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Abstract: Fuel cell stack configuration optimization is known to be a problem that, in addition
to presenting engineering challenges, is computationally hard. This paper presents an improved
computational heuristic for solving the problem. The problem addressed in this paper is one
of constrained optimization, where the goal is to seek optimal (or near-optimal) values of
(i) the number of proton exchange membrane fuel cells (PEMFCs) to be connected in series to form
a group, (ii) the number of such groups to be connected in parallel, and (iii) the cell area, such
that the PEMFC assembly delivers the rated voltage at the rated power while the cost of building
the assembly is as low as possible. Simulation results show that the proposed method outperforms
four of the best-known methods in the literature. The improvement in performance afforded
by the proposed algorithm is validated with statistical tests of significance.

Keywords: proton exchange membrane (PEM) fuel cell; maximum power point; optimization;
machine learning; simulation; heuristic

1. Introduction

Energy has been identified as “humanity’s number one problem for the next 50 years” [1]. Fuel
cells [2–6], which are electrochemical devices that convert chemical energy to electrical energy, offer
a viable alternative to fossil-fuel-based sources of energy. Of the various types of fuel cells (see,
for example, references [6,7] for an overview), proton exchange membrane (or polymer electrolyte
membrane) fuel cells, or PEMFCs, provide a relatively low-cost, low-temperature, high-efficiency
and near-zero-pollution energy source for both stationary and portable applications. This paper uses
a machine learning approach to address a PEM fuel cell problem of practical interest.

Fuel cells are complex systems whose electrochemistry, thermodynamics and engineering have
not yet been fully understood. The complexity and non-linearity of the underlying processes
in fuel cells (and many other areas of energy research) are often too hard for physics-, chemistry-,
or engineering-based methods to build and interpret models that offer a balance between theoretical
rigor and practical usefulness. It is here that data-driven or machine learning approaches come
in handy, providing an alternative route to predictive analysis and parameter optimization.

The literature on the use of machine learning in energy research is vast; a few representative
examples are mentioned below. A recent example of the use of deep learning (e.g., [8]) in nuclear
fusion energy is found in [9] where a method has been developed for predicting disruptive instabilities
in controlled fusion plasmas in magnetic-confinement tokamak reactors. Related work on the same
type of problem has used machine learning strategies such as neural network [10–12], fuzzy logic
and regression trees [13], support vector machine classification [14], and genetic algorithms [15].
Deep neural network is shown to outperform linear regression and (shallow) neural network
for a short-term natural gas load forecasting application [16]. A problem of allocating optical links
for connecting automatic circuit breakers in a utility power grid has been solved using a multi-objective
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genetic algorithm (NSGA-II) [17] in [18]. Energy optimization under performance constraints in chip
multiprocessor systems has been addressed in [19] where deep neural network is shown to outperform
reinforcement learning (e.g., [20]) and Kalman filtering (e.g., [21]). Training a neural network on
weather and turbine data, Google’s DeepMind system predicted “wind power output 36 hours ahead
of actual generation ... [and] boosted the value of ... wind energy by roughly 20 percent” [22]. A study
of the prediction of hydrogen production via biomass gasification is undertaken in [23] where the
following four algorithms (e.g., [24,25]) are used: linear regression, K-nearest neighbors regression,
support vector machine regression, and decision tree regression.

Modeling, simulation, design, development and control of fuel cells and fuel cell-based
systems present a variety of challenges, some of which have, in recent years, been formulated as
classification, clustering, regression or optimization and addressed with computational (algorithmic)
approaches based on machine learning. Examples abound; just a few illustrative ones are
mentioned here. Genetic programming (e.g., [26,27]) is used in a supervised learning mode for
static and dynamic (load-following) modeling of solid oxide fuel cells (SOFCs) [28] and also in
the optimization of the forming process of bipolar plates of PEMFCs [29]. Differential evolution
(e.g., [30,31]) is used to optimize seven parameters for modeling the polarization curve of a
PEMFC stack [32]. An adaptive-neuro-fuzzy-inference-system-based maximum-power-point-tracking
controller is designed [33] for a proton exchange membrane fuel cell system used in electric vehicle
applications. Fault classification of PEMFCs that are used in trams is achieved by employing a
hidden Markov model (HMM) approach (e.g., [25]) in [34] where K-means clustering (e.g., [24]) is
used to eliminate singular data points as part of the preprocessing step before the HMM is applied;
classification results produced by the HMM are shown to be better than those produced by the
support vector machine method. Deep learning is applied [35] to sequence fault diagnosis of a
PEMFC water management subsystem. Particle swarm optimization [36] is used in component
sizing for a PEMFC-battery hybrid system for locomotive applications [37]. Adaptive neuro-fuzzy
controllers are designed [38] for performance enhancement of PEMFCs. A prediction method for
PEMFC performance degradation is proposed [39] using long short-term memory (LSTM) recurrent
neural network [40] along with the auto-regressive integrated moving average (ARIMA) method.

In practical applications, for meeting specific output voltage, current or power requirements,
a number of fuel cells are typically assembled in series and/or parallel connections. The design
of the stack configuration of fuel cells for use as stand-alone power-supply systems presents
engineering challenges and is a non-trivial computational problem (e.g., [41–43]). This paper addresses
the design problem considered in [41–43]. Specifically, the problem is to find optimal (or near-optimal)
values for (i) the number of PEMFCs to be connected in series in a group, (ii) the number of such
groups to be connected in parallel, and (iii) the cell area, such that the assembly delivers the rated
voltage at the rated power at the minimum possible cost. The current delivered by a cell depends
on, among other factors, its active surface area. The total number of cells and the cell area determine
the physical size of the stack and thus the space needed to install the stack in a household setting.
A second motivation for seeking to reduce the total stack area is that Pt used in the electrodes
is expensive [43]. In references [41,42], computational heuristics were used to solve this design
optimization problem, with the heuristic of [42] shown to be better than the genetic algorithm of [41].
In the present paper, we develop an algorithm (heuristic), based on ideas from the population-based
evolutionary algorithm (e.g., [44]) and the Jaya algorithm [45], producing results better than those
reported in [41–43] and those produced by the Jaya algorithm [45].

The remainder of this paper is organized as follows. Section 2 provides the background
along with a detailed description of the problem. Section 3 develops the new method and derives
the computational complexity of the algorithm. Simulation results are presented in Section 4
where performance comparisons of the competing algorithms are provided using statistical tests
of significance. Conclusions are drawn in Section 5.



Energies 2019, 12, 3176 3 of 26

2. The Problem

2.1. Theoretical Background

Part of this subsection is taken from [46,47]. The reversible thermodynamic potential
or equilibrium voltage or open-circuit electromotive force (EMF) of the fuel cell is given by the Nernst
equation, which is generally considered to be the cornerstone of fuel cell thermodynamics [2,46,47]:

ENernst = E0 +
RT
nF

ln

∏i aci
reactanti

∏j a
cj
productj

 , (1)

where E0 is the reference (standard) EMF at unit activity and atmospheric pressure, i and j are
the numbers of reactant and product species, a represents the activity, ci is the stoichiometric coefficient
of species i, R is the universal gas constant, F is Faraday’s constant, n is the number of electrons
transferred for each molecule of the fuel participating in the reaction, and T is the temperature [46,47].
For a hydrogen-oxygen fuel cell (e.g., SOFC or PEMFC), the reactants are hydrogen and oxygen,
and water (steam) is the product. (This paper uses many of the notations of [42,46]. A nomenclature
is provided at the end of the paper.)

