of power
systems. The regression mean squared errors (MSEs) defined in Equation (A10) (Appendix C) at
different decision times of the stable regression model for the total testing stable instances and the
unstable regression model for the total testing unstable instances are shown in Table 4.

Table 4. Mean squared errors (MSEs) at different decision times of total testing stable instances and
unstable instances.

i (Cycles) Response Time (s) Total Testing Stable Instances Total Testing Unstable Instances

0 0 - -
3 0.05 0.0021 0.0103
6 0.10 0.0019 0.0101
9 0.15 0.0019 0.0098

12 0.20 0.0018 0.0095
15 0.25 0.0011 0.0045
18 0.30 0.0017 0.0092
21 0.35 0.0016 0.0091
24 0.40 0.0015 0.0088
27 0.45 0.0015 0.0083
30 0.50 0.0014 0.0080

It can be observed in Table 4 that both the regression MSEs of the stable and unstable regression
models had the trend of reducing with the increment of response time. The TSIs of the testing credible
stable instances obtained until 30 post-disturbance cycles were predicted using the stable regression
model. Figure 9 illustrates the detailed prediction results for the stable regression model at a response
time of 0.50 s. It can be found in Figure 9a,b that the prediction results of the testing credible stable
instances were closer to the actual TSI value than that of the total testing stable instances. The MSE
of the testing credible stable instances was 0.0003 which is much smaller than the 0.0014 for the
total testing stable instances. At the same time, the TSIs of the testing credible unstable instances
obtained until 30 post-disturbance cycles were predicted using the unstable regression model. Figure 10
illustrates the detailed prediction results for unstable regression model at a response time of 0.50 s.
It can be found in Figure 10a,b that the prediction results of the testing credible unstable instances
were closer to the actual TSI value than that of the total testing unstable instances. The MSE of the
testing credible unstable instances was 0.0023 which is much smaller than the 0.0080 for the total
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testing unstable instances. As mentioned in Section 5.5, those uncertain instances are always critical
instances near the classification boundary. It is very difficult to identify these instances quickly and
accurately with the existing approaches. Thus, it is more accurate and reasonable to predict the stability
degree of the credible instances obtained through the proposed hierarchical self-adaptive method.
Therefore, the first step of identifying the credible stable and unstable instances is of great help to the
next step of predicting the transient stability degree. This method achieves not only predicting the
stability of the instances, but also obtaining the stability degree of each instance, which is instructive
for emergency control.
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6. Discussion

6.1. Construction and Incompleteness of Input Features

The selection of reasonable input features has a significant impact on the performance of TSA
classifiers [11,20]. Different researchers approached transient stability uniquely, and their feature
extraction and feature selection methods were different. Therefore, there is no general feature set for
TSA, and it is difficult to say that there exists a feature set that always has the best performance for any
IS in any situation.

In addition, in practical applications, unexpected PMU failure, communication link delay, signal
interruption, cyber-attack, etc. [39,40] limit the availability of the features. An incomplete feature input
would detrimentally influence the accuracy of individual learning models or even make the transient
stability assessment process unavailable under this condition. Some researchers proposed a decision
tree with surrogate (DTWS) to solve missing features [41]. Others used the feature estimation method
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to predict the missing data directly [42], or used an emerging deep-learning technique called generative
adversarial network (GAN) to address the missing data problem [43].

6.2. Classifier Updating for Performance Enhancement

In practical applications, it is necessary to update the classifier depending on the practical situation
for performance enhancement. With the variations of load levels, network topologies, and so on,
the operation conditions change very much. Through pre-disturbance TSA simulation, the data
for updating can be obtained. However, this will be time-consuming for huge T-D simulations. In
addition, if the classifier is retrained by the newly generated comprehensive dataset considering all the
uncertainties associated with the new operation conditions, it also be time-consuming, especially for
classifiers constructed by deep learning networks. Therefore, in order to solve the time-consuming
problem of updates in this paper, active learning and fine-tuning methods can be adapted to select
informative and representative instances [11]. Firstly, new instances are generated via short-term
simulations. Secondly, these unlabeled instances are predicted by the pre-trained classifier to obtain
those import instances for the process of updating. Only those judged to be uncertain by the integrated
decision-making rule mentioned in Section 4.2 will be attached with target labels through a long-term
simulation. As analyzed in Section 5.5, those uncertain instances are close to the classification boundary
and are relatively indistinguishable. Thus, they are important instances for the process of updating.
Through fine-tuning the pre-trained classifier using these new labeled instances, the computational
time of both the T-D simulation and classifier training can be greatly reduced, making the proposed
method more applicable for industry online applications.

