
energies

Article

Modeling and Stability Analysis of Model Predictive
Control Dual Active Bridge Converter

Guoqing Gao , Wanjun Lei *, Yao Cui, Kai Li, Ling Shi and Shiyuan Yin

The State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid,
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
* Correspondence: leiwanjun@mail.xjtu.edu.cn; Tel.: +86-29-8266-8666 (ext. 2111)

Received: 1 July 2019; Accepted: 8 August 2019; Published: 13 August 2019
����������
�������

Abstract: Digital control has been widely used in dual active bridge (DAB) converters, which are
pivotal parts of electric vehicles and distributed generation systems. However, the time delays
introduced by the digital control could affect the performance or even lead to the instability of the
digitally controlled DAB converter. In order to reduce the effect of time delay on the dynamics and
stability of the system, the model predictive control (MPC) of the DAB converter is proposed based
on the discrete-time iteration in this paper to compensate for the digital control delay. According
to the obtained discrete-time model, the instability mechanism of the MPC DAB converters with
different parameters is revealed. The simulation and theoretical analysis indicate that this method
could reduce the influence of the digital control delay and increase the stable range of the system
compared with the conventional control strategy. The proposed method is also revealed to have
a strong compatibility and portability. In addition, the accurately predicted stability boundaries
can be applied to the practical parameter design and guarantee the stable operation of the system.
The experimental results are consistent with the theoretical analysis and verify the proposed method.

Keywords: dual active bridge (DAB) converter; discrete-time modelling; digital control delay; model
predictive control; stability analysis

1. Introduction

In recent years, bidirectional dc–dc converters are widely utilized in renewable energy storage
systems [1–3], the distribution grid [4,5] and power electronic transformers [6]. Since the bidirectional
dc–dc converter is the kernel part of these systems, it has gained more and more attention. Compared
with other bidirectional dc–dc converters, dual active bridge (DAB) converters have been a research
focus because of their advantages on the galvanic isolation, high power density, decreased number of
devices, high efficiency, and the symmetric structure [7,8]. Thus, extensive research on DAB converters
has been performed and concentrates mainly on control strategies [9,10], design methodology [11],
and modulation strategies [12].

With the development of the digital processor, digital control has been widely applied to the
power converters of the regenerative power systems [13–16]. However, the digital control systems will
inevitably introduce the extra control delay compared with the original ones [17,18]. The existence
of control delay and switching nonlinearity makes the digitally controlled power converter a strong
nonlinear system. Thus, when the system parameters are not well designed, a complex bifurcation
phenomenon may occur [19–22] and cause the system performance degradation or even lead to
instability [20,21]. Because of the simplicity, flexibility, discrete nature, and inherent adaptation to
the power electronic circuits, model predictive control (MPC) is also gradually utilized in the power
converters [23–26]. The dynamic phasor model-based model predictive control DAB converter is
obtained in Reference [27]. However, only the zeroth order coefficient of the output voltage and the

Energies 2019, 12, 3103; doi:10.3390/en12163103 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-4123-3121
https://orcid.org/0000-0002-4726-7744
http://dx.doi.org/10.3390/en12163103
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/16/3103?type=check_update&version=3


Energies 2019, 12, 3103 2 of 15

first order coefficient of the inductor current were utilized because of the calculation limit of the digital
controller, which is not conducive to the dynamic performance of the DAB converter. A non-linear
model predictive control scheme with a phase-shift ratio compensation based on the general average
model is proposed in Reference [28]. However, the inductor current is not chosen as the state variable
for simplicity. In this paper, the model predictive control of the DAB converter is derived based on the
discrete-time iteration of the state variables to eliminate the one-step delay effect. The salient features
of the compatibility and portability of the proposed method are also revealed and therefore, can be
applied to many other occasions.

The existing methods to analyze the stability of the DAB converters are largely based on
simulation [29,30]. The trial and error method cannot give an overall and systematic guidance for
the system design and stability analysis. Therefore, a theoretical method adopting the Lypunov
function [31] was proposed to determine the stability of the nonlinear DAB converter. However, this
method needs to find a proper Lyapunov function in advance, which is complicated and sometimes
impossible to obtain. There is also the literature related to the stability problem of the digitally
controlled DAB converter [32]. However, the mechanism and effects of the time delay on the stability
of MPC DAB converters are not studied. In this paper, the discrete-time model of the MPC DAB
converter was obtained to analyze the complex dynamics of the system. The Jacobian matrix and
Floquet multipliers were employed to the stability analysis of the MPC DAB converter. Next, the
effects of the system parameters on the stability of the whole system were analyzed. The parameter
spaces and the stability margins of the model predictive control compared with the original control
method were obtained, which can provide good guidance for the practical design and analysis.