The reference EMF, E0, depends on temperature T:

E0 = E0
0 + (T − T0)

∆s
nF

, (2)

where E0
0 is the standard EMF at temperature T0, and ∆s is the change in entropy. The activity a

of an ideal gas is given in terms of its pressure (or partial pressure) p:

aH2 =
pH2

p0 , (3)

aO2 =
pO2

p0 , (4)

where p0 is the standard-state pressure (1 atm).
When the fuel cell is operated below 100 ◦C, so that liquid water is produced (as in proton

exchange membrane fuel cells), the activity of water can be taken to be unity (aH2O = 1). In that case,
the Nernst equation takes the form [46,47]

ENernst = E0 +
RT
2F

ln
(

pH2

√
pO2

)
. (5)

where use has been made of the fact that n = 2 for a hydrogen fuel cell.
The terminal (output) voltage is generally obtained by subtracting from ENernst the following

types of losses (or “irreversibilities”) [46,47]:

• Activation loss
• Concentration loss
• Ohmic loss
• Fuel crossover and internal current loss

Defining the current density, iden, as

iden =
i

Acell
,
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where Acell represents the cell active area, we can express the activation loss, caused by the slowness
of the electrochemical reactions taking place on the surface of the electrode [6], as

ηact =
RT
αnF

ln
(

iden
i0,den

)
,

where α is the electron transfer coefficient, iden is the current density, and i0,den the exchange current
density (with iden > i0,den, so that the logarithm is positive). Since the Tafel constant (Tafel slope) A [2]
is given by

A =
RT
αnF

,

this loss can be expressed as

ηact = A ln
(

iden
i0,den

)
. (6)

Concentration loss or mass transport loss results from the decrease in concentration of the reactants
at the triple-phase-boundaries as the fuel is used:

ηconc = −B ln
(

1− iden
ilimit,den

)
, (7)

where B is a parametric coefficient (V), and ilimit,den (> iden) is the limiting current density.
Ohmic loss is caused by the electrical resistance of the electrodes, the polymer membrane,

and the conducting resistance between the membrane and the electrodes [2]:

ηohm = idenrarea, (8)

where rarea is the area-specific resistance.
Losses also occur because of the leakage of fuel through the electrolyte and because of internal

currents [48]. This type of loss is usually modeled by an additional component of current, called the fuel
crossover and internal current.

As mentioned above, the terminal voltage of a single cell is obtained by subtracting the four losses
from ENernst. This simple, lumped, zero-dimensional [46] model leaves out the issues of, for example,
parasitic power, aspect ratio, heat diffusion, water blockage, and flow channel effects.

2.2. Problem Statement

When a number of (identical) fuel cells are connected in series, the equivalent voltage of the group
is the sum of the voltages of the individual cells, while the same amount of current flows through each
cell. For a parallel connection of the cells, on the other hand, the total current is given by the sum
of the individual currents, while the voltage of the group is the same as that of an individual cell.

Consider a group of Ns cells connected in series and Np such groups connected in parallel.
Let the entire assembly be called a stack. If iload,den represents the load current density for the entire
assembly (stack), the stack terminal voltage is given by [42]

Vstack = Ns

{
ENernst − A ln

(
iload,den/Np + in,den

i0,den

)
+

B ln
(

1−
iload,den/Np + in,den

ilimit,den

)
− (iload,den/Np + in,den)rarea

}
, (9)

where in,den is an additional component of current density brought into the equation to account
for the combined effect of fuel crossover and internal current. The fuel crossover and internal
current (the “leakage” or “lost” current) does not “flow” through the same path that the “regular”
current follows [48], and therefore the ohmic loss for a cell should be modeled by the expression
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iload,den/Np × rarea. For conformity with the treatment in Ref. [42] (this is a primary reference
against which comparative results are studied later in this paper), however, the expression for Vstack
in Equation (9) retains the inexact inclusion [48] of in,den in the calculation of the ohmic loss term.
Table 1 shows the values of the cell parameters used in this problem.

Table 1. PEMFC single cell parameters (from Refs. [41,42]).

Parameter Value

ENernst 1.04 V
rarea 98.0 ×10−6 KΩ cm2

in,den 1.26 mA/cm2

ilimit,den 129 mA/cm2

A 0.05 V
B 0.08 V

i0,den 0.21 mA/cm2

Given the cell parameters (except for the cell area) and the lower and upper bounds on the number
of cells and also on the cell area, the problem is to produce an optimal stack design that minimizes
the number of cells in series in each group, the number of such groups in parallel, and the cell area
such that the rated load voltage at the maximum power point of the stack is 12 V and the maximum
power is at least 200 W (corresponding to 730 kWh per year) [41,42]. These requirements come from
a “research project aimed to design a power supply system to provide dc electricity to a single dwelling
in a remote area of a developing country” [41]. As in references [41–43], the rated load voltage and the
rated power come from the problem statement.

2.3. Previous Work on This Problem

A simple selection-crossover-mutation genetic algorithm was applied [41] to find (near-)optimal
values of the three variables Ns, Np and Acell. The linear ranking selection used in that work
favored trial solutions with a low difference between the rated voltage (12 V) and the trial solution’s
maximum-power-point voltage (the sampling method accompanying the selection strategy was
stochastic universal sampling). A penalty was applied to trial solutions not meeting the stipulated
power of 200 W. The exact definitions of the objective function and the penalty function, however,
are not provided in that paper.

A stochastic heuristic was developed in [42] to solve this problem. That method searched for
the three variables Ns, Np and Acell by minimizing an objective function that linearly combined
several terms, favoring low values for all the three variables, in addition to favoring small absolute
differences between the problem-specified rated voltage and the trial solution’s output voltage at
the maximum power point. An additive component of the objective function was a penalty term
applicable to trial solutions producing a maximum power below the stipulated power (200 W). Two
different penalty schemes were used: static (stationary) and dynamic (time-variant). For varying the
relative importance of the different components of the objective function, different numerical constants
were used, with values chosen heuristically. Unlike the genetic algorithm or any other member of the
evolutionary computation family, that heuristic was point-based, not population-based.

Techniques from qualimetric engineering and extremal analysis were employed [43] to attack this
problem by minimizing the total stack area NsNp Acell. Unlike the previous two methods (and unlike
the present paper’s approach), that approach used the data provided in the problem statement
on the rated voltage and the rated power to simplify (reduce) the problem to one where the load
current at the maximum power point was calculated simply as 200 W/12 V ≈ 16.667 A and was
held fixed at this value for the rest of the computation (never revised to obtain the true current at the
maximum power point). A second major simplification was achieved by using the Taguchi method [49]
to set Np to its minimum possible value, namely unity. Finally, values of Ns and Acell were determined
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by using a quasi-analytical approach involving a mix of numerical estimation, approximation and
curve-fitting.

The authors of [41,42] obtained a trial solution’s maximum-power-point voltage numerically from
Equation (9), by iterating over current. That iterative computation was avoided in [43] through the use
of the fixed value of 16.667 A as an estimate of the current corresponding to the maximum power point.

