
energies

Article

Quantifying the Opportunity Limits of Automatic
Residential Electric Load Shaping

Robert Cruickshank 1,2,* , Gregor Henze 1,2 , Rajagopalan Balaji 1 , Bri-Mathias Hodge 2,3

and Anthony Florita 2

1 Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder,
Boulder, CO 80309, USA

2 National Renewable Energy Laboratory, Golden, CO 80401, USA
3 Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder,

Boulder, CO 80309, USA
* Correspondence: robert.cruickshankiii@colorado.edu; Tel.: +1-703-568-8379

Received: 11 July 2019; Accepted: 16 August 2019; Published: 21 August 2019
����������
�������

Abstract: Electric utility residential demand response programs typically reduce load a few
times a year during periods of peak energy use. In the future, utilities and consumers may
monetarily and environmentally benefit from continuously shaping load by alternatively encouraging
or discouraging the use of electricity. One way to shape load and introduce elasticity is to broadcast
forecasts of dynamic electricity prices that orchestrate electricity supply and demand in order
to maximize the efficiency of conventional generation and the use of renewable resources including
wind and solar energy. A binary control algorithm that influences the on and off states of end
uses was developed and applied to empirical time series data to estimate price-based instantaneous
opportunities for shedding and adding electric load. To overcome the limitations of traditional
stochastic methods in quantifying diverse, non-Gaussian, non-stationary distributions of observed
appliance behaviour, recent developments in wavelet-based analysis were applied to capture
and simulate time-frequency domain behaviour. The performance of autoregressive and spectral
reconstruction methods was compared, with phase reconstruction providing the best simulation
ensembles. Results show spatiotemporal differences in the amount of load that can be shed
and added, which suggest further investigation is warranted in estimating the benefits anticipated
from the wide-scale deployment of continuous automatic residential load shaping. Empirical data
and documented software code are included to assist in reproducing and extending this work.

Keywords: electric load modeling; demand response; price-response; spectral representation

1. Introduction

Residential demand response programs typically are implemented as utility-initiated, infrequent,
short-duration deferrals of peak electricity usage through direct load control. In direct load control,
customers allow their utility to remotely turn off appliances such as air conditioning and water
heating—a few times a year—for a credit on their electric bill [1]. Despite the promise of load
management through supervisory control of the Internet of Things (IoT), direct load control has
remained the primary form of residential demand response for several decades [1,2]. However,
direct load control was never designed to shed and add load to accommodate the ebb and flow of wind
and solar energy. As an alternative to direct load control, automatic residential load shaping (ARLS)
is explored as a load elasticity solution for maximizing the system-wide efficiency of electric power
generation via intraday control of IoT devices [3] while meeting the needs and comfort preferences
of consumers.
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To minimize consumer cost of electricity, an increasing number of smart homes with IoT devices
can transition from an autonomous to an orchestrated operation that shapes load to favor energy from
lower-cost wind and solar generation and higher efficiency conventional generation. Today, loads are
typically created by controllers that are based on fixed temperature or battery charging setpoints;
as such, these loads are considered inelastic in time. In the future, Internet-connected loads such
as heating, ventilation and air conditioning (HVAC) systems, refrigerators, freezers, domestic hot water
(DHW) heaters, and batteries could receive forecast dynamic pricing of electricity [4] or other load
shaping signals that introduce elasticity by allowing each to choose monetarily or environmentally
advantageous times to add or shed load. For example, changes in pricing could be used to update
setpoints, allowing IoT devices to implement operating strategies that minimize their cost of operation.
In doing so, instead of the traditional electrical supply-meets-demand relationship, load shaping
would be necessary in modulating elastic demand to leverage the cheapest sources and times of supply,
thereby reducing thermal and greenhouse gas emissions from power plants while maximizing
the usage of clean energy from renewable energy sources (RES). Furthermore, understanding the limits
of load shed and add opportunities would inform the design of generation, transmission, buildings,
and appliances in support of joint optimization of power production and electric load. For example,
understanding the opportunity limits of ARLS may support the business case for hot water heaters
and freezers to have increased thermal storage in order to maximize usage of wind and solar energy.

Modeling diverse energy use in residential loads can be problematic due to different models
and ages of appliances [5]. Furthermore, residential loads often exhibit non-stationary energy use
behaviour based on the unknown needs of occupants that may vary by the hour of the day, the day
of the week, seasons, shopping schedules, and home cleaning schedules [6]. Non-stationary energy
usage is difficult to quantify and simulate using traditional stochastic methods [7]. Preserving energy
usage diversity can raise the fidelity of electric load models [4], allowing for more realistic simulation
of the generation-to-load system-level response to pricing signals intended to shape residential demand.
The role of system-level response gains importance in the application of increasing penetration of wind
and solar RES [8–10].

