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Abstract: Phase change material (PCM) is one of the most important ways to store and manage energy.
The melting process of PCM in a rectangular enclosure with the different aspect ratio is frequently
related to some thermal energy storage devices. In this work, the melting of PCM in the horizontal
rectangular enclosures heated from the different sides and the influence of aspect ratio of the rectangle
are carefully studied. The enthalpy porosity technique and the finite volume method (FVM) are used
to simulate the melting process numerically. The results show that the melting process of PCM can be
dominated by conduction or natural convection due to the different heated sides. The melting of
PCM in the enclosure heated from the bottom side is firstly affected by conduction and then mostly
influenced by convection. In addition, the aspect ratio of the rectangular enclosure is found to play
an important role in the melting process. Finally, a series of fitting correlations of the liquid fraction,
Nusselt number and the energy storage are presented with the influence of aspect ratios in order to
provide the reference for designing the rectangular container of PCM. This study is helpful for the
selection of an appropriate aspect ratio and heating method to achieve the desired energy storage
performance of encapsulated PCM.
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1. Introduction

Phase change material (PCM) can absorb and release a large amount of latent heat during the
melting or solidification process. It is therefore widely used in energy storage devices, such as the
photovoltaic (PV) devices [1,2], domestic buildings [3], waste heat recovery [4], and the thermal
management of battery [5], as well as the garment [6]. In these applications, it is crucial to fulfilling the
energy storage and management in a short time because PCM is widely applied in time-dependent
environments, such as the harvest of intermittent solar and wind energy, the charging and discharging
processes of lithium-ion batteries of electric vehicles, and so on. Therefore, there is a persistent demand
on the understanding of heat transfer and melting rate for the PCM to improve its thermal management
ability and satisfy its diversity application.

The rectangular enclosure is the most common container of thermal energy storage devices.
For instance, the rectangular heatsink was used for PV [7,8], the rectangular collector device was
used for solar power [9], and PCM filled in the rectangular containers integrated into the building
constructs was used to store or release the thermal energy [10,11]. Due to the low heat conductivity of
PCMs especially for nonmetallic PCM, many researchers presented useful technologies to improve
the melting rate when the PCMs were melting in the rectangular cavities. For instance, an inverted
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technique to change the direction of gravitational acceleration [12] and lots of pin fins to expand the
heat transfer area of the cavity [13] are proposed to enhance the melting rate of PCM in a rectangular
enclosure. Indeed, among these methods of enhancing the melting rate of PCM, increasing the heat
transfer area is an effective method [14–16]. Beyond that, adding the nanoparticle into phase change
material in the rectangular cavities can also improve the melting rate of PCM effectively [17,18].

Most researchers focus on improving the low thermal conductivity of PCM to enhance melting
rates. On the other hand, the geometrical characteristic of containers also influences the melting rate of
pure PCM [19]. In Kamkari et al. [20] and Zhao et al. [21], a series of experiments and simulations
were performed to study the influence of tilt angle of PCM enclosures on melting by heating different
sides. It can be found that the inclined angle of containers could affect the melting rate of PCM
greatly. Moreover, the aspect ratio of the rectangular enclosure also has a contribution to the melting
rate of PCM [22–24]. Besides the influence of orientation and aspect ratio of containers, heating the
different sides of the rectangular enclosure also plays an important role in the melting process of PCM.
For instance, by using a heat flow meter apparatus, Fantucci et al. [25] have measured a significant
change of equivalent thermal conductivity of the PCM between the upper and the below-heated
samples. The difference was mainly attributed to the convection occurring in the below-heated sample.
Therefore, it is necessary to study the influence of heated side for PCM melting in the rectangular
containers. Because of the influence of natural convection, different heated sides could acquire different
melting rate of PCM [26–29]. Konig-Haagen et al. numerically studied the melting of PCM with the
influence of natural convection in a rectangular cavity with five different solvers by heating the lateral
side [30]. They had shown that the approach formulated in terms of enthalpy appear to be more robust
than the other using temperature formulations. Hence, the enthalpy-porosity method is adopted in
this study.