2.4. Cost Function

Following reference [42], the objective or cost function to be minimized is given by

cost(Np, Ns, Acell) = Knum × Np × Ns + Kvdiff ×
∣∣∣Vload,rated −Vload,maxpp

∣∣∣+ Karea × Acell + penalty, (10)

where Vload,rated = 12 V represents the rated output terminal voltage of the PEMFC stack; Vload,maxpp
stands for the output voltage at the maximum power point of the stack; Pload,rated = 200 W is the
rated output power of the stack; Pload,max is the maximum output power of the stack; Knum = 0.5,
Kvdiff = 10, and Karea = 0.001 are (heuristically chosen) positive constants [42] that allow us to vary
the relative weights of the different components of the cost function; and the penalty term is zero if
Pload,max is at least Pload,rated but positive otherwise. Pload,max and Vload,maxpp are obtained numerically
from Equation (9), via iterations over current (see Section 4.2).

The cost function can be considered an anti-fitness function where the fitness function
is traditionally maximized in the evolutionary computation literature. For the values in Tables 1 and 2,
the cost function is positive. Fewer cells and smaller cell areas lead to lower costs. A larger deviation
(in either direction) of the maximum-power-point voltage from the rated voltage makes the cost higher
(worse). For a penalty-free solution vector (Np, Ns, Acell) (i.e., one for which Pload,max ≥ Pload,rated),
the above cost function is some measure of the monetary cost of building the stack. The present paper
uses the adaptive penalty method (Section 3.6 of [42]) along with the coefficients/constants (Table 3
of [42]) of [42].

Table 2. Bounds of the design variables (from references [41,42]).

Variable Lower Bound Upper Bound

Number of cells in series in a group 1 50
Number of parallel groups 1 50

Cell area (cm2) 10 400

3. The Improved Algorithm

The proposed algorithm is based on the general concept of evolutionary algorithms (e.g., [44])
and particularly on the Jaya algorithm [45]. The pseudocode of the original Jaya [45] is shown
in Algorithm 1.

Algorithm 1: Jaya.

1 initialize the population;
2 while a pre-determined stopping condition is not satisfied do
3 set the random parameters; find the best and the worst individuals in the population;
4 for each individual in the population do
5 create a new individual using the current individual, the best individual, the worst

individual, and the random parameters;
6 if the new individual is better than the current individual then
7 current individual = new individual;
8 end
9 end

10 end
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The improved method modifies the Jaya algorithm in two ways. The first of these two
modifications causes a major change in the algorithm design, while the second is relatively minor.
The outline pseudocode of the improved algorithm is presented in Algorithm 2.

Algorithm 2: Pseudocode of the improved algorithm.

1 initialize the population;
2 find the worst individual in the population;
3 swap the worst individual and the individual at the last position in the population;
4 find the best individual in the population, and initialize bestPosition to the location (position) of

the best individual;
5 while a pre-determined stopping condition is not satisfied do
6 set the six parameters (the r’s), independently of one another, to random values between

0.0 and 1.0;
7 initialize newWorstPosition to the first position in the population;
8 for each individual in the population starting from the first position do
9 create a new individual using the current individual, the individual at bestPosition,

the individual at the last position, and the six random parameters;
10 if the new individual is at least as good as the current individual then
11 incoming individual = new individual;
12 else
13 incoming individual = current individual;
14 end
15 replace the current individual with the incoming individual;
16 if the current individual is better than the individual at bestPosition then
17 update bestPosition to set it to the current position;
18 end
19 if the current individual is worse than the individual at newWorstPosition then
20 update newWorstPosition to set it to the current position;
21 end
22 end
23 if newWorstPosition is not the last position then
24 swap the individual at the last position and the individual located at newWorstPosition;
25 if the last position is the best position then
26 update bestPosition to set it to newWorstPosition;
27 end
28 end
29 end

The first modification introduces a new policy for updating (and using) the best and the worst
individuals. In a population of size N, the individuals (trial solutions) can be thought of as occupying
N consecutive positions (slots or locations) in an array or some other data structure. Each individual
is a vector of three variables (parameters): an integer representing the number of cells in series
in a group (Ns), a second integer for the number of parallel groups (Np), and a floating-point
number representing the cell area (Acell). Population initialization is done by choosing values for each
of the three problem parameters (Ns, Np, Acell) uniformly randomly from the interval defined by their
respective lower and upper bounds (Table 2).

A new individual xnew is produced from the current individual xcurrent at generation g (see Line 9
in Algorithm 2) as follows:
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for i = 1 to 3:

xnew
i = xcurrent

i + rg,i,1(xbestPosition
i − |xcurrent

i |)− rg,i,2(xlast
i − |xcurrent

i |)

where xi, i = 1 to 3, represent the three variables (Ns, Np, Acell) to be optimized; rg,i,1 and rg,i,2 are random
numbers between 0.0 and 1.0; and xbestPosition and xlast represent, respectively, the best and the worst
individual in the population at the time of the creation of xnew from xcurrent. If xnew

i happens to fall
outside its bounds, it is clamped at the appropriate (lower or upper) bound.

In the standard Jaya algorithm, the population’s best individual and the worst individual are
determined once at every new generation and are not updated during the course of a generation;
that is, they are determined again at the next generation.

In the improved algorithm, however, whenever a new individual replaces an existing individual,
we check whether the new individual is better (less costly) than the current best individual, and if it is,
it (the new individual) becomes the current best, outsmarting the previous (most recent) best individual.
By (conditionally) updating the best individual as soon a new individual appears in the population,
our method is able to utilize the new (hitherto unavailable) information at the earliest possible
opportunity, without having to wait for the entire (new) population to be created. This demonstrably
leads to a better search for the (near-)optimal solution.

A similar strategy can in principle be used to continually update the worst individual
in the population. That, however, turns out to be computationally expensive because finding
the worst individual is an O(N) operation (where N is the population size), which would entail
a total additional cost of O(N2) per generation. We bypass this problem by putting, at each generation,
the population’s worst individual at a location (position in the population) that we know will be the last
one to be accessed during the course of any given generation. Since, at any generation, the individuals
in a population are processed sequentially, starting with the first and ending with the last, the last
position is a sensible choice for holding the worst individual. At each generation, just before
the beginning of the loop over all individuals, we swap the population’s worst individual with the one
at the last location (position) in the population.

The proposed algorithm’s policy of continual update of the best and the worst individuals
in the population renders the concept of the generation unnecessary or irrelevant. The proposed
method thus implements a “steady-state” [50,51] mechanism of sorts. The reasons we still keep
the generation loop are twofold: (i) we need to keep the worst individual at the last position;
and (ii) the Jaya algorithm resets the random parameters (rg,i,1, etc.) exactly once every generation,
and therefore for a head-to-head comparison with Jaya, the proposed algorithm needs to do the same.

The second modification consists in altering the acceptance criterion for the new individual.
The standard Jaya algorithm accepts the new individual (the child) only if it is better than the original
individual (the parent). The proposed method accepts the new individual if it is better than or equal
in cost to the original. This keeps the search process moving even on a flat landscape ([31,52]).

Note that inside the for-loop spanning Lines 8–22 in Algorithm 2, we do not need to check
if the “incoming individual” is worse than the current individual because the “incoming individual”
is guaranteed to be at least as good as the one that it replaces. Note also that the if-statement on Lines
25–27 is required because, after the completion of the for-loop (on Lines 8–22), the best individual
in the entire population may reside at the “last position” and thus take part in the swap operation (on
Line 24). This is essentially the same reason why the finding of the best individual and the initialization
of bestPosition to the location (position) of the best individual (Line 4) must follow, not precede,
the swap statement on Line 3 of the pseudocode.