Despite aging components and ever-increasing complexity, the evolving electric grid is highly
reliable [11] though expensive to operate. In order to accommodate spatiotemporal changes
in inelastic load along with variable and uncertain generation from RES, expensive marginal generation
and reserve capacity are kept online and dispatched as needed [12]. To address environmental
concerns and reduce the cost of generation, RES are becoming more prevalent [13] with an increasing
number of cities, counties, states, and nations aspiring to high RES penetrations, some as high
as 100% by 2050 [14]. Because RES are less forecastable and some are not dispatchable at all,
there is a growing need for creating load elasticity that can accommodate increasingly volatile
supply-demand mismatches.

This paper extends the investigations of the opportunity limits of ARLS [6] by quantifying
load shaping opportunities and uncertainty across a varying number of homes and by applying
recent developments in spectral simulation techniques from hydrology research. The spectral
techniques are applied to solve the research question of quantifying and simulating instantaneous
load shaping opportunities based on empirical data that reflect non-stationary appliance energy
usage. The novelty of this work is the use of empirical in situ measurements as seeds for the creation
and scaling of realistically diverse appliance demand profiles. Simulation of diversity in energy
consumption—without a priori knowledge of specific appliance and usage characteristics—is significant
as it provides building blocks for mimicking energy usage behaviour in a subdivision of homes
for demand response planning and operational decision making. Section 2 presents a review
of the literature. Section 3 describes the methodology. Section 4 discusses results, and Section 5
presents conclusions and outlook for future work.
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2. Literature Review

Demand response literature was reviewed with the goal of identifying: (1) Recent developments
in approaches to system-level price-response involving time-elastic end uses, (2) Modeling
gaps in price-response mechanisms, (3) Human behavioural issues related price-response,
and (4) Recommendations for future price-response research. Darby and McKenna [15] suggested
that new demand response measures will be needed to shape load throughout the day. Likewise,
based on recent experience in the United States and Europe [16,17], the net load after renewable
generation (i.e., the total load less the RES generation) is significantly less predictable and more volatile
and will need to be smoothed by demand response. Results of elasticity experiments by McKenna
and Keane found the introduction of dynamic pricing reduced the diversity of demand and increased
coincidental response by promoting the same characteristics of response among (Internet-connected)
automated appliances [4].

A review of 117 residential electricity demand models [18] indicated significant variability across
households and raised questions as to whether high-resolution stochastic modeling approaches provide
an adequate representation of the real world load characteristics of appliances. Adequate representation
is important given the massive body of model-based time-of-use and real-time pricing assessments that
have been used to address various aspects of residential demand response behaviour. Furthermore,
coupling the inherent limits of stochastic models along with diversity being reduced by pricing based
response [4] further raises the concern for adequately modeling appliance behaviour.

In a study of the most comprehensive data set of metered electricity demand in the United
Kingdom, empirical and simulated consumption data were analyzed on an aggregated annual basis [5].
The comparison used qualitative and quantitative methods between simulated and metered data sets,
and discrepancies were found in overall household and individual appliance electricity consumption,
where non-normality of the data was apparent. A kernel density estimate of the distribution
of empirical annual consumption data revealed the existence of a trimodal underlying distribution,
which makes intuitive sense at both the appliance and household level. For example, around the world,
electric hot water heaters are (1) most often in standby mode drawing no power, (2) are less often
in short recharge mode when recovering from standby losses or light-use activities such as washing
hands, or (3) are in long recharge mode when recovering from high-use activities such as dish
and clothes washing. A different study, aggregating large numbers of residential appliances for demand
response applications, used a methodology based on a multi-class queuing system, where each class
represented demand blocks of a specific power level, time duration, and a service delay requirement.
The model minimized the cost of the appliances’ aggregated power consumption under day-ahead
pricing [19]. A shortcoming of the model was the randomization of demand data from a single
consumer to represent the demand behaviour of 1000 consumers.

Overall, the review of the demand response literature suggested a scarcity of system-level
generation-to-load models of price-response and an abundance of subsystem models with unspecified
or limited spatiotemporal resolutions. Furthermore, the review revealed the need for bottom-up,
data-based, system-level models to simulate the impact of optimal demand response strategies
in maximizing efficient usage of thermal and RES generation. Also needed are top-down policy
measures that provide appropriate demand response incentives.