In this paper, the system description and operating methods of the digitally controlled DAB
converter are presented in Section 2. The discrete-time model of the model predictive control DAB
converter is derived in Section 3. Then, in Section 4, the oscillation of the DAB converter is analyzed
according to the proposed discrete-time model. In Section 5, the experimental results are shown to
verify the theoretical analysis.

2. System Description

The digitally controlled DAB converter consists of the power stage and the digital controller,
as shown in Figure 1. The power stage includes a high-frequency transformer and two H-bridges,
enabling the bidirectional power flow. The two active bridges are interfaced through a high-frequency
transformer operating at the fixed switching frequency f s, which provides the required galvanic
isolation and the voltage matching between the two voltage buses with a turn ratio of 1:n. The
transformer leakage inductance and the auxiliary inductance work as the main instantaneous energy
transfer element. Rt is the sum of the line resistance, power switches on-resistance, and the transformer
winding resistance. Co is the output capacitor and RC is the equivalent series resistance of the output
capacitor. V1 and v2 are the voltages of the two dc buses, respectively.

The single-phase-shift modulation method, which is suited for a higher power transfer and is easy
to implement is applied in this paper. According to the operating principle of the single-phase-shift
modulation, the cross-connected switch pairs in each bridge were controlled with the constant duty
cycle (50%) to generate the high-frequency square-wave voltage vp and vs at the transformer terminals.
Considering the leakage inductance of the transformer serves as an energy transfer element, the phase
shift angle ϕ between vp and vs is selected as the control variable, which can be adjusted to ensure
the two square waves appropriately phase-shifted to control the direction as well as the magnitude
of the power flow. Since the power is delivered from the bridge, which generates the leading square
wave, the positive phase shift angle ϕ is defined when the primary side vp is leading the secondary
side vs. For example, the operating waveforms in the steady state when ϕ is positive are shown in
Figure 2, with the power flowing from the V1-side to the v2-side accordingly. In addition, the converter
exhibits four subintervals in one switching period, referred to by their corresponding timing labels
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from tn1 to tn4. Due to the symmetry of the power circuit, the state variables of the DAB converter are
also symmetrical within a switching period.
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Figure 1. Diagram of the digitally controlled DAB converter. Figure 1. Diagram of the digitally controlled DAB converter.
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The implementation of the corresponding digital controller is realized through the TMS320F28335
microcontroller of Texas Instruments. The output voltage v2 and the current iL of the transformer
leakage inductance are sampled and sent to the controller at the beginning of each switching period to
calculate the phase shift angle ϕ. In addition, a saturator element controls the limit of the phase shift
angle ϕ with the range from 0 to π/2. Accordingly, the two active bridges operate in a complementary
way according to the phase shift angle ϕ.

3. Model Predictive Control and Modeling

It is common that the one-step-delay control scheme is adopted in the digitally controlled power
converters to avoid the minimum duty ratio limit caused by the digital control delay. However, the
digital control delay could reduce the system performance and sometimes lead to the instability of
the system. Therefore, the model predictive control based on the discrete-time iteration of the DAB
converter is proposed in this section to deal with the effect of control delay on the digital control system.

The block diagram of the conventional one-step-delay digital controller is illustrated in Figure 3.
The periodically sampled output voltage v2n at the starting moment t = nTs of the nth switching cycle is
utilized to calculate the phase shift angle ϕ in the digital controller. However, the calculated phase shift
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angle of the nth period cannot been applied until the (n + 1)th period. In other words, the calculated
phase shift angle of the nth switching period could only play a controlling role in the next switching
period. Accordingly, the discrete-time model of the conventional digital controller of the DAB converter
can be expressed as Equation (1), where the inevitable one-step control delay is embodied.