Computational Complexity

The improved method (Algorithm 2) incurs nominal extra computational cost compared to Jaya.
The additional computation involves:
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• the swap operation in Line 3;
• the assignment in Line 7;
• the two conditional updates of bestPosition (Lines 16–18) and newWorstPosition (Lines 19–21) inside

the for-loop; and
• the if-statement (Lines 23–28), with the swap (Line 24) and the conditional update of bestPosition

(Lines 25–27) within it.

For an entire generation, therefore, the total additional cost is no more than linear in the population
size, or O(N).

4. Simulation Results

The relative effectiveness of five methods in optimizing the stack design are studied in this section.
We present simulation results of head-to-head comparisons between the proposed algorithm and Jaya,
between the proposed algorithm and the stochastic heuristic of [42], between the proposed algorithm
and the genetic algorithm of [41], between the proposed algorithm and the quasi-analytical method
of [43], and between Jaya and the heuristic of [42].

For a comparative analysis, the performances of the competing algorithms were observed
at the same number of objective function evaluations; this number is given by the parameter maxEvals,
which is the product of the number of generations (maxGen) for which the algorithm was run
and the population size (popSize). Thirteen configurations were randomly chosen to cover maxEvals
values from 200 to 10,000 (see Table 3).

Table 3. Parameter settings used in different runs of the competing algorithms.

Configuration Algorithm Parameters

maxEvals popSize maxGen

1 200 20 10
2 300 15 20
3 400 20 20
4 500 20 25
5 1000 25 40
6 1000 40 25
7 2000 20 100
8 2000 100 20
9 3000 30 100
10 3000 100 30
11 4000 40 100
12 4000 100 40
13 10,000 100 100

4.1. Proposed Algorithm vs. Jaya

The proposed algorithm and Jaya were coded in Java, and for each of the thirteen configurations
in Table 3, 100 independent runs of either method were executed. The best, mean, and standard deviation
of the best-of-run costs from 100 independent runs of either algorithm are presented in Table 4 for each of
the thirteen configurations. Since this is a problem of minimization, numerically lower values of the cost
function indicate better performance.

The proposed method outperforms Jaya in the majority of cases on each of the following
three metrics: (a) the mean of the 100 best-of-run costs; (b) the best of the 100 best-of-run costs;
and (c) the standard deviation of the hundred best-of-run costs.

Results of large-sample unpaired tests between the two means of the best-of-run costs in Table 4
are shown in Table 5, where the difference was obtained by subtracting the proposed method’s cost
from the corresponding cost produced by the Jaya algorithm. The sample size is 100 for either algorithm
for each of the thirteen configurations. For all configurations but one, the proposed method is apparently
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better, judging by the sign of the z-score. The p-values (not shown in this table) corresponding
to many of the z-scores are small, but it is arguable whether they are small enough for the difference
to be statistically significant (much depends on the choice, arguably arbitrary, of the level of significance).
For the lone negative z-score, the relatively high value of p implies that the proposed method is certainly
not inferior to Jaya.

Table 4. Comparison of the solution quality between Jaya and the proposed method (each row corresponds
to 100 independent runs).

Configuration Jaya Proposed Algorithm

Best Mean Std Dev Best Mean Std Dev

1 13.46458 14.11734 2.32067 13.45527 13.91559 1.57158
2 13.43860 14.63995 10.66056 13.44402 15.34058 12.76681
3 13.44378 13.70035 1.20077 13.43853 13.53320 0.08780
4 13.43876 13.66235 1.20323 13.43445 13.48589 0.06638
5 13.43355 13.46284 0.06434 13.43382 13.44942 0.03600
6 13.43353 13.47529 0.04865 13.43408 13.47151 0.03935
7 13.43241 13.60962 1.20592 13.43235 13.43978 0.03559
8 13.43663 13.48929 0.05440 13.43372 13.48364 0.04763
9 13.43233 13.43971 0.03411 13.43233 13.43895 0.03604

10 13.43355 13.45338 0.03172 13.43321 13.44835 0.02237
11 13.43230 13.43574 0.00298 13.43234 13.43506 0.00214
12 13.43285 13.44264 0.01220 13.43232 13.44024 0.00651
13 13.43231 13.43453 0.00287 13.43230 13.43425 0.00267

Table 5. Large-sample unpaired tests between the two means of best-of-run costs in Table 4.

Configuration Std Dev of Difference z-Score

1 0.280274 0.71983
2 1.663247 −0.42124
3 0.120398 1.388317
4 0.120506 1.464326
5 0.007373 1.820235
6 0.006257 0.604105
7 0.120645 1.407772
8 0.00723 0.781415
9 0.004962 0.153157

10 0.003881 1.295903
11 0.000367 1.853474
12 0.001383 1.735579
13 0.000392 0.7143

That each configuration in Table 3 represents a certain fixed set of algorithm parameter values
implies that a performance comparison confined to any one configuration presents only a fragmented
picture of the capabilities of the competing algorithms. For a more meaningful analysis, therefore,
a configuration ensemble must be studied. This is what is done in Table 6 where Wilcoxon signed-rank
tests are performed on the data of Table 4. The thirteen configurations yield as many independent
samples of each algorithm’s performance in Table 6 where two performance metrics are considered
separately: the average of the 100 best-of-run costs and the best of the 100 best-of-run costs.
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Table 6. Wilcoxon signed rank tests on the data in Table 4 (sample size = 13).

Test Description Average of Best-of-Run Costs Best of Best-of-Run Costs

Null hypothesis Jaya mean-Proposed mean = 0 Jaya best-Proposed best = 0
Alternative hypothesis Jaya mean-Proposed mean > 0 Jaya best-Proposed best > 0
No. of zero differences 0 1
n 13 12
W+ 78 54
W− 13 24
W-statistic 13 24
Significance level α 0.05 0.05
Critical W for n at α ≤ 0.05 21 17
Mean of W-statistic 45.5 39
Std. dev. of W-statistic 14.309088 12.747549
z-score −2.271284 −1.176697
p-value (left-tail probability) 0.011565 0.119658

A comparison of the means of the best-of-run costs of the two methods (the “Mean” column
under Jaya versus the “Mean” column under “Proposed Algorithm” in Table 4) is shown in the second
column of Table 6 where a two-sample paired test was performed to test the null hypothesis

Jaya mean - Proposed algorithm mean = 0

against the one-sided alternative

Jaya mean > Proposed algorithm mean.

In this table, n denotes the effective sample size, obtained by ignoring the zero differences,
if any. The W-statistic was obtained as min(W+, W−). The critical W was obtained from standard
tables [53]. The z-score was obtained (using the normal distribution approximation) as

z =
W −mean

std dev
,

where

mean =
n(n + 1)

4
,

and

std dev =

√
n(n + 1)(2n + 1)

24
.

The p-value was calculated from standard tables of the unit normal distribution. The data
in the second column of Table 6 show that, for the given sample size and the given significance
level, the W-statistic (=13) is less than the critical W (=21), a fact that allows us to reject the null
hypothesis in favor of the alternate hypothesis. Again, the p-value is less than 0.05; thus, the difference,
Jaya mean—Proposed algorithm mean, is significant at the 5% significance level.

The last column of Table 6 shows the comparison between the two best values. The effective
number of samples, n, is 12 in this case. Unlike the comparison in the second column of the table,
the W statistic (=24) in the last column is larger than the corresponding critical W (=17), which means
that the null hypothesis cannot be rejected at the 5% level. The z-score and the p-value, however,
do not establish any superiority of Jaya over the proposed method at the 5% level.