3. Methodology

3.1. Data and Methods

The field data analyzed in this study are from the Residential Building Stock Analysis
(NEEA RBSA): Metering Study, performed by the Northwest Energy Efficiency Alliance [20]. The data
are from a random sample of real homes in WA, OR, ID, and Western MT that are representative
of dwellings in the Northwest of the United States. The NEEA RBSA encompassed 29 months of energy
usage in 15-min observations of single-family homes, and data readings were 90.5% available over
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this period. Observations included total per residence electricity usage at the service entrance along
with up to 25 individually measured loads per home that were acquired and reported separately,
including various types of HVAC systems, appliances, lighting, entertainment, home office, and plug
loads. The study [21] reported the energy use of 101 homes including the loads therein. In particular,
the thermostatically controlled load (TCL) appliance data revealed how each device could provide
ARLS capability. The TCL energy usage per interval allowed for the creation of detailed load shapes
that provided insights to variable whole-house load.

The NEEA RBSA data captured the diversity in energy usage among homes and appliances
likely due to variations in building size and construction, numbers of building occupants,
occupant behaviors, and age of appliances. A continuum of short to long appliance run times was
evident, reflecting the possibility that sickly or high-use appliances, some which operated nearly
continuously, would not be able to participate in ARLS. Extreme care regarding data accuracy was
used during the extraction, transformation, and loading of observations. Some observations were
missing timestamps, some were out of the range of possible behavior, e.g, orders of magnitude
too large or negative, and other observations were completely missing. Data anomalies raised
questions about potential gaps or errors in acquisition, along with the possibility that some appliances,
such as a secondary refrigerator or freezer, were intentionally turned off for days, weeks, or months.
Energy units of kWh/15-min are referenced in this study due to the unavailability of instantaneous
power measurements.

The colored bars in Figure 1 depict when an appliance was operating. Individual bar width
is 15-min, and bar height denotes the kWh of electricity used in 15-min. A large colored region
indicates a long run time, e.g., a refrigerator operating for an extended period after being opened or
refilled with groceries.

Figure 1. Energy usage of TCL appliances on 3–4 July 2012, showing kWh per 15-min interval.
House numbers appear after appliance names and vertical dashed lines separate days. Note diversity
in energy usage along axes: (a) two refrigerators, the one at right with a long run times in evenings
and higher peak use; (b) two freezers, the one at right with nearly symmetric run times and lower peak
use; and (c) two DHW heaters with typically low run times, the one at right with higher peaks.

Distributional statistics for NEEA RBSA TCL appliances were calculated and visualized using
stochastic and spectral methods. Next, a binary model of conditional operation was developed
to accommodate diversity in appliance energy consumption related to duration of use, frequency of use,
and start time. Lastly, empirical data were simulated, and the probability density functions (PDFs)
of resulting ensembles were compared to observations.
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3.2. Modeling TCL Behaviour Using NEEA RBSA Data

To capture the diversity in energy usage, NERA RBSA TCL appliances were considered
as contributors to desirable load increases or decreases based upon the on or off state of each over
time. Load shaping opportunities were estimated throughout the day wherein TCL appliances were
assumed to have Internet connectivity and the ability to change setpoints automatically to execute
financially beneficial on and off choices during periods of low and high energy costs. An extreme
illustrative case assumed contiguous non-overlapping temperature control setpoints for an electric
DHW heater wherein the on state or off state of the device was used to estimate the instantaneous
opportunity to increase or decrease load given an electricity price change. To simplify calculation
of the potential for load shaping, it was further assumed that TCLs always operated within their
control differential dead band as depicted in Table 1.

Table 1. Sample DHW heater non-overlapping setpoints. The ‘Not modeled’ entries reflect model
constraints that limit operation between 120 and 130 F inclusive.

Temp. F High $/kWh Low $/kWh

131 and above Not modeled Not modeled
130 Always OFF Turn Off
129 Always OFF Stay ON
128 Always OFF Stay ON
127 Always OFF Stay ON
126 Always OFF Stay ON
125 Turn OFF Turn ON
124 Stay ON Always OFF
123 Stay ON Always OFF
122 Stay ON Always OFF
121 Stay ON Always OFF
120 Turn ON Always OFF

119 and below Not modeled Not modeled

When the electricity price changed, from low to high, or high to low, TCL appliances reacted
as described in Table 1. This state-based logic was replicated across all TCL appliances to produce
estimates of Load Add and Load Shed opportunities in a time series that was summed within houses
and across houses, without regard for phenomena such as the inefficiency of preheating or the impacts
of energy rebound. Ideally, load shed and add would be expressed in units of power (kW). That said,
only units of energy (kWh) were available in the RBSA Metering study.