Although the influence of the aspect ratio of the rectangular enclosure and the heated sides on
melting rate are well identified in the previous studies, these influence factors are more emphasized on
the qualitative behavior. How to guide the engineer to design a suitable enclosure is still indistinct.
Therefore, the first part of this paper is devoted to answering: How to design the rectangular cavity to
achieve the highest melting rate of pure PCM with same thermal storage capacity through heating
one side of the cavity. Therefore, heating from the top, right, and bottom side and the setting of
different aspect ratios are discussed in detail. The second part of this paper is devoted to achieving the
dimensionless scaling law or empirical relation for such a melting process in a rectangular enclosure
with different aspect ratios. The proposed fitting correlations could predict the liquid fraction, Nusselt
number, and the dimensionless specific enthalpy versus dimensionless time with the influence of
aspect ratio and heated side. This study provides a fundamental understanding of the melting process
of PCM with heating the different sides, and significant references for designing the rectangular
container of PCM.

This paper is organized as follows. In Section 2, the mathematical formulations and numerical
methods, as well as numerical validations, are presented. In Section 3, the numerical results of three
different aspect ratios heated by different sides are reported to illustrate the influence of aspect ratio
for the different heated side. Then the results with more different aspect ratios are presented in the
original unit to exhibit the melting rate with different settings. The analysis and correlation fitting in
the non-dimensional form are presented in Section 4, followed by a concluding remark in Section 5.

2. Mathematical Formulation and Numerical Validation

2.1. Problem Statement

In this study, a rectangular thermal storage enclosure, as shown in Figure 1 with the same
cross-sectional area A = H·W was considered, which suggests the thermal storage capacity is fixed.
When only one side is allowed to be heated, then the width (W) and the height (H) or the aspect ratio
(AR = H/W) of the cavity would be crucial to the melting rate of PCM inside. At the beginning (t = 0),
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the temperature of PCM is supposed to be ambient temperature T0, which is assumed to less than
the melting temperature of PCM (T0 < Tm). Consequently, PCM is solid inside the enclosure at the
beginning. To study the geometrical influence on the melting behavior in the cavity, one side of the
cavity was set as a hot wall with Tw > Tm. The direction of gravitational acceleration is supposed to be
along the opposite direction of the y-axis.
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In this work, the two-dimensional simulations are performed by the assumption flow, is the
same in a long enough cavity. The cross-sectional area is set as 100 mm2, which is suitable for many
applications for the thermal management of electrical devices, special garments, and so on.

2.2. Mathematical Formulation

In order to predict phase-change behavior and track the motion of solid-liquid front, the well-known
enthalpy-porosity method [31] is adopted. The enthalpy-porosity method is one of the most widely
applied to simulate the present mixture solid-liquid problem. In this method, the volume modification
arisen by the phase change is ignored. In every controlled volume, the porosity is dependent on its
liquid fraction. One of the advantages of this method is that the tracking of the PCM melting front is
avoided. In the present two-dimensional system, the continuity and the momentum equations can be
written as follow:

∂u
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In Equation (3), the density in the buoyancy force term conforms to the Boussinesq approximation,
which can be considered to be a function of the temperature. The reference density of this paper is the
density of liquid PCM. The parameter S in Equations (2) and (3) is the porosity function defined by
Brent et al. [31]. The terms are added to the momentum equations due to the effect of phase change
on convection.

S = −C
(1− γ)2

γ3 + ε
(4)

where C is the mushy zone constant. In the very limited mushy zone, the mushy zone constant is
important to specific PCM, which is desirably in the range of 105–108 in most of the studies on the
phase change of PCM [32]. In this paper, the C is set to 105. Different mushy zone constants have been
tested (C = 105–107) and the results were almost identical. In Equation (4), ε is a small number used to
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avoid division by zero, whose value is 0.001; and γ is the liquid fraction of a cell, which is expressed
as follows:

γ =


0 i f T ≤ Ts
T−Ts
Tl−Ts

i f Tl < T < Ts

1 i f T ≥ Tl

(5)

The energy equation of PCM can be expressed as follows [31]:

ρ
∂h
∂t

+ ρ
∂(uh)
∂x

+ ρ
∂(vh)
∂y

=
∂
∂x

(
k
∂T
∂x

)
+

∂
∂y

(
k
∂T
∂y

)
(6)