The results in Tables 4–6 are all about the quality (cost) of the solution without any reference
to the computation time needed to obtain that quality. In the next three tables, we present a comparative
study of the time (as measured by the number of cost function evaluations) taken by the algorithms
to obtain solutions of a given quality. Specifically, we set a cut-off or target cost of 13.5 (following [42])
and record, for each run of the algorithm, the number of cost evaluations needed to produce, for the
very first time in the run, a solution better (that is, numerically smaller) than or equal to that target cost.
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Let us denote by firstHitEvals the number of evaluations needed by an algorithm to hit (meet or beat)
the target for the very first time in a given run (execution) of the algorithm. Given that the algorithms
discussed here are really heuristics, once an algorithm hits the target for the very first time in a run, it is
generally likely (but never guaranteed) that it will produce better solutions than the target value if the
run is allowed to proceed further, that is, if the run consumes more evaluations than firstHitEvals. Note
also that it is possible for an algorithm to never hit the target in a given (finite) number of evaluations.

Comparative results on the firstHitEvals metric are presented in Table 7 where each row
was obtained from 100 independent runs of either algorithm. For each of the two competing
algorithms, the #Success column shows the number of runs (out of the 100) that did hit the target
within the maximum quota of maxEvals evaluations (recall that the maxEvals values for different
configurations are given in Table 3). The proposed method’s success rate is better than its competitor’s
in all thirteen cases. Again, the mean of firstHitEvals is smaller (better) for the proposed method
in the majority of configurations; the pattern with the standard deviation of firstHitEvals is similar.

Table 8 shows the results of large-sample unpaired tests on the two means of firstHitEvals
in Table 7. Unlike Table 5, which has a sample size of 100 for either algorithm for each of the
13 configurations, Table 8 does not in general have the same sample size for the two algorithms
for a given configuration, and the sample sizes are not always 100 (this is simply because not all runs
in Table 7 were successful). For example, the sample sizes for the second configuration in Table 7 (and
also in Table 8) are 34 and 42.

The use of the sample standard deviation in lieu of the population standard deviation
in the calculation of the z-statistic in Table 8 is not inappropriate because the sample sizes,
with the exception of the first configuration, are greater than 30, so that the central limit theorem may
be used to justify the normal distribution approximation [54].

Table 7. Mean and standard deviation of firstHitEvals (each row is obtained from 100 independent
runs for each algorithm).

Configuration Jaya Proposed Algorithm

#Success Mean Std Dev #Success Mean Std Dev

1 1 194 - 3 154.33333 41.41122
2 34 222.64706 58.94508 42 228.7381 51.78116
3 43 324.44186 50.83366 51 317.82353 64.01921
4 69 370.49275 73.51183 81 364.46914 80.95252
5 93 530.30108 155.58877 99 493.77778 148.9878
6 84 672.2619 183.18077 84 694.89286 180.33164
7 96 444.80208 163.05007 99 409.59596 126.78184
8 75 1386.12 420.57063 75 1390.48 437.36854
9 99 624.46465 308.05707 99 571.32323 177.35668

10 95 1575.04211 533.61934 99 1607.25253 553.33584
11 100 769.58 308.1991 100 769.95 248.48651
12 99 1659.38384 668.01261 100 1624.34 576.21606
13 100 1690.78 734.41447 100 1624.34 576.21606
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Table 8. Large-sample unpaired tests on the two means of firstHitEvals from Table 7.

Configuration Std Dev of Difference z-Score

1 - -
2 12.88534206 −0.472710772
3 11.85142977 0.558441481
4 12.6183894 0.477367579
5 22.01171122 1.659266725
6 28.04645273 −0.806909887
7 20.95925622 1.679740905
8 70.06386559 −0.062228939
9 35.72546136 1.487494296

10 78.03907392 −0.412747338
11 39.58942168 −0.009345931
12 88.47447531 0.396089831
13 93.34824913 0.711743398

With a few exceptions, the p-values corresponding to the z-scores in Table 8 cannot be used
to show the superiority (in a statistically significant way) of the proposed method for individual
configurations. As discussed earlier, the overall algorithm behavior across different configurations
can be captured by the configuration ensemble. This is done in Table 9 where Wilcoxon signed rank
tests conducted on the data in Table 7 are presented. The results in Table 9 show that not only does the
proposed algorithm succeed in hitting the target significantly more often than its competitor, it also
needs significantly fewer evaluations to achieve that feat.

Table 9. Wilcoxon signed rank tests on the data in Table 7 (sample size = 13).

Test Description Average of firstHitEvals Number of Successful Runs

Null hypothesis Jaya mean-Proposed mean = 0 Jaya successes-Proposed successes = 0
Alternative hypothesis Jaya mean-Proposed mean > 0 Jaya successes-Proposed successes < 0
Significance level α 0.05 0.05
No. of zero differences 0 5

Ignore zero diff. Include zero diff.

n 13 8 13
W+ 71 0 7.5
W− 20 36 83.5
W-statistic 20 0 7.5
Critical W for n at α ≤ 0.05 21 6 21
Mean of W-statistic 45.5 18 45.5
Std. dev. of W-statistic 14.309088 7.141428 14.309088
z-score −1.782084 −2.520504 −2.655655
p-value (left-tail probability) 0.037368 0.005859 0.003958

The next three tables show the performance of the algorithms on the metric of firstHitCost, which
is the cost of the solution obtained at firstHitEvals; clearly, firstHitCost is less than or equal to the target
cost. The mean and standard deviation of firstHitCost values obtained from 100 independent runs
(these runs are the same as the ones used to obtain firstHitEvals in Table 7) are shown for each of the two
competing methods in Table 10.
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Table 10. Mean and standard deviation of firstHitCost (each row is obtained from the same set of 100
independent runs used in Table 7 for each algorithm).

Configuration Jaya Proposed Algorithm

#Success Mean Std Dev #Success Mean Std Dev

1 1 13.48265 - 3 13.47298 0.01254
2 34 13.48288 0.01324 42 13.48122 0.01337
3 43 13.4811 0.01262 51 13.48025 0.0143
4 69 13.48336 0.01141 81 13.48022 0.01493
5 93 13.48132 0.01551 99 13.47878 0.01449
6 84 13.47901 0.01727 84 13.48003 0.01551
7 96 13.4818 0.0134 99 13.47925 0.0155
8 75 13.48018 0.01425 75 13.47956 0.01508
9 99 13.48094 0.01446 99 13.47887 0.01412

10 95 13.47938 0.01477 99 13.47919 0.0153
11 100 13.47907 0.01705 100 13.48038 0.01586
12 99 13.47932 0.0151 100 13.47918 0.01522
13 100 13.4793 0.01502 100 13.47918 0.01522

Table 11 shows results of large-sample unpaired tests on the two means of firstHitCost in Table 10.
As before, the one-tailed p-values (not shown in Table 11) produced by the z-scores fail to establish
a statistically significant outcome with respect to individual configurations, a fact that leads us to
the statistical analysis of the configuration ensemble in Table 12, which presents the results of the
Wilcoxon signed rank test on the set of 13 samples in Table 10. Table 12 shows that the average cost of
the solution produced after consuming firstHitEvals evaluations is statistically significantly better (at
the 5% level) for the proposed method.

Table 11. Large-sample unpaired tests on the two means of firstHitCost in Table 10.