At any instant in time, appliances were either off or on. Looking forward over n time steps
of the energy usage of an individual appliance, a maximum load, Lmax, was determined. At any time,
t, the above logic estimated the load shed or add opportunity, OP. Given a high electricity price,
an off appliance was given the incentive to turn on with a low price of electricity, which resulted
in adding load, Ladd, based on Lmax, as in:

Lappliance
add = OPOFF appliance

add load = Lappliance
max(t,t+n) (1)

Given a low electricity price, an appliance with a load, Lt, was given the incentive to turn
off with a high electricity price, which resulted in load shedding, Lshed, equal to negative Lt, as in:

Lappliance
shed = OPON appliance

shed load = −Lappliance
t (2)

As modeled, if an appliance had partial load, then load addition was not applied, e.g., if Lt was
less than Lmax.



Energies 2019, 12, 3204 6 of 19

Summing across TCL appliances per home yielded the lower and upper limits of load that could
be shed or added as in (3) and (4):

Lhome
add = ∑

TCL appliances
Lappliance

add (3)

Lhome
shed = ∑

TCL appliances
Lappliance

shed (4)

Summing across homes yielded the lower and upper limits of load that could be shed or added
as in (5) and (6):

Lhomes
add = ∑

homes
Lhome

add (5)

Lhomes
shed = ∑

homes
Lhome

shed (6)

In simplifying (1) through (6), the duty cycle, DC, quantified the on and off behaviour of a TCL
appliance over any period. The DC described the behaviour of appliances with intermittent as opposed
to continuous operation. The DC is the ratio of the appliance on time divided by the total applaince
on and off time, as in:

DCt,t+n = (ON time)t,t+n/(total time)t,t+n (7)

In any period, appliances with a low DC had few opportunities to shed load as they were
most likely already off. Likewise, somewhat counter-intuitively, a low duty cycle indicated many
opportunities to add load, albeit for perhaps only a short duration. Conversely, a high duty cycle
indicated a low opportunity to add load and a high opportunity to shed load, as in (8) and (9):

OPappliance add load
t,t+n = 1 − DCappliance

t,t+n (8)

OPappliance shed load
t,t+n = DCappliance

t,t+n (9)

Opportunities to shed and add load were summed across TCL appliances and then across homes
as in (3)–(6) to yield estimates of the instantaneous downward and upward load-shaping opportunities.
It is crucial to note that after a load decrease or increase event, the future operation of a TCL
appliance has new constraints, e.g., due to comfort requirements, load add or shed cannot be shed
or added continuously. Out of scope of this paper, though analyzed in related work, are the length,
periodicity, and resulting load shed and add opportunities after appliances participate in a load
increase or decrease event [22].

3.3. Scaling Up the NEEA RBSA Dataset

Diverse profiles from thousands of homes are required for the future application of this work
involving the joint optimization of generation and load. In simulating ensembles of synthetic appliance
data, spectral decomposition and reconstruction were used [23] to preserve the observed diversity
in energy use. Spectral methods captured the non-normal, non-stationary energy usage of appliances
and met the goal of specifying realistic probability distribution functions.

As summarized by [7], the application of traditional stochastic methods may fail to capture
significant spectral properties. For example, measures such as mean, variance, and skew may fail
to reproduce non-stationary behaviour in the observed data. Failure to capture spectral properties can
lead to estimates that do not reflect the diversity of the load. As such, three variants of the wavelet
auto-regressive method (WARM) [7] were compared in their ability to capture and recreate diverse
energy usage of appliances.

As a first step, the TCL appliance energy usage observations were decomposed via continuous
wavelet transform as depicted in Figure 2. Components were identified based on peaks in the global
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(time-averaged) wavelet spectrum. The approach decomposed each time series of observations into
different components at multiple frequencies using the wavelet transform; this provided the power,
or variance, of the original observed behavior in both the time and frequency domains.

Figure 2. Example diagram of wavelet decomposition and aggregation using the enhanced WARM.
Whereas the standard Fourier transform is localized in frequency, wavelets are localized in both
frequency and time.