The above problem allows us to define the non-dimensional parameters related to the present
study. Except for the above-defined aspect ratio, there is Rayleigh number (Ra), Prandtl number (Pr)
and Nusselt number (Nu), as well as the dimensionless time (θ) obtained by the product of Stefan
number (Ste) and Fourier number (Fo), could be related. And the dimensionless specific enthalpy (E)
is also defined. They are well defined as the following forms [33]:

Ra =
gρβH3(Tw − Ts)

αµ
(7)

Pr =
µ

ρα
(8)

θ = Ste · Fo =
cp(Tw − Ts)

hs f
·
αt
H2 (9)

Nu =
Q

k(Tw − Tm)
(10)

E =
e

hs f
(11)

where α = k
cpρ

is the thermal diffusivity coefficient, Q is the instantaneous total heat transfer rate per
unit length through the isothermal wall, and e represents the specific enthalpy per unit mass of PCM.
It is noted that the real height of the cavity (H) is not necessary, then an effective Rayleigh number,
which is the average heights of the melting of PCM for the bottom heated case could be defined by
replacing H. In this study, Rayleigh numbers are less than 7 × 105 and the Prandtl number is set to 6.722.

2.3. Initial and Boundary Conditions

To make the above partial differential system well-posed, the initial and boundary conditions
should be well-defined. At the beginning (t = 0), the fluid velocity is set to zero and the initial
temperature of PCM is 270 K. All of the boundary walls are no-slip i.e., u = v = 0. Except for the
temperature of the heated wall being 343.15 K, the rest walls adopt the adiabatic condition. Furthermore,
the liquid is supposed to be Newtonian and incompressible. The flow is laminar flow.

2.4. Numerical Method

In this work, the finite volume method (FVM) is used to solve the above governing equations by
the commercial CFD package, ANSYS Fluent 17.1. The discrete form of above conservational equations
is solved by the SIMPLE (semi-implicit method for pressure-linked equations) algorithm in order to
couple the velocity and pressure field. The convective terms of momentum and energy equations are
discretized by the second-order upwind scheme. The under-relaxation factors for pressure, density,
momentum, and liquid fraction update are 0.3, 1.0, 0.2, and 0.9, respectively. The convergence of the
solution is checked at each time step with the criterion that the scaled residuals are less than 10−3 for
the continuity equation, 10−4 for the momentum equation, and 10−8 for the energy equation.
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2.5. Numerical Verification and Validation

In fact, the porosity enthalpy technology will only exhibit the first-order accuracy near the interface
of the solid and liquid zone even though the second-order is adopted [34]. Then the cell number of
the computational domain is quite important to obtain a grid-independent solution. In this work,
non-uniform quadrilateral cells are generated for all cases. Figures 2 and 3 show the verification of
convergence by using different cell numbers and time-step sizes for AR = 1 when the bottom side,
right side, and the top side are heated, respectively. The tested cell number including 10,000, 12,321,
and 15,625. In Figure 2, it can be seen that further refinement of the grid size only changed the solution
a little. Therefore, the cell number of 12,321 and the time step size of 0.1 s could satisfy the calculation
accuracy for such a low Rayleigh number problem.
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Figure 2. The verification of grid independence at the time step 0.1 s for AR = 1. (a) Heating the top
side; (b) heating the right side; (c) heating the bottom side.
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Figure 3. Independence analysis of time step size for AR = 1 with the grid number 12,321. (a) Heating
the top side; (b) heating the right side; (c) heating the bottom side.

Furthermore, the present results are compared to other previous studies to verify the present
results were reliable. The parameters of PCMs adopted for numerical validation and simulation
are shown in Table 1. Their thermophysical properties listed are based on the references [35–37].
The numerical validation is based on the comparison with both the numerical [35] and experimental
results [36,37]. The gravitational acceleration is 9.81 m/s2 and vertically downward for all of the
comparing cases.

Table 1. Thermophysical properties of pure tin [35], n-octadecane [36], and ice [37].