ϕn+1 = k(Vrefn − v2n), ϕn+1 ∈ [0,π/2] (1)
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To eliminate the one-step delay effect, the discrete-time iteration-based model predictive control
strategy of the DAB converter is proposed. The block diagram of the digital controller is shown as
Figure 4, where the predictive algorithm is attached to the conventional controller to compensate the
one-step delay effect. The state variables iLn and vCn as well as the phase shift angle ϕn at the beginning
of the nth switching cycle are utilized by the predictive algorithm to predict the state variables xpre

n+1
at the beginning of the (n + 1)th switching cycle. Then, the predicted output voltage vpre

2(n+1)
can also

be obtained. It is worth nothing that the output voltage v2n under the conventional one-step-delay
control scheme is replaced by vpre

2(n+1)
under the model predictive control scheme, which means the

digital control delay effect is compensated. Since the attached predictive algorithm is not related to the
original control algorithm, the proposed method has a strong portability and can be applied to many
digital controllers with the one-step delay.
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In order to implement the model predictive algorithm, it is essential to obtain the discrete-time
iteration relationship of the DAB converter. As shown in Figure 2, there are four subintervals within a
switching cycle in the DAB converter under the single-phase-shift control. According to the power
stage structure of the DAB converter as shown in Figure 1, the system matrices Ai and vectors Bi
corresponding to the different subintervals are expressed as Equations (2) and (3), where represents the
subinterval [33].

A1 = A4 =

 −n2Rt+RoRC/(Ro+RC)

n2L
Ro

nL(Ro+RC)

−
Ro

nCo(Ro+RC)
−

1
Co(Ro+RC)


A2 = A3 =

 −n2Rt+RoRC/(Ro+RC)

n2L −
Ro

nL(Ro+RC)
Ro

nCo(Ro+RC)
−

1
Co(Ro+RC)


(2)

B1 = B2 =

[ 1
L
0

]
, B3 = B4 =

[
−

1
L

0

]
(3)

Due to the existence of the equivalent series resistance RC of the output capacitor, the sampling
output voltage v2n at the moment of t = nTs is relevant to both the capacitor voltage vCn and the
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inductor current iLn. When the turns ratio of the high-frequency transformer is 1 : 1, the equivalent
circuit of the power stage of the digitally controlled DAB converter at the time of t = nTs is shown as
Figure 5. According to the KCL and KVL of the circuit, the relationship among the output voltage,
inductance current, and the capacitor voltage can be expressed as Equations (4) and (5).

v2n = Trxn =
[
−

RoRC
Ro+RC

Ro
Ro+RC

][ iLn
vCn

]
(4)

vCn =
[

RC
Ro+RC

Ro

][ iLn
v2n

]
(5)
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The process of the model predictive control strategy is illustrated in Figure 6. Arrow a represents
the sampling moment and arrow b represents the calculation finishing moment when the predicted
phase shift angle ϕn+1 of the next switching period is solved. Next, arrow c is the moment when the
phase shift angle ϕn+1 is uploaded and controls the phase shift angle between the two H-bridges.
Accordingly, the subsequent periods will repeat the same operating principle.
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The states variables x = [iL vC]
T and the output voltage v2 at the beginning of the nth and (n + 1)th

switching cycles are denoted as xn = [iLn vCn]
T, v2n, x(n+1) =

[
iL(n+1) vC(n+1)

]T
and v2(n+1), respectively.

At moment a of Figure 6, the inductor current iLn and the output voltage v2n are sampled to calculate
the output capacitor voltage vCn according to Equation (5). Then, the predictive algorithm in Figure 6
can be obtained according to the discrete-time iteration relationship ftni between the subintervals
within a switching cycle [13]. Finally, the discrete-time iteration based model predictive algorithm
is expressed as Equation (6), where the state variables vCn, iLn and the phase shift angle ϕn of the
nth switching period are utilized to express the predictive value xpre

n+1. Besides, the kernel predictive
functions G and H are shown in Equation (7).

xpre
n+1 = f (xn,ϕn)

= ftn4( ftn3( ftn2( ftn1(xn,ϕn))))

= G(ϕn)xn + H(ϕn)V1

(6)
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G(ϕn) = eA4tn4eA3tn3eA2tn2eA1tn1 ,
H(ϕn) = eA4tn4eA3tn3eA2tn2ψ1 + eA4tn4eA3tn3ψ2 + eA4tn4ψ3 +ψ4 ,
tn1 = tn3 = ϕn/(2 · fs · π) ,
tn2 = tn4 = 1/(2 · fs) −ϕn/(2 · fs · π) ,

ψi =
∫ tni

0 eAitBidt = A−1
i

(
eAitni − I

)
Bi, i = 1, 2, 3, 4

(7)