For a time series, xt, the continuous wavelet transform was defined as:

X(a, b) = a1/2
∫ ∞

−∞
xtφ

∗(
t − b

a
)dt (10)

where a was a scale parameter (2 * dt = 30 min), φ∗ was the wavelet function and b was the shift
parameter (1 * dt = 15 min) [24]. The * denotes a complex conjugate. The Morlet wavelet
was a reasonable first choice in wavelet analysis, was most often applied by others with success,
and was given by:

φ(η) = π−1/4exp(iωoη)exp(−n2

2
) (11)

where ωo and η were nondimensional frequency and time parameters, respectively [25]. The shifted
and dilated form of the mother wavelet was given by substituting t−b

a for η in (11) [25–28]. For a variety
of wavelet scales, (10) can be considered as a series of convolutions between the wavelet function
(11) and the original time series for all points. The process was simplified as all convolutions were
completed simultaneously for a given scale using the convolution theorem. As such, the wavelet
transform was defined as the inverse Fourier transform of the product of the wave function
in the Fourier space and the data.

The wavelet spectrum at different frequencies over time was depicted by a contour plot
of the wavelet transform with a companion plot of the global spectrum that showed the average
variance strength at each frequency. Lastly, to simulate the data, phase randomization,
a recent development in wavelet-based simulation methods [7], was applied and compared
to auto-regressive and autoregressive integrated moving average (ARIMA) simulations of the wavelet
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decomposed energy usage of a DHW heater over the same hour of a day for an entire year. In an effort
to fit the data as well as possible, the phase randomization method applied a cosine perturbation
to the spectral fit to create an ensemble of DHW heater energy use. Alternative curve fitting
techniques were tried and performance compared. A simple auto-regressive process was applied
to determine if energy usage could be successfully regressed on its own lagged (i.e., prior) values.
In an attempt to improve the auto-regressive fit to the observed energy use, the ARIMA process added
(a) a differencing step to accommodate non-stationarity, and (b) a linear combination of error terms
for values that occurred contemporaneously and at various times in the past.

To assist in reproducing and extending this work, a representative sample of empirical data and
documented R software code can be found in the Supplementary Materials.

4. Results

4.1. Residential Appliance Load Profiles

Stochastic analysis of empirical data revealed diverse, non-normal distributions of energy usage
for the studied TCL appliances. In addition, non-stationary usage was indicated by a non-constant
mean and variance in different time epochs. The empirical 15-min observations were dominated by zero
values and had long tail frequency distributions. Once zero values were removed, kernel density
estimates provided insights to bimodal distributions of air conditioner and refrigerator behaviour
and trimodal distributions of freezer and hot water heater behaviour. Lastly, spectral methods provided
both visualizations of diverse and non-stationary energy usage as well as PDF ensembles of simulated
hot water heater behaviour.

The observed energy usage of appliances varied by a factor of 2 or more as depicted in Figure 3,
which assumed continual usage on an annual basis. The positive skew in boxplots indicates
the presence of high energy-consuming appliances.

Figure 3. Boxplots of TCL appliance annual energy use. Mean values are shown in red. Values below
each plot indicate the number of appliances, sample observations, and average duty cycle from Q2
2012–Q1 2013 inclusive. Note the wide range of diversity, particularly among refrigerators and freezers.

The titles above each boxplot in Figure 3 refer to appliance types, e.g., DWH_1 denotes primary
electric hot water heaters. Numerical summaries below each boxplot provided insight into the number
of appliances by type in the RBSA data, the number of total observations, and the duty cycle.
As expected, all homes had a primary refrigerator. About a quarter of homes had a secondary
refrigerator, and almost 40% of homes had a stand-alone freezer. A total of six homes had a secondary
freezer and the low the number of samples for this appliance type indicate there were many
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NAs in the data, indicating missing observations, perhaps because secondary freezers were not
operated year-round.

The diversity in empirical energy consumption impacted the bounds of energy usage for small sets
of homes that are typically fed by a split-phase transformer. For example, depending on the number
of homes, the mean energy used to heat DHW had wider bounds with fewer homes sampled
as depicted in Figure 4.

Figure 4. Bounds of electric energy usage for heating DHW over interval 00:00 to 00:15 on 04-01-2012.
Moving left to right towards more houses being sampled, note the tighter bounds, fewer outliers,
and the median values approaching the mean energy usage of all electric water heaters.

The convergence to mean energy usage in Figure 4 provided an empirical building block
for calculating uncertainty in shedding or adding load as a function of the number of participating
houses. Simply put, an increase in participating homes resulted in greater certainty in the amount
of load that could be shed or added.

Focusing on a single DHW heater, the distributional statistics of energy usage varied at 15-min
intervals (5 plots from left to right) and per day (at far right) as depicted in Figure 5.