Configuration Std Dev of Difference z-Score

1 - -
2 0.003067887 0.541089093
3 0.002777306 0.306051931
4 0.002153763 1.457913218
5 0.002169672 1.170683833
6 0.002532675 −0.402736306
7 0.002072965 1.230122007
8 0.002395743 0.258792348
9 0.002031236 1.019084008

10 0.00215891 0.08800738
11 0.002328609 −0.562567552
12 0.002149329 0.065136607
13 0.002138338 0.056118358
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Table 12. Wilcoxon signed rank test on the data in Table 10 (sample size = 13).

Comparison of the Average of firstHitCost

Null hypothesis Jaya average-Proposed average = 0
Alternative hypothesis Jaya average-Proposed average > 0
Number of zero differences 0
n 13
W+ 78
W− 13
W-statistic 13
Critical W for n = 13 at significance level α ≤ 0.05 21
Mean of W-statistic 45.5
Standard deviation of W-statistic 14.309088
z-score −2.271284
p-value (left-tail probability) 0.011565

The best stack designs produced by Jaya and the proposed algorithm, given by the solution vectors
(Ns, Np, Acell) and the corresponding Pload,max, Vload,maxpp and cost, are shown in Table 13 where each
row corresponds to a given configuration (popSize-maxGen combination). A solution in this table
represents, for the corresponding algorithm and the corresponding configuration, the best of all the
solutions produced in the 100-run suite. While the proposed method’s best solution produces a better
(lower) cost in the majority of cases in Table 13, neither algorithm is statistically significantly better
than the other on this particular metric (as seen in the results of Table 6). The mean best solution of the
proposed method, however, was found to be statistically significantly better than that of Jaya (Table 6).
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Table 13. Best of best-of-run solutions (stack designs).

Config. Jaya Proposed Algorithm

Cost Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V Cost Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V

1 13.46458 22 1 153.72065 207.11242 12.23109 13.45527 22 1 149.16721 200.97736 12.23061
2 13.43860 22 1 149.14708 200.94995 12.22895 13.44402 22 1 149.15362 200.95886 12.22949
3 13.44378 22 1 153.24063 206.46533 12.22905 13.43853 22 1 148.69285 200.33796 12.22898
4 13.43876 22 1 148.69313 200.33835 12.22901 13.43445 22 1 149.59619 201.55498 12.22849
5 13.43355 22 1 148.68686 200.32981 12.22849 13.43382 22 1 149.14130 200.94209 12.22847
6 13.43353 22 1 148.68683 200.32977 12.22848 13.43408 22 1 149.14162 200.94253 12.22849
7 13.43241 22 1 148.68548 200.32793 12.22837 13.43235 22 1 148.68541 200.32784 12.22837
8 13.43663 22 1 149.14470 200.94672 12.22875 13.43372 22 1 149.14118 200.94192 12.22846
9 13.43233 22 1 148.68539 200.32781 12.22836 13.43233 22 1 148.68538 200.32780 12.22836
10 13.43355 22 1 149.14098 200.94165 12.22844 13.43321 22 1 148.68645 200.32925 12.22845
11 13.43230 22 1 148.68535 200.32775 12.22836 13.43234 22 1 148.68540 200.32782 12.22837
12 13.43285 22 1 148.68601 200.32865 12.22842 13.43232 22 1 148.68538 200.32779 12.22836
13 13.43231 22 1 148.68537 200.32777 12.22836 13.43230 22 1 148.68536 200.32776 12.22836
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4.2. Effect of Current Step Size on Numerical Calculations of Pload,max and Vload,maxpp

The maximum power point corresponding to a given stack configuration vector (Ns, Np, Acell)
and a given set of cell-parameter values (i0,den, etc.) cannot be obtained analytically. In other words,
the problem of finding

argmax
iload,den

{Vstack × iload,den},

with Vstack given by Equation (9), is not analytically solvable. A numerical, iterative method has
been used in this paper, where a loop over current values is executed in order to numerically find
an approximation to the maximum power point. Since the maximum power point needs to be
determined for every single cost (objective function) evaluation, the total computation time to complete
all such iterations for all runs in a test suite may not be trivial. It is, therefore, good to be able to use
a relatively large step size in incrementing the current value in the loop. A large step size, however,
reduces the accuracy of the computed Pload,max and Vload,maxpp. The results presented so far in this
paper used a current step of 50 mA. To study whether the step size affects the conclusions about
the relative performance of the algorithms, we obtain a new set of results using a step size of 1 mA.
These results, arguably more accurate than their 50 mA counterparts, are presented in Tables 14–16.
A target cost of 13.62 is used in Table 15 because the previously used target of 13.5 was met by no
run in the new set of results. Results of Wilcoxon signed-rank tests on the new set of data are shown
in Table 17 which establishes the proposed method as significantly better than Jaya on the success rate
as well as on the mean of best-of-run costs. Jaya is significantly better on the best of best-of-run costs
metric, while the methods are statistically tied (the one-tail p-value is close to 0.5) on the remaining two
metrics. Given the vagaries of chance, for stochastic heuristics, the average performance rather than
the single best performance is generally considered to be a reliable indicator of a method’s performance.
The new data, therefore, do not offer a convincing reason to argue that Jaya performs better than
the proposed method. Combining the new results with the old ones for all five performance metrics,
we conclude that the proposed heuristic meets or beats the Jaya algorithm.

Table 14. Comparison of the solution quality between Jaya and the proposed method. Each row
corresponds to 100 independent runs. Current step size = 1 mA.

Configuration Jaya Proposed Algorithm

Mean Std Dev Mean Std Dev

1 14.16054 2.33381 13.95325 1.57569
2 14.78316 10.66273 15.43659 12.74582
3 13.80889 1.20404 13.63618 0.04099
4 13.79572 1.20465 13.62192 0.02035
5 13.62593 0.04068 13.61670 0.00261
6 13.62177 0.01535 13.61843 0.00338
7 13.78312 1.20555 13.61579 0.00007
8 13.62378 0.01720 13.62528 0.01814
9 13.61766 0.01845 13.61590 0.00052
10 13.61824 0.00648 13.61747 0.00191
11 13.61590 0.00056 13.61582 0.00029
12 13.61702 0.00257 13.61691 0.00180
13 13.61602 0.00112 13.61612 0.00102
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Table 15. Comparison between Jaya and the proposed method on firstHitEvals and firstHitCost (each row corresponds to 100 independent runs). Current step
size = 1 mA, target cost = 13.62.

Config.
Jaya Proposed Algorithm

#Success firstHitEvals firstHitCost #Success firstHitEvals firstHitCost

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

1 1 189.00000 - 13.61694 - 2 150.50000 47.5 13.61894 0.00076
2 44 250.11364 36.0298 13.61874 0.00093 46 242.71739 45.01288 13.61854 0.00094
3 35 327.34286 54.71795 13.61868 0.00094 48 328.79167 59.28777 13.61855 0.00092
4 69 386.49275 73.70262 13.61872 0.00093 79 373.78481 74.22778 13.61844 0.00107
5 91 539.02198 148.24289 13.61875 0.00088 95 544.06316 158.43669 13.61859 0.001
6 72 677.69444 179.15811 13.61847 0.00102 86 733.56977 168.45726 13.61869 0.001
7 97 491.21649 243.41641 13.61871 0.00095 100 424.39000 129.95975 13.61845 0.00103
8 55 1493.90909 370.95304 13.61860 0.00106 51 1469.15686 340.85891 13.61866 0.001
9 99 695.75758 351.41685 13.61851 0.00104 100 638.80000 257.61685 13.61867 0.00093

10 85 1783.22353 510.88268 13.61865 0.00101 90 1868.81111 556.65231 13.61869 0.00098
11 100 872.37000 414.07945 13.61857 0.00097 100 888.09000 548.58391 13.61867 0.00105
12 92 1904.11957 652.41631 13.61867 0.001 93 1928.41935 637.795 13.61872 0.00098
13 98 2072.31633 917.8234 13.61868 0.00099 99 2213.10101 1368.50318 13.61875 0.00098
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Table 16. Best of best-of-run solutions (stack designs). Current step size = 1 mA.