According to the predictive control algorithm of Figure 6, the predicted output voltage vpre
2(n+1)

can

be expressed as Equation (8) based on the predicted state variable xpre
n+1, where the matrix Tr is shown

in Equation (4). The predicted value vpre
2(n+1)

is then used to calculate the phase shift angle ϕn+1 of the

(n + 1)th switching cycle, as shown in (9). Finally, the predicted phase shift angle ϕn+1 is uploaded at
the moment of t = (n + 1)Ts and exerts its influence during the (n + 1)th switching cycle. Therefore,
the effect of the one-step digital control delay is correspondingly compensated.

vpre
2(n+1)

= Tr(G(ϕn)xn + H(ϕn)V1) (8)

ϕn+1 = k
(
vref(n+1) − vpre

2(n+1)

)
(9)

4. Stability Analysis of the MPC DAB Converter

Since the time delay of the digital controller could exert great influence on the system dynamics,
the Jacobian matrix and Floquet multipliers [34] are employed in this section for the stability analysis
of the digitally controlled DAB converter. The advantages of the proposed model predictive control
compared with the original control method are verified and the instability mechanism of the DAB
converter is also revealed. The sensitivity of the proposed model predictive control algorithm to the
system parameters is analyzed. Besides, the system parameter spaces and the stability boundaries are
obtained and compared.

4.1. Calculation of Jacobian Matrix and Floquet Multipliers

The discrete-time model of the one-step delay controlled DAB converter is shown as Equation
(10). The phase shift angle of the nth switching cycle is calculated according to the state variables of the
nth switching cycle and can only play a controlling role in the (n + 1)th switching cycle and therefore
is rewritten as ϕn+1. 

iL(n+1) =
[

1 0
]
(G(ϕn)xn + H(ϕn)V1)

vC(n+1) =
[

0 1
]
(G(ϕn)xn + H(ϕn)V1)

ϕn+1 = k(Vrefn −Trxn)

(10)

Compared with the discrete-time model of the conventional one-step delay controller described by
Equation (1), the controller of the model predictive control DAB converter compensates for the digital
control delay effect via the discrete-time iteration-based predictive algorithm as shown in Equation (9).
Hence, the discrete-time model of the DAB converter based on the proposed model predictive control
can be expressed as Equation (11), where xpre

n+1 = G(ϕn)xn + H(ϕn)V1.
iL(n+1) =

[
1 0

]
(G(ϕn)xn + H(ϕn)V1)

vC(n+1) =
[

0 1
]
(G(ϕn)xn + H(ϕn)V1)

ϕn+1 = k
(
Vref(n+1) −Trx

pre
n+1

) (11)

By taking the partial derivative of Equation (10) or (11), the Jacobian matrix of the digitally
controlled DAB converter system can be calculated as shown in Equation (12). Then, the Floquet
multipliers λJ1, λJ2 and λJ3 are obtained by solving the characteristic equation of Equation (13). The
Floquet multipliers can be utilized to reveal the dynamic characteristics of the DAB converter. Besides,
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the different positions of the Floquet multipliers relative to the unit cycle correspond to the different
dynamics of the DAB converter.

J(IL, VC, Φ) =


∂i

L(n+1)
∂iLn

∂i
L(n+1)
∂vCn

∂i
L(n+1)
∂ϕn

∂v
C(n+1)
∂iLn

∂v
C(n+1)
∂vCn

∂v
C(n+1)
∂ϕn

∂ϕ(n+1)
∂iLn

∂ϕ(n+1)
∂vCn

∂ϕ(n+1)
∂ϕn

 (12)

det(λI− J(IL, VC, Φ)) = 0 (13)

Since the stability analysis of the DAB converter requires the Jacobian matrix described in Equation
(12) to be estimated at the steady state operating point (X , Φ), it is essential to solve the steady state
operating point first. Considering the symmetric characteristics of the state variables within a switching
cycle, as shown in Figure 2, the steady state relationship between xn and xn2 (the state variables at the
end of the second subinterval) is expressed as Equation (14).

xn2 = IQxn =

[
−1 0
0 1

]
xn (14)

Meanwhile, the discrete-time iteration relationship between xn and xn2 can be written as
Equation (15) in light of the iterative process of the state variables within the first two subintervals of a
switching cycle.

xn2 = ftn2( ftn1(xn,ϕn)) = eA2tn2
(
eA1tn1xn +ψ1V1

)
+ψ2V1 (15)

The solution of the steady state operating point X = (IL , VC) can be obtained by considering
Equations (14) and (15). Accordingly, the relationship between the steady steady X and phase shift angle
Φ is expressed as Equation (16). Besides, we can also get the relationship between X and Φ as shown in
Equation (17) according to the discrete-time model of the digital controller described by Equation (1).
Finally, the steady state operating point (IL , VC , Φ) can be obtained by the simultaneous formulas
(16) and (17), which are transcendental equations and can be solved by the Newton iteration method.