Figure 5. Electric DHW heater energy usage in RBSA home 10388 per 15-min interval and per day
from Q2 2012–Q1 2013 inclusive. Usage is representative of observations of electric DHW heaters
in other homes.

The spread in Figure 5 statistics provided insight to the diversity in the energy usage of a single
appliance, in this case, a DHW heater. Note the daily sum at far right varied by a factor
of approximately eight.
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Summing DHW heater energy usage into 1-h intervals, an annual distribution of usage by the hour
of the day is shown in Figure 6.

Figure 6. DHW heater energy usage in RBSA home 10388 per hour of day from Q2 2012–Q1 2013
inclusive. Note that there were more outliers but lower interquartile variance in early morning hours.

From Figure 6, it can be inferred that 5 a.m. is the start of increased hot water usage in the morning
and is among the high-variance off-peak hours. Hours of high variance can result in difficulties
in estimating instantaneous load shed and add opportunities. As such, the 5 a.m. hour was chosen
as a difficult test case for evaluating curve fitting and creating simulation ensembles. If 5 a.m.
daily energy usage could be simulated for one DHW heater, other hours, water heaters, homes and,
cities could be modeled similarly.

The limitations of conventional linear and quadratic curve fitting methods were evident when
attempting to capture the energy usage variance shown in Figure 6 and resulted in unsatisfactory
curve fits of the time-varying, non-stationary empirical appliance usage data. As a solution test case,
the spectral WARM method was applied to decompose and reconstruct the energy usage of DHW
heating in the 5 a.m. hour over the course of a year and resulted in a nearly perfect curve fit as depicted
in Figure 7 (six months are shown for visual clarity of chart).

Figure 7. A WARM-based curve fit of 5 a.m. hourly energy usage of DHW heater in RBSA home 10388
from Q2 2012–Q3 2012 inclusive. Prediction errors in the ON state are depicted by the vertical offset
between the observed value at the top of each bar and its corresponding wavelet reconstructed value
denoted as a red dot; errors in the OFF states include non-zero values viewed along the day-axis.
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4.2. Residential Load Shaping Opportunities

Diversity in appliance empirical energy usage resulted in varying load shaping opportunities
across the studied NEEA RBSA homes, of which, 57 homes used electricity to heat DHW and 44
used natural gas or propane. To estimate opportunities at 15-min intervals, (1) and (2) were applied
to estimate the ability of individual electric TCL appliances to shed and add load given a look-ahead
period of 24-h for Lmax. Next, on a per home basis, opportunities were summed across TCL appliances
by applying (3) and (4) to calculate the lower and upper instantaneous limits of load shaping,
as depicted in Figure 8 (six-hours are shown for visual clarity of chart) and Table 2.

Figure 8. Energy usage profile in 15-min intervals of RBSA home 13019. The black line denotes
the electric service for the whole-building. The vertical distance from the black line down to the green
line is the instantaneous load that could be shed. The vertical distance from the black line up to the red
line is the instantaneous load that could be added. The energy usage of 2 refrigerators and a freezer
are depicted by purple, light blue, and dark blue dashed lines at the bottom of the graph. RBSA home
13019 is representative of homes with gas DHW heaters.

Table 2. Load-shaping opportunities across 15-min intervals for Home 13019 for the first six hours
during 1 April 2012.

Opportunities Maximum Minimum Mean

Increase load [kW] 0.80 0.36 0.59
Decrease load [kW] 0.64 0.30 0.44

Electricity usage from individual homes was summed using (5) and (6) to estimate
the instantaneous load shaping opportunities across groups of homes. Summing the upper and lower
limits and the whole-building electric usage across the 14 homes exhibiting best data quality yielded
an aggregate instantaneous load that could be shed or added, as depicted in Figure 9 (14 homes were
chosen for visual clarity of chart).

Summing across houses showed that, at any point in time, significantly more load could be added
than could be shed. This result is primarily attributable to the low duty cycle and the high instantaneous
load of DHW heaters, which is on the order of 10 to 40 times greater than that of refrigerators
and freezers.
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Figure 9. Aggregate load profile of 14 homes at 15-min intervals. The vertical distance from the black
line down to the green line is the instantaneous load that could be shed. The vertical distance
from the black line up to the red line is the instantaneous load that could be added. The large
red spikes indicate significant load adding opportunities, e.g., after completion of morning DHW
heating. Greater mid-day and evening load shaping opportunities were also evident.