Config. Jaya Proposed Algorithm

Cost Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V Cost Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V

1 13.61694 22 1 148.87233 200.58142 12.24681 13.61818 22 1 150.22004 202.39724 12.24680
2 13.61620 22 1 148.89873 200.61698 12.24673 13.61625 22 1 148.64410 200.27391 12.24676
3 13.61581 22 1 148.44346 200.00358 12.24674 13.61595 22 1 148.53458 200.12635 12.24674
4 13.61581 22 1 148.51622 200.10161 12.24673 13.61580 22 1 148.50711 200.08934 12.24673
5 13.61575 22 1 148.47067 200.04024 12.24673 13.61573 22 1 148.45245 200.01570 12.24673
6 13.61580 22 1 148.47983 200.05258 12.24673 13.61583 22 1 148.54354 200.13842 12.24673
7 13.61571 22 1 148.44334 200.00342 12.24673 13.61571 22 1 148.44334 200.00342 12.24673
8 13.61588 22 1 148.51630 200.10173 12.24674 13.61599 22 1 148.66197 200.29799 12.24673
9 13.61572 22 1 148.44334 200.00342 12.24673 13.61572 22 1 148.44334 200.00342 12.24673
10 13.61575 22 1 148.44338 200.00348 12.24673 13.61575 22 1 148.47067 200.04024 12.24673
11 13.61571 22 1 148.44334 200.00342 12.24673 13.61572 22 1 148.44334 200.00343 12.24673
12 13.61571 22 1 148.44334 200.00342 12.24673 13.61572 22 1 148.44334 200.00342 12.24673
13 13.61571 22 1 148.44334 200.00342 12.24673 13.61571 22 1 148.44334 200.00342 12.24673

Table 17. Wilcoxon signed rank tests on the data in Tables 14–16.

Test Description Average of Best-of-Run Costs No. of Successes Mean of firstHitEvals Mean of firstHitCost Best of Best-of-Run Costs

Null hypothesis Jaya-Proposed = 0 Jaya-Proposed = 0 Jaya-Proposed = 0 Jaya-Proposed = 0 Jaya-Proposed = 0
Alternative hypothesis Jaya-Proposed > 0 Jaya-Proposed < 0 Jaya-Proposed > 0 Jaya-Proposed > 0 Jaya-Proposed > 0
No. of zero differences 0 1 0 0 4
n 13 12 13 13 9
W+ 71 7.5 43 46 6
W− 20 70.5 48 45 39
W-statistic 20 7.5 43 45 6
Significance level α 0.05 0.05 0.05 0.05 0.05
Critical W for n at α ≤ 0.05 21 17 21 21 8
Mean of W-statistic 45.5 39 45.5 45.5 22.5
Std. dev. of W-statistic 14.309088 12.747549 14.309088 14.309088 8.440972
z-score −1.782084 −2.471063 −0.174714 −0.034943 −1.954751
p-value (left-tail probability) 0.037368 0.006736 0.430652 0.486063 0.025306
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4.3. Proposed Algorithm vs. Point-Based Stochastic Heuristic

We now present performance comparisons of the proposed method against the heuristic of [42].
Each of the four maxEvals values reported in Table 9 of [42] corresponds to two different configurations
in Table 3 of the present paper (see Table 18).

Table 18. Correspondence between [42] and the present paper on algorithm parameter settings.

maxEvals in Reference [42] Configurations in the Present Paper

1000 5 and 6
2000 7 and 8
3000 9 and 10
4000 11 and 12

The best-cost solution vector from Table 4 on p. 536 of reference [42] is shown in Table 19
where the values of Ns, Np and Acell are copied from [42], Pload,max and Vload,maxpp are computed
by the iterative numerical method described in Section 4.2 (using two different values of the current
step size), and the cost is computed from Equation (10).

Table 19. Best solution (stack design) of [42].

Current Step Size, mA Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V Cost

50 22 1 149.59700 201.55608 12.22855 13.43512
1 22 1 149.59700 201.55779 12.24723 13.62192

The first row of Table 19 shows that the current step of 50 mA produces a close agreement of Pload,max,
Vload,maxpp and cost values in this table with the corresponding values in Table 4 of [42]. For the rest of
this subsection, therefore, results corresponding to only the 50 mA step size are used.

Table 9 of [42] and Tables 4 and 10 of the present paper show that the proposed algorithm
outperforms the algorithm of [42] in all of the following metrics: (i) best of the 100 best-of-run
costs; (ii) mean of the 100 best-of-run costs; (iii) standard deviation of the 100 best-of-run costs;
(iv) count (out of the one hundred) of successful runs; and (v) mean firstHitCost obtained from the
successful runs (the mean firstHitCost of [42] is slightly better for one of the two cases—Configuration
11—of maxEvals = 4000).

To investigate the statistical significance, if any, of the difference between the means of the best-of-run
costs of the two algorithms, we performed unpaired t-tests, the results of which are presented in Table 20.
We tested the null hypothesis µ1 − µ2 = 0 against the one-sided alternative µ1 − µ2 > 0, where µ1 and
µ2 are the (population) means of the method in [42] and the proposed method, respectively. We chose
a level of significance of 0.05. Since the sample variances differ by a factor of about 10,000, the standard
two-sample t-test cannot be used. We, therefore, used the Smith–Satterthwaite test [32,54] corresponding
to unequal variances. The test statistic is given by

t−statistic =
x̄1 − x̄2 − 0√

s2
1

n1
+

s2
2

n2

,

and its sampling distribution can be approximated by the t-distribution with(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)

2

n1 − 1
+

(s2
2/n2)

2

n2 − 1
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degrees of freedom (rounded down to the nearest integer), where x̄1 and x̄2 represent the two sample
means, s1 and s2 are the two sample standard deviations, and n1 and n2 are the two sample sizes
(100 each).

Table 20 presents, for each configuration, the following:

• t-statistic;
• degrees of freedom (d.f.);
• the critical t value (obtained from standard tables of t-distribution) at 95% (right-tail probability

of 0.05) and for the specified degrees of freedom; and
• 95% confidence interval for the difference of the two means,

x̄1 − x̄2 ± t0.025 at the specified degrees of freedom ×

√
s2

1
n1

+
s2

2
n2

.

Table 20. The method in [42] versus the proposed method: results of Smith–Satterthwaite tests for
comparing the means of 100 best-of-run costs for each configuration.

Configuration Reference [42] Table 9 Row# d.f. t-Statistic Critical t0.05 95% Conf Intvl

5 1 99 3.801772 1.660 1.566897–4.987263
6 1 99 3.776139 1.660 1.544804–4.965176
7 2 99 5.193092 1.660 1.635489–3.657751
8 2 99 5.106933 1.660 1.591610–3.613910
9 3 99 4.973979 1.660 1.455472–3.387028
10 3 99 4.954752 1.660 1.446088–3.377612
11 4 99 5.112608 1.660 1.573628–3.569452
12 4 99 5.102306 1.660 1.568447–3.564273

The results show that, for each case, the t-statistic exceeds t0.05 for the relevant degrees of freedom.
Therefore, the null hypothesis is rejected in all of these cases. Furthermore, none of the confidence
intervals contains zero. We thus conclude that the improvements produced by the proposed method
are statistically significant.