Parameter Symbol Tin
(505–508 K)

N-Octadecane
(298–301 K)

Ice/Water
(270–343.15 K)

Density [kg/m3] ρs/ρl 7500/7500 867/775.60 903/998
Specific heat capacity [J/kg·K] cps/cpl 200/200 1900/2240 2091/4182

Thermal conductivity [W/m·K] ks/kl 60/60 0.32/0.15 2.367/0.624
Dynamic viscosity [kg/m·s] µ 6 × 10−3 3.75 × 10−3 1.003 × 10−3

Thermal expansion coefficient [1/K] β 2.67 × 10−4 8.36 × 10−4 5.1 × 10−5

Latent heat [J/kg] hsf 60,000 243,680 333,790
Melting temperature [K] Tm 505.04 301.15 273.15

Prandtl number Pr 0.02 56.0 6.722
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In Figure 4, the comparison is made with the previous numerical study on the PCM of pure tin with
the initial temperature of 505 K [35]. The temperatures of the left and right wall are 508 K and 505 K,
respectively. The horizontal walls are thermally insulated. Figure 4a shows the trace of the melting front
and Figure 4b shows the evolution of the liquid fraction in the cavity. The simulation results are in a
good agreement with the results in reference. In Figure 5, the PCM in experiments is pure n-octadecane
with the initial temperature 298.15 K. The horizontal walls are adiabatic. The temperatures of the left and
right walls are 301.15 K and 298.15 K, respectively. The simulation results of the melting front in Figure 5a
also show a consistent trend with the experimental observation. Furthermore, the liquid fraction is
also in good agreement with previous experimental results (Figure 5b). The trivial discrepancy of the
melting front from 2 h may arise possibly by the difference between the three-dimensional experiment
and present a two-dimensional simulation. In the three-dimensional experiment, the melting front
would not be consistent because the ending wall of the cavity may produce the secondary flow
phenomenon by the effect of fluid viscosity. As the melting front advances, the secondary flow would
exhibit different influences between the top and bottom because the liquid near the top is much more
than the liquid near the bottom. To ensure the numerical results are reliable, an extra comparison
with experimental data is made, as shown in Figure 6. In this figure, the instantaneous temperature of
PCM is also plotted for comparison. Considering they are instantaneous results for an evolutional
problem, it suggests that the numerical results are convincing. The above comparisons of different
physical quantities suggest that the present model and numerical method are capable of studying
the melting of PCM. In this paper, the phase change material used for simulation is ice due to its
extensive application as PCM as it is low-cost and eco-friendly. It is pointed out that the numerical
method for the ice in the parametrical study is exactly the same as the previous validation. The selected
PCM generates nothing new involving physical behavior compared to our validated cases except for
different coefficient of properties.
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Figure 4. Numerical validation with reference [35]. (a) Melting front; (b) liquid fraction.

Energies 2019, 12, x FOR PEER REVIEW 6 of 20 

 

Furthermore, the liquid fraction is also in good agreement with previous experimental results (Figure 
5b). The trivial discrepancy of the melting front from 2 h may arise possibly by the difference between 
the three-dimensional experiment and present a two-dimensional simulation. In the three-
dimensional experiment, the melting front would not be consistent because the ending wall of the 
cavity may produce the secondary flow phenomenon by the effect of fluid viscosity. As the melting 
front advances, the secondary flow would exhibit different influences between the top and bottom 
because the liquid near the top is much more than the liquid near the bottom. To ensure the numerical 
results are reliable, an extra comparison with experimental data is made, as shown in Figure 6. In this 
figure, the instantaneous temperature of PCM is also plotted for comparison. Considering they are 
instantaneous results for an evolutional problem, it suggests that the numerical results are 
convincing. The above comparisons of different physical quantities suggest that the present model 
and numerical method are capable of studying the melting of PCM. In this paper, the phase change 
material used for simulation is ice due to its extensive application as PCM as it is low-cost and eco-
friendly. It is pointed out that the numerical method for the ice in the parametrical study is exactly 
the same as the previous validation. The selected PCM generates nothing new involving physical 
behavior compared to our validated cases except for different coefficient of properties. 

Table 1. Thermophysical properties of pure tin [35], n-octadecane [36], and ice [37]. 