X =
(
IQ − eA1tn1eA2tn2

)−1(
eA2tn2ψ1V1 +ψ2V1

)
(16)

Φ = k(Vref −TrX) (17)

4.2. Stability Analysis via the Floquet Multipliers

The Floquet multipliers play an important role in the study of the dynamic characteristics of the
DAB converter. Thus, the Floquet multipliers are employed for the stability analysis of the digitally
controlled DAB converter in this part. After analyzing the Floquet multipliers of the corresponding
periodic system, the stability and bifurcation types of the DAB converter system can be determined
clearly. If there is at least one Floquet multiplier with the modulus greater than one, the system will
enter the unstable state. The relative position of the unit cycle and the Floquet multipliers under the
different system parameters has the deterministic influence on the system stability or on the way
of losing stability. Then, the stable and unstable parameter spaces of the digitally controlled DAB
converter can be obtained accordingly.

The system parameters of the DAB converter are shown in Table 1. Besides, the Floquet multipliers
of the system can be solved according to Equation (13). When the conventional control strategy is
adopted, the loci of the Floquet multipliers referred to the unit circle are shown in Figure 7 as the
proportional coefficient k of controller increases from 0.3 to 0.7. It is obvious that the two conjugate
Floquet multipliers vary with k, while the third one remains almost settled. When the two conjugate
Floquet multipliers exceed the unit circle with the proportional coefficient k greater than 0.55, the
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system will exhibit a slow-frequency oscillation as shown in Figure 8b, which is also called the Hopf
bifurcation. It is obvious that the inductor current with a much higher amplitude is not symmetrical
within one switching period, which could result in the saturation of the transformer and a noise
problem. The oscillation of the inductor current could also lead to an undesired voltage ripple of the
DC bus. All of those will pose an extra impact on the devices’ stress, which is generally not wanted in
practical applications.

Table 1. System parameters of the DAB converter.

Parameters Value Parameters Value

V1 30 V Ro 12.5 Ω
L 35.49 µH f s 20 kHz
Rt 0.38 Ω n 1
Co 455 µF Vref 30 V
RC 0.45 Ω k 0.1–0.65
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Similarly, the loci of the Floquet multipliers are shown in Figure 9, when the proposed discrete-time
iteration-based model predictive control is adopted with the same system parameters of Figure 7. It
is remarkable that all the Floquet multipliers remain inside the unit cycle, which indicates the stable
operation of the DAB converter. However, the inductor current already oscillates in the practical
application under the conventional one-step delay control with the same control parameters, which
indicates that the stable parameter spaces expand a lot when the proposed model predictive control
is applied.
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4.3. Stability Boundaries of the System

Since the equivalent series resistance RC of the output capacitor also has great influence on the
stability of the digitally controlled DAB converter system [35], the RC and the proportional coefficient k
of the controller are selected as the bifurcation parameters for the system stability boundaries’ analysis.
The stability boundaries under the model predictive control and the original one-step delay control
methods are illustrated in Figure 10. The red-dotted line represents the stability boundary of the original
system and the blue star one is the stability boundary when the proposed model predictive control
algorithm is employed. Besides, operating point A corresponds to the slow-frequency oscillation of
Figure 8b and point B corresponds to the stable state of Figure 8a. Similarly, operating point C is related
to the stable state of the DAB converter and point D corresponds to the stability boundary when the
proposed model predictive control is applied. It can also be observed that if the proposed discrete-time
iteration-based model predictive control method is adopted, the stable range of the system parameter
space will extend significantly. In addition, the accurately predicted stability boundaries can be applied
to the practical parameters design and guarantee the stable operation of the system.
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In order to validate the effectiveness of the proposed discrete-time iteration-based model predictive
control algorithm, simulation with and without the model predictive control is carried out. The
proportional coefficient k = 0.65 and the original one-step delay controlled DAB converter system
operate at point A according to Figure 10. As shown in Figure 11, when the predictive module is not
working, the DAB converter is in the unstable state and the inductor current exhibits a low-frequency
oscillation, which is consistent with the analysis of Figure 8b. After the predictive control module is
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activated at 0.2 s, the system converges to the stable state quickly, which is in accordance with the
results of Figure 10.
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4.4. Sensitivity Analysis