Smith–Satterthwaite tests were also performed for comparing [42] against Jaya, and the results
(see Table 21) establish Jaya as significantly better than [42].

Table 21. The method in [42] versus Jaya: results of Smith–Satterthwaite tests for comparing the means
of 100 best-of-run costs for each configuration.

Configuration Reference [42] Table 9 Row# d.f. t-Statistic Critical t0.05 95% Conf Intvl

5 1 99 3.786131 1.660 1.553444–4.973876
6 1 99 3.771733 1.660 1.541014–4.961406
7 2 110 4.729357 1.645 1.450321–3.503239
8 2 99 5.095779 1.660 1.585946–3.608274
9 3 99 4.972432 1.660 1.454715–3.386265
10 3 99 4.944366 1.660 1.441048–3.372592
11 4 99 5.111256 1.660 1.572948–3.568772
12 4 99 5.097524 1.660 1.566045–3.561875

4.4. Proposed Algorithm vs. Genetic Algorithm

The best solution produced by the genetic algorithm in [41] recommends the following stack
design: Ns = 21, Np = 1, Acell = 156.25 cm2. Plugged into Equations (9) and (10), this design yields
the maximum power point value and the corresponding cost shown in Table 22 where two sets of
calculations (for the two step sizes for current) were used. The proposed method’s best solutions
outperform both cases in Table 22 not only on the objective function (cost) but also on the output
voltage at the maximum power point: the Vload,maxpp values in Table 22 are less than the rated voltage
of 12 V.
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Table 22. Best solution (stack design) of [41].

Current Step Size, mA Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V Cost

50 21 1 156.25000 200.95239 11.69428 13.71341
1 21 1 156.25000 200.95247 11.69021 13.75418

4.5. Proposed Algorithm vs. Quasi-Analytical Approach

The best solution produced by the quasi-analytical method in [43] yields the following stack
design: Ns = 22, Np = 1, Acell = 151.4 cm2. Plugging these values into Equations (9) and (10) gives the
maximum power point values and the corresponding costs in Table 23. All of the best solutions of the
proposed method in Tables 13 and 16 have a better (lower) cost than those in Table 23. The objective
function minimized in [43] is the total stack area given by NsNp Acell, and yet the proposed method’s
best solutions produce better (smaller) total areas, while meeting the requirements of the rated voltage
and rated power.

The characterization in [43] of the design vector (22, 1, 154.16) as the best design in [42] does not
seem to be correct. The vector (22, 1, 154.16) is mentioned in [42] as a “typical” design, not the best or
optimal design. In fact, several of the designs in Table 4 of [42] have cell areas that are smaller than
154.16 cm2, with two of them even smaller than the “optimal” area of 151.4 cm2 in [43]. The design
(22, 1, 149.597) from Ref. [42] outperforms the “optimal” design of (22, 1, 151.4) of [43] on the cell area
metric as well as on the objective (cost) function for both the step sizes (see Tables 19 and 23).

Table 23. Best solution (stack design) of [43].

Current Step Size, mA Ns Np Acell, cm2 Pload,max, W Vload,maxpp, V Cost

50 22 1 151.40000 203.98559 12.26406 13.79200
1 22 1 151.40000 203.98705 12.24721 13.62352

4.6. Polarization and Power Characteristics

Figure 1 shows the polarization curve for the stack design produced by the best of best-of-run
solutions of the proposed algorithm for Configuration 13 (the last row of Table 16). The corresponding
power characteristics are plotted in Figure 2. The nature of these plots agrees well with that
of polarization and power characteristics of typical PEM fuel cells in the literature.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
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0
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lta

ge
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)
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Figure 1. Stack voltage vs. load current plot for the stack given by Ns = 22, Np = 1, Acell = 148.443337 cm2,
and the single-cell parameter values from Table 1.
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Figure 2. Power vs. load current (top) and power vs. voltage (bottom) plots corresponding to the
polarization in Figure 1. Pload,max = 200.003419 W, Vload,maxpp = 12.246727 V.

5. Conclusions

A PEMFC stack design problem of practical importance has been addressed in this paper.
This constrained optimization problem requires finding optimal values of three parameters of the stack
configuration (namely, the number of cells in series, the number of groups in parallel, and the cell
area) such that the configuration delivers the rated voltage at the rated power (the load voltage
at the maximum power point is to be 12 V and the maximum power is to be at least 200 W), while keeping
the total cost at a minimum. A new approach has been developed, based on the Jaya algorithm and ideas
from evolutionary computation, and the new approach has been empirically (that is, via numerical
simulation) compared with the Jaya algorithm and with the methods in [41–43], using the following
performance measures: (a) the best of best-of-run costs from 100 independent runs; (b) the average
of the 100 best-of-run costs; (c) the standard deviation of the 100 best-of-run costs; (d) the number
of cost function evaluations needed to reach a pre-determined target cost for the very first time in a run
of the algorithm; and (e) the cost of the very first (earliest) solution in a run that meets (or beats)
the target cost. The proposed method has been shown to outperform the three methods in [41–43] and
is competitive with Jaya. The improvement in performance provided by the proposed algorithm has
been substantiated with statistical tests of significance.

Following the authors of [41–43], this paper considered only a stand-alone PEM fuel cell stack.
Auxiliary systems, such as heat exchangers, compressors, etc. that often significantly affect the mass,
size and cost of the entire system, were not considered; the membrane type, the type of the bipolar plate
material, and many operating and constructive parameters were not considered, either. Inclusion of
some of these issues would be in the agenda for future research.
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Nomenclature

Ns Number of series cells in a group
Np Number of groups in parallel
ENernst Nernst potential (open-circuit EMF) of a single cell, V
E0 Standard (reference) EMF of a single cell, V
E0

0 Standard (reference) EMF of a single cell at temperature T0, V
T Temperature, K
n Number of electrons transferred
a Activity
aH2 Activity of hydrogen
aO2 Activity of oxygen
aH2O Activity of water vapor (steam)
∆s Change in entropy, J/(mol K)
p Pressure or partial pressure, atm
p0 Standard-state pressure, atm
A Tafel slope, V
B Concentration loss constant, V
Vstack Output terminal voltage of the PEMFC stack, V
Vload,rated Rated output terminal voltage of the PEMFC stack, V
Vload,maxpp Output voltage at maximum power point of the PEMFC stack, V
Pload,rated Rated output power of the PEMFC stack, W
Pload,max Maximum output power of the PEMFC stack, W
Acell Cell area, cm2

iden Current density, A/cm2

i0,den Exchange current density, A/cm2

iload,den Load current density, A/cm2

ilimit,den Limiting current density, A/cm2

in,den Crossover and internal current density, A/cm2

rarea Area-specific resistance of a single cell, KΩ cm2

pH2 Partial pressure of hydrogen, atm
pO2 Partial pressure of oxygen, atm
pH2O Partial pressure of water vapor, atm
α Charge transfer coefficient
Knum, Kvdiff, Karea Coefficients in the objective function
ηact Activation loss, V
ηconc Concentration loss, V
ηohm Ohmic loss, V
N Population size used in the algorithm
R Universal gas constant, J/(mol K)
F Faraday’s constant, Coulombs/mol
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