4.3. Spectral Visualization and Simulation of Appliance Loads

None of the results discussed thus far provide visual insight to time-varying appliance energy
usage throughout the year. A major benefit of wavelet visualizations is their ability to convey more
comprehensive information than traditional distributional metrics and visualizations such as box
plots and histograms. For example, the wavelet-based single DHW heater visualization depicted
in Figure 10 was based on 15-min electricity usage over 25 months. In Figure 10, the plot at left
is the wavelet-based local power spectrum, the y-axis is the wavelet period, and the x-axis is the wavelet
location in time. The colors white and blue denote the lower power spectra. Yellow and red denote
the higher power spectra. The arch denotes the “cone of influence” above which there is limited
confidence in the data [25]. The graph at the right denotes the global power spectrum as would
be found using Fourier analysis. The thin solid and dashed gray lines indicate the 95% and 90%
confidence levels given red noise, which has a power spectrum weighted toward low frequencies
but has no single preferred period. While both red noise and white noise have zero mean and
constant variance, red noise was chosen as it is serially correlated in time, resulting in the lag-1
autocorrelation between two successive time samples having a correlation coefficient, r, such that
0 < r < 1 [29]. Additional wavelet visualizations of energy usage by RBSA refrigerators and freezers
may be found in [6].

Using a nonparametric density estimation technique, spectral reconstruction was used to simulate
PDF ensembles of the 5 a.m. energy usage of a DHW heater and were compared to the PDF
of the empirical data. There were differing results from the simulations based on wavelet-based
phase randomization, straight autoregressive, and ARIMA methods. The phase randomization
method applied a cosine perturbation to the spectral fit and exhibited the best performance in creating
ensembles of DHW heaters that model the empirical PDF, as depicted in Figure 11.

The straight autoregressive and ARIMA simulation results were obtained using
the STATS::ARIMA.SIM Function from the R programming environment [30]. The simulations
based on the straight autoregressive method performed similarly to ARIMA simulations, with PDF
ensembles from both methods showing poor fits as depicted in Figures 11 and 12.

In both Figures 12 and 13, the simulation ensembles do not reflect the empirical PDF.
Also, note the high occurrence of unrealistic negative values further indicating poor curve fits
by the straight autoregressive and ARIMA simulation methods.
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Figure 10. Plots for the DHW heater in RBSA home 22284, from April 2012–April 2014 inclusive. At left,
red denotes periods of greater hot water use. Red along the 24-h period indicates sustained diurnal
use, which is also shown in the companion graph at right by the peak next to the left arrow. Less red
at far left indicates less hot water was used in the 24-hour (and greater periods) from April through
September 2012. Non-stationary usage was also observed in other homes and appliances.

Figure 11. Simulation of the wavelet decomposed 5 a.m. hourly energy usage by DHW heater in RBSA
home 13088 from Q2 2012–Q1 2013 inclusive, using the phase randomization method.

Figure 12. Simulation of the wavelet decomposed 5 a.m. hourly energy usage by DHW heater in RBSA
home 13088 from Q2 2012–Q1 2013 inclusive, using the Autoregressive method.
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Figure 13. Simulation of the wavelet decomposed 5 a.m. hourly energy usage by DHW heater in RBSA
home 13088 from Q2 2012–Q1 2013 inclusive, using the ARIMA method.

Figure 14 summarizes the PDF ensembles in Figures 11 and 12 as boxplots. The phase
randomization method most accurately modeled the observed behaviour of the empirical PDF.

Figure 14. Comparison of phase randomization and ARIMA simulation techniques of the wavelet
decomposed 5 a.m. hourly energy usage by DHW heater in RBSA home 13088 from Q2 2012–Q1
2013 inclusive.

To quantify the performance of the simulation methods, distributional statistics for the first,
second, third and fourth statistical moments (mean, variance, skew, and kurtosis) were shown
for all simulations, along with maximum, minimum and sum, in Figures 15–17. For comparison,
the performance of each simulation method was shown along with statistics from the empirical
observations. For most statistical measures, the phase randomization method had better simulation
performance than either the straight autoregressive or ARIMA methods.

Note in Figure 15, the unrealistic slightly negative mean energy usage and spread in the variance
of both the straight autoregressive and ARIMA simulation methods.