Parameter Symbol Tin (505–508 K) N-Octadecane 
(298–301 K) 

Ice/Water  
(270–343.15 K) 

Density [kg/m3] ρs/ρl 7500/7500 867/775.60 903/998 
Specific heat capacity [J/kg·K] cps/cpl 200/200 1900/2240 2091/4182 

Thermal conductivity [W/m·K] ks/kl 60/60 0.32/0.15 2.367/0.624 
Dynamic viscosity [kg/m·s] μ 6 × 10−3 3.75 × 10−3 1.003 × 10−3 

Thermal expansion coefficient [1/K] β 2.67 × 10−4 8.36 × 10−4 5.1 × 10−5 
Latent heat [J/kg] hsf 60,000 243,680 333,790 

Melting temperature [K] Tm 505.04 301.15 273.15 
Prandtl number Pr 0.02 56.0 6.722 

 
Figure 4. Numerical validation with reference [35]. (a) Melting front; (b) liquid fraction. 

 
Figure 5. Validation of the present numerical model with the experimental data reported by Faden et 
al. [36]. (a) Melting front; (b) liquid fraction. 

0 200 400 600 800 1000
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Hannoun et al.
Present

(b)

0 10 20 30 40
X (mm)

0

10

20

30

40

Faden et al. - 1h
Faden et al. - 2h
Faden et al. - 3h
Faden et al. - 4h
Present - 1h
Present - 2h
Present - 3h
Present - 4h

(a)

0 1 2 3 4
Time (h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Faden et al.
Present

(b)

Figure 5. Validation of the present numerical model with the experimental data reported by
Faden et al. [36]. (a) Melting front; (b) liquid fraction.
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Figure 6. Validation of the present numerical model with the experimental data reported by Kahraman [37].
(a) Liquid fraction; (b) temperature profile of centerline (x = 0.1 m, 0 ≤ y ≤ 0.2 m) at time = 1.7 h.

3. Results and Discussion

In this section, a parametric study on the aspect ratio of enclosure heated by different walls for a
given cross-sectional area, i.e., the same thermal storage capacity, is presented to compare their melting
rates. Considering the dimensionless melting time is related to the height of the enclosure, then for
the cases with different aspect ratios, the unit of dimensionless melting time corresponds to different
real-time. In order to make the comparison clear enough, the results are presented in a real physical
unit in this section. Firstly, the three typical enclosures of different aspect ratios of 0.5, 1.0, and 2.0 are
selected to illustrate the influence of aspect ratio and a different heated side.

Figure 7 shows the temperature contours and streamlines of the PCM melting in the three different
horizontal enclosures heated from the top, right, and bottom sides to illustrate the influence of aspect
ratio and different heated sides. It is noted that the heat transfer for the top heated case is obviously
only dependent on conduction. The heat flux is doubtless the minimum among the three different
heated walls and could even be calculated without simulation. However, this study still made the
simulation in order to extract the critical time on the transition from conductive to the convective
regime for the bottom heated case as it includes the both effective after a critical transitional time. It is
clear that even though the mass of the PCM in these three different enclosures is the same, the melting
front, as well as the melting of PCM at given instants, exhibit non-trivial differences.

At the time of 30 s, the interfaces of PCM in these enclosures heated from the top or bottom side is
approximately planar and has equivalent distance to the heated wall, which suggests that the heat
transfer is dominative in conductive regime, although there are even number of rolls at the bottom
of enclosures when heated from below, as shown in Figure 7. The rolls are approximately square
which suggests that the influence of buoyancy is working but weak so that the width of the roll is as
large as the height of rolls. However, when the right side is heated, the buoyancy of PCM plays a
more important role since the effective height is much larger than the other two cases. Consequently,
the influence of natural convection is dominative, and the fluid with the higher temperature near
the top of the enclosure facilitates the melting of PCM and vice versa. Ultimately, an approximately
triangle liquid cavity is produced. As the melting goes on, the height of the fluid zone increases for the
bottom heated cases. Consequently, the corresponding effective Rayleigh number increases, which is
defined based on the real averaged height of liquid instead of the height of the enclosure (H). Then the
bottom heated case switch to convective regimes. Meanwhile, the rolls deform to irregular shapes to
facilitate heat transfer, as shown in Figure 7.
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Figure 7. Temperature contours with streamlines at t = 30 s, 50 s, 70 s. (a1)–(a3) Heating the top side;
(b1)–(b3) heating the right side; (c1)–(c3) heating the bottom side.