6.3. Increment of System Size

With the increase of system size, the growth rates of the sample size and feature dimensions are
exponential, leading to an increment in computational memory and computation time. However,
for statistics, the larger the dataset is, the more sufficient the information is likely to be. With
the development of computer technologies like graphics processing units (GPUs) and distributed
techniques like the alternating direction method of multipliers (ADMM), the advantages of big data
can be reflected. All the sub-classifiers can be trained by GPUs combined with the ADMM algorithm,
making the proposed approach more suitable for larger test systems in industry.

6.4. Misdetections and False Alarms

The costs of misdetections and false alarms are definitely different in TSA. The misclassification
of stable samples as unstable samples (false alarm) may cause malfunction of some control devices,
but it has little effect on the safe and stable operation of the entire system. On the other hand, the
misclassification of unstable samples as stable samples (misdetection) may lead to a chain collapse or
even catastrophic accidents, and the consequences are very serious. Therefore, the cost of misdetections
is greater than that of false alarms. When using a data-driven AI method for TSA, we should not
just pursue high accuracy but also focus on the counts of misdetections and false alarms, achieving
as high a prediction accuracy as possible, with no large false alarms and zero misdetections. In this
paper, through the suitable setting of thresholds, we could achieve 99.97% accumulative accuracy, with
three false alarms and zero misdetections for credible instances. This indicates the effectiveness of the
proposed hierarchical self-adaptive method and the importance of suitable threshold setting.

7. Conclusions

Based on a well-known deep learning technology called CNN, this paper developed an IS for
the rapid, accurate, and reliable post-disturbance TSA of power systems. It can not only export
credible accurate classification results, but also provide the stability degree of each instance, which is
instructive for emergency control. With the CNN algorithm and ensemble technologies, this IS uses
a strategically designed learning and an integrated decision-making rule to achieve a hierarchical
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self-adaptive method which makes correct transient stability prediction results at an appropriate earlier
time. Through the suitable setting of thresholds, it can achieve the goal of a high prediction accuracy,
few false alarms, and zero misdetections, allowing more time for emergency control and reducing
economic losses. Specifically, this two-step method (the first step is the identification of the credible
stable/unstable instances, and the second step is the prediction of transient stability degree) of TSA can
avert unreliable results, making all the decided instances accurate. More comprehensive case studies
will be done on a larger power grid in the future.
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Appendix A

All the input features and data normalization process in Section 2 are explained in the
following description.

For a power system with n generators, the COI reference of the rotor angle at t = ts after the fault
clearance, δCOI(ts), is:

δCOI(ts) =
n∑

i=1

Miδi(ts)/
n∑

i=1

Mi (A1)

The i-th generator relative rotor angle based on COI reference at t = ts is:

δ̃i(ts) = δi(ts) − δCOI(ts) (A2)

where Mi is the inertia coefficient of the i-th generator; δi(ts) is the i-th generator rotor angle at time
t = ts. The relative rotor speed, rotor acceleration and the kinetic energy of generator i at t = ts are
calculated by Equations (A3)–(A5) respectively and relative electromagnetic power of generator i at t =

ts is defined in Equation (A6), where Pmi(ts) represents the mechanical power at t = ts.

ω̃i(ts) =
[
δ̃i(ts)− δ̃i(ts−1)

]
/∆t (A3)

α̃i(ts) =
[
δ̃i(ts)− δ̃i(ts−1) + 2δ̃i(ts−2)

]
/(∆t)2 (A4)

EKi(ts) =
1
2

Mi(ω̃i(ts))
2 (A5)

P̃ei(ts) = Pei(ts)/Pmi(ts) (A6)

Given what it is said above, each kind of feature can be written as a matrix as follows:

X =


x1,1 x1,2 . . .
x2,1

. . .
xm,1

x2,2

. . .
xm,2

. . .