In Figure 16, the statistics of all simulation methods were less than in the observed RBSA data.
Figure 17 further highlights the challenges in simulating RBSA appliance usage data, in this case,

for a single DHW heater. Note that all simulation methods understated both peak usage and minimum
usage, some more so than others. Figures 15–17 together highlight the limitations in all simulation
methods and quantify the superior performance of phase randomization over both the straight
autoregressive and ARIMA simulation methods.
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In summary, results indicate the ability for different types of Internet-connected appliances to shed
and add electric load throughout the day. The implications of automatically adding and shedding loads
are significant in the context of the grid supporting increased penetration of RES [8–10]. Results also
indicate the improved performance of spectral methods over traditional statistical methods in the ability
to quantify and simulate non-stationary behavior [7], which addresses concerns in the literature
of preserving energy use diversity [5] and improving model fidelity [4] for realistic simulation
of the generation-to-load system-level response.

Figure 15. Boxplots of mean and variance comparing the performance of reconstruction methods
in simulating the 5 a.m. hourly energy usage by the electric DHW heater in RBSA home 13088,
from Q2 2012–Q1 2013 inclusive. Statistics of empirical observations are denoted by red dots. For mean
and variance, phase randomization provided superior performance.

Figure 16. Boxplots of skew and kurtosis comparing the performance of reconstruction methods
in simulating the 5 a.m. hourly energy usage by the electric DHW heater in RBSA home 13088,
from Q2 2012–Q1 2013 inclusive. Statistics of empirical observations are denoted by red dots. For skew
and kurtosis, the phase randomization method had somewhat better performance.
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Figure 17. Boxplots of maximum, minimum and sum compared the performance of reconstruction
methods in simulating the 5 a.m. hourly energy usage by the electric DHW heater in RBSA home
13088, from Q2 2012–Q1 2013 inclusive. Statistics of empirical observations are denoted by red dots.
Note: (a) the significant variances in the maximum statistic would adversely affect load shaping
calculations, (b) the minimum statistic included unrealistic negative values, and (c) Mean values of zero
in the AR and ARIMA sum statistics were unrealistic.

5. Conclusions and Outlook for Future Work

In this study, it was assumed that utilities would evolve beyond direct load control and use
automated residential load shaping (ARLS) to create elasticity in demand by continually broadcasting
a forecast dynamic price of electricity to IoT appliances in order to maximize generation efficiency
and minimize the cost of electric power production and consumption. Changes in pricing resulted
in instantaneous load shed and add opportunities which were quantified for single-family homes
in the Northwest United States. Empirical appliance energy use data were explored across
individual homes and groups of homes resulting in several interesting features and statistics,
including the correlation between duty cycle and instantaneous opportunities, however brief they
might be, to shed or add electric load.

Wavelet-based spectral analysis was use to capture, view, and simulate diverse and unknown
drivers of load such as the type, age, and time of use of appliances and occupancy characteristics.
The performance of WARM phase randomization, auto-regressive and ARIMA simulation methods
were compared; the ability of each method to reflect diversity in energy usage of an actual DHW water
heater in a high variance hour over the course of a year was quantified, with phase randomization
providing the most accurate simulation ensembles. Most importantly, this work provided insights
in quantifying diversity in appliance energy consumption—without a priori knowledge of appliance
details—and in simulating load ensembles that reflect observed energy use. The main contribution
is that a robust simulation technique like WARM provides the ability to simulate synthetic subdivisions
for use in energy management research. The WARM can be used to simulate a variety of ensembles
mimicking each appliance in a subdivision in order to aggregate statistics of energy usage, by house
and electrical distribution feeder, for potential decision making in managing the grid.

In related research, ARLS was extended to explore the potential for shaping demand
at the distribution feeder level in order to maximize the use of RES and minimize variable electricity
generation costs. A physical model of the interaction between electric loads and building thermal mass
was used to simulate interior building temperatures and air conditioning behaviour, subject to occupant
comfort constraints. Location-specific weather and region-specific residential building envelopes were
inputs to the model. Instantaneous load-shedding and load-adding opportunities were quantified
for greater than 100,000 individual homes. Location-specific weather was used to simulate electric
loads on 204 electrical distribution feeders with load shed and add results presented for 35 cities
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across the United States [22]. In the future application of this work, in the context of distributed
model predictive control [31,32], ARLS is further expanded and coupled to electricity production cost
models to jointly minimize financial costs for large geographical regions encompassing several IECC
climate zones [33] in the United States. Financial costs to be minimized are the production operations
of utility-scale thermal and renewable generation, by modifying the charging and discharging
behaviour of residential batteries, the heating of DHW, and the cooling of residential buildings
with central air conditioning.

Supplementary Materials: Data and software code are available online at http://www.mdpi.com/1996-1073/
12/17/3204/s1.
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