Figure 8 displays the evolutional liquid fraction in the three different enclosures by heating the
different sides. In Figure 8a,b, the melting of PCM in the enclosure heated from below is faster than
the other two situations. However, this rule can be not applied to the enclosure with AR = 2.0, where
the melting rate of PCM in the enclosure heated from the right side is the fastest (see Figure 8c).
It indicates that increasing the aspect ratio can be converted from bottom heating dominant to right
heating dominant. Because not only the size of the right side becomes larger but also the effective
Rayleigh number becomes larger, to enhance the heat transfer of the unit area. Then, it can be known
that the right heated case has a higher melting rate as AR = 2.0 and the higher melting rate of the
bottom heated case occurs in the range of 0.5 ≤ AR ≤ 1.
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When the melting process is dominated by the conductive regime, the corresponding Nusselt
number has the scaling law as follow [38]:

Nu ∼ θ−
1
2 (12)

For the melting process in the quasi-steady convection regime, there is also a corresponding
boundary layer convective scaling law [38]. It well agrees with the 1/4 law of Rayleigh number
as below:

Nu ∼ Ra
1
4 (13)

Figure 9 shows the evolution of Nusselt numbers on the heated sides as well as a comparison to
theoretical prediction [38]. The best coefficients for the above-mentioned scaling law are fitted and
listed in Table 2 for these three enclosures. It is clear that the invariant coefficient 1.155 is satisfied
for the conductive regime and the coefficients for the convective regime are a litter bit affected by the
increased Rayleigh number range from 0.397 to 0.411. The reason could be explained by the comparable
trivial contribution of conduction in these convection regimes. To simplify the analysis, an invariant
coefficient of 0.4 as an acceptable value is proposed for these cases.
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Table 2. The corresponding parameters and coefficients in Figure 10.

Enclosures Height [mm] Ra Pr c1 c2

AR = 0.5 7.071 85,611 6.722 1.155 0.397
AR = 1.0 10.0 242,152 6.722 1.155 0.411
AR = 2.0 14.142 684,908 6.722 1.155 0.409
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Figure 10. Evolution of the liquid fraction of the phase change material (PCM) in rectangular enclosures
with different aspect ratios by heating the different sides. (a) Heating the top side; (b) heating the right
side; (c) heating the bottom side.

In Figure 9, it can be observed that the Nusselt numbers are in a good agreement with the scaling
law as stated in Equations (12) and (13) when the enclosures are heated from the top and right sides.
It is also demonstrated that convection is the main factor during the late stage of the melting of PCM
in enclosures heated from the right side. The melting of PCM in rectangular enclosures heated from
below is affected by conduction first and then by convection through a clear transition.

Since the aspect ratio plays an important role in the melting of PCM in the rectangular enclosures,
its influence on melting is checked in detail. Figure 10 shows the evolutional liquid fraction for
the PCM melting process in rectangular enclosures with many different aspect ratios by heating the
different sides. The evolutional liquid fraction monotonously varies with the influence of aspect
ratio. It is indicated that the higher melting rate is supported by a larger heated surface for all cases.
From Figure 10b, it is observed that there is a transition of the curves at a larger aspect ratio for the
right heated case. It could be explained by the fact that the top side of the cavity is melted into the
liquid so that the area of the melting front reduces. Furthermore, the transition comes early as the
increase of aspect ratio.

Nusselt number of the PCM in the cavity is plotted in Figure 11. For the right heated side
(Figure 11b), it is observed that the Nusselt number slightly decreases at the end of the melting process,
and the drop in the Nusselt number increases as the aspect ratio increases. In fact, the melting front
does not advance at the same pace so that there is also a residual solid zone as part of the top is liquid.
In Figure 11c, an interesting phenomenon is that there are two obvious peaks of Nusselt number during
the melting process, especially for the small aspect ratio cases. One of the peaks could be explained by
the transition from conduction to convection. The other peak of Nusselt number could be the reason
due to the influence of the decreasing number of rolls in flow fields.
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Figure 12 plots the variation of enthalpy along the melting periods. The curves of enthalpy have
similar behavior as that of the liquid fraction of PCM. It is noted that the initial value of the enthalpy is
negative because the PCM is undercooled initially. Although the trend of these curves is not affected by
different aspect ratios, it is obvious that the melting rate is highly dependent on it. How to evaluate the
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influence of aspect ratio on the melting rate of PCM is essential to the design of some energy storage
devices. The foremost works are to describe the problem in a non-dimensional way and identify the
possible critical time from the conductive regime to the existing convective regime under the influence
of the aspect ratio.
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Figure 12. Enthalpy of the PCM in rectangular enclosures with different aspect ratios by heating the
different sides. (a) Heating the top side; (b) heating the right side; (c) heating the bottom side.