. . .

. . .

x1,s×n
x2,s×n

. . .
xm,s×n

 (A7)

The rows of the matrix represent the number of instances, and the columns of the matrix represent
the number of each kind of feature. Then normalization of the input data should be pre-processed. In
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this research, maximum and minimum normalization as in Equation (A8) is used to normalize the
input data.

x∗i, j =
xi, j −min

i

(
xi, j

)
max

i

(
xi, j

)
−min

i

(
xi, j

) (A8)

Appendix B

The following Figure A1 is a simple example showing the process of convolutional layer
forward propagation.
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Appendix C

The training method of CNN is the same as that of ANN. Adjust the network connection weights
and bias by mini-batch stochastic gradient descent and back propagation to minimize the loss function.
In this research, in order to avoid over-fitting problems, the common cross-entropy loss [23] with L2
regularization [24] is used in classification problem shown as Equation (A9).

Lossclassification= −
1
N

N∑
n=1

ynlogŷn + µw2
2

= −
1
N

N∑
n=1

[
y(1)n logŷ(1)n + y(2)n logŷ(2)n

]
+ µ

∑
i

∣∣∣w2
i

∣∣∣ (A9)

where N is the total number of training dataset instances, µ is the regularization weight, wi are weights

of network that need to calculate the regularization loss. yn =
(
y(1)n , y(2)n

)
is the true label vector and

ŷn =
(
ŷ(1)n , ŷ(2)n

)
is the predicted label vector of the n-th instance.

The loss function of mean squared error (MSE) is adopted in regression problem shown as
Equation (A10).

Lossregression =
1
N

N∑
n=1

(yn − ŷn)
2 (A10)

where yn and ŷn are the actual and predicted TSI of the n-th instance respectively.
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Table A1. Details of each individual CNN classifier.

Layer Filter Size/Stride Filter Number Padding

Input Layer - - -
Convolution Layer 1 3× 3/1× 1 32 Same
Max pooling Layer 1 2× 2/2× 2 32 Same
Convolution Layer 2 3× 3/1× 1 64 Same
Max pooling Layer 2 2× 2/2× 2 64 Same

Fully-connected Layer 1 120 - -
Fully-connected Layer 2 30 - -

Output Layer 2 - -

Appendix D

The script of the proposed hierarchical self-adaptive post-disturbance TSA method

Algorithm A1. Hierarchical Self-adaptive Post-disturbance TSA

1: Input input features and labels
2: Normalize 7 kinds of input features
3: Given 7 single CNNs with different types of input features: CNN1, CNN2, . . . , CNN7, whose first outputs

are represented by ŷ(1)1 , ŷ(1)2 , . . . , ŷ(1)7 ; Ti, i = 1, 2, . . . , s, is response time
4: for i = 1:s
5: do
6: Train 7 individual CNNs with each kind time-series input feature

corresponding to T1 to Ti, use the integrated decision-making rule for CNN based ensemble
classification on the 7 outputs of each remained uncertain instance in testing dataset

7: if min
(
ŷ(1)1 , ŷ(1)2 , . . . , ŷ(1)7

)
> α

8: credible stable instance, send into stable regression model to predict TSI

9: else if max
(
ŷ(1)1 , ŷ(1)2 , . . . , ŷ(1)7

)
< β

10: credible unstable instance, send into unstable regression model to predict TSI
11: else it is an uncertain instance at the current decision time
12: if the number of remained uncertain instances is zero
13: break
14 end
15: Output predicted stability status and stability degree TSI

The script of the training process of a single CNN

Algorithm A2. CNN Training Process

1: Input normalized input features and labels
2: Initialize weights and bias of the network randomly
3: The input data is forwardly propagated through the convolutional layer, the max-pooling layer, and the
fully connected layer to obtain an output value
4: Calculate the error between the output value of the network and the target value
5: Adjust the network connection weights and bias by mini-batch stochastic gradient descent and back
propagation to minimize the loss function
6: The weights and bias are updated according to the obtained error. Then go to the second step
7: End training when the error is equal to or less than our expected value
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