In practical applications, the DAB converter is required to be applicable in a wide range of load
changes. In order to indicate the sensitivity of the predictive algorithm to the different loads, the
coefficients of the state variables in the predictive algorithm are extracted as p1–p6 in Equation (18).
The variation of p1–p6 along with the variation of the load resistance is shown in Figure 12.

xpre
n+1 = G(ϕn)xn + H(ϕn)V1

=

[
p1 p2 p3

p4 p5 p6

]
iLn
vCn
ϕn

 (18)
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It can be concluded from Figure 12 that the sensitivity of the coefficients to the variation of the
load Ro is very low when Ro varies from 6 Ω to 55 Ω. The simulation results in Figure 13 also verify
that the system remains in the stable state when the load Ro switches from 20 Ω to 6 Ω. It is obvious
that the proposed model predictive control algorithm has a low sensitivity to the resistance of the load.
In other words, the predictive algorithm in the digital controller does not need to be modified when the
load changes, which is quite convenient in practical application, since the resistance of the load could
frequently change in reality. Therefore, the proposed discrete-time iteration-based model predictive



Energies 2019, 12, 3103 11 of 15

control method is compatible with a wide range of load conditions. The average or approximate value
of the load can be utilized when the predictive algorithm is applied to practical applications.
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5. Experimental Verification

To verify the reliability and accuracy of the theoretical analysis, experiments were carried out.
As shown in Figure 14, an experimental platform with the same design parameters as Table 1 was
established to validate the numerical and simulation results. The inductor current of the DAB converter
was measured by the current sensor and the current conditioning circuit. Besides, the output voltage
was measured by the voltage conditioning circuit. Based on the measured state variable signals, the
corresponding phase shift angle could be calculated in the TMS320F28335 microcontroller through the
discrete-time model-based predictive algorithm.Energies 2019, 12, x FOR PEER REVIEW 12 of 15 
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When the proportional coefficient k is 0.65, the conventional one-step delay controlled DAB
converter system will operate at the point A according to Figure 10. The waveforms of the state
variables before and after enabling the predictive control module are shown in Figure 15. When the
predictive module is not working, the DAB converter is unstable with the output voltage v2 and the
inductor current iL exhibiting the low frequency oscillation, which is in accordance with the simulation
results of Figures 8b and 11. The asymmetrical inductor current with the high amplitude could saturate
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the transformer and pose undesirable impact on the power switches and other circuit components.
Besides, the low frequency oscillation of the inductor current will inevitably lead to the noise of the
transformer and the undesired ripple on the output DC bus. After the predictive control module
is activated, the DAB converter quickly switches to the stable state, which is consistent with the
simulation results of Figure 11.
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In order to verify the previous sensitivity analysis, the experimental results with different load
resistance are also shown in Figure 16, where the proportional coefficient is 0.65. It can be observed
that when the load resistance Ro is switched from 20 Ω to 6 Ω, the system always remains in the stable
state. Besides, the experimental waveforms of the state variables are in agreement with the simulation
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6. Conclusions

In this paper, the modeling and stability analysis of the digitally controlled dual active bridge
converter based on the model predictive control is investigated. The proposed discrete-time
iteration-based model predictive control was utilized to eliminate the one-step delay effect of the
digitally controlled DAB converter. Then, the discrete-time model of the MPC DAB converter
system was obtained to conduct the stability analysis. Accordingly, the Jacobian matrix and Floquet
multipliers were derived to reveal the mechanism of the complicated nonlinear dynamics of the MPC
and conventional one-step delay controlled DAB converter for the first time. The phenomena and
internal mechanism of the low-frequency Hopf oscillation were revealed. Besides, the analysis and
the experimental results indicate that the proposed method is compatible with a wide range of load
conditions and is able to increase the stable range of the system. Meanwhile, the obtained parameter
space of the system can give good guidance for practical parameters’ design and guarantee the stable
operation of the system.
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