4. Analysis and Correlation

Considering that the melting of PCM is widely used in many significant industrial fields,
its physical mechanism attracts many pioneer researchers. However, it is widely admitted that the
melting phenomenon is quite complicated so that Viskanta thought that no unified theoretical treatment
was achieved [33]. The instantaneous shape of the solid-liquid interface of PCM is the results of the
strong coupling between the complicated flows of liquid and the melting rate of solid. Therefore,
this work does not aim to study the theoretical solution on a present problem but to present the
semi-empirical mathematical expression based on the basic fundamental understanding of this problem
as well as the correlation of present numerical simulations. The purpose is to guide the design of the
rectangular enclosure with the right aspect ratio and heated wall.

One of the fundamental understandings of the melting of PCM is that it contains at least conductive
and convective regimes for the bottom or lateral heated cases. In fact, more heat transfer regimes
on the melting of PCM are proposed in the literature but their influence is comparatively slight and
ignores here to simplify the analysis. Based on the comparison between top and bottom heated cases,
one could extract a critical time on the transition of the heat transfer regime and it is supposed to be
related to aspect ratio. For the bottom side heated cases, it is essential to achieve the critical time when
natural convection takes over conduction in the melting process. Then the influence of aspect ratio on
these critical time are plotted, as shown in Figure 13. It is clear that the dimensionless critical time θc is
inversely proportional to the aspect ratio of rectangular enclosures, approximately.
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By introducing the critical dimensionless time, it is reasonable to divide the melting process
into two parts for the bottom heated cases. Another issue is to unify the influence of aspect ratio as
shown by the scattering curves in Figures 10–12 in a dimensionless way. In fact, for the top heated
case, the unified non-dimensional relation is immediately available when the physical parameter is
non-dimensional. For the lateral and bottom heated cases, the non-dimensional melting time should
be implemented to separate the influence between conduction and convection. By fitting the results
above, the liquid fraction and Nusselt number are plotted, as well as dimensionless specific enthalpy
in a consistent way, as shown in Figures 14–16.
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Figure 14. Unified results for the liquid fraction of PCM in rectangular enclosures with different
aspect ratios. (a) Heating the top side; (b) heating the right side; (c1) heating the bottom side (θ ≤ θc);
(c2) heating the bottom side (θ > θc).

Figure 14 shows the fitted correlations of the liquid fraction compared with the numerical results.
And these correlations are proposed in Equations (14)–(18). When the top side is heated, the liquid
fraction with different AR collapse to a single curve as expected when these data are plotted versus
dimensionless time θ. The problem is essentially independent on the AR, as shown in Figure 14a.
The liquid fraction (LF) in this case can be calculated as follows:

LF = 1.263θ0.5167 (14)

When the right side is heated, the aspect ratio plays an important role. By using nonlinear
regression analysis, the correlation of liquid fraction (LF) could be approximated as follows:

LF = −0.388X3 + 0.388X2 + 0.921X (15)

where,

X = AR ·
[(
(1.571θ)0.5167

)3.5
+

(
0.22θ ·Ra0.25

)3.5
] 1

3.5
(16)

In the above equation, the influence of conduction and convection is distinguished with different
exponential relation to non-dimensional melting time. Then the liquid fraction with different AR is
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approximately convergent to the approximate correlation, as shown in Figure 14b. When the bottom
side is heated, the fitted correlation should be divided into two parts by critical dimensionless time θc,
which could be calculated as follows:

θc = c ·AR−0.9812 (17)

where c is a coefficient dependent on the variation of the cross-sectional area ((A/Aref)1.5), in order to
consider the geometrical contribution on Rayleigh number, in this study, it is 0.05436. By separating the
different regimes, the correlation of liquid fraction (LF) can be approached by following expressions
according to the dimensionless melting time:

LF =

{
1.263θ0.5167 θ ≤ θc

0.165θ ·Ra0.25AR0.1 θ > θc
(18)

It is found that the liquid fraction has an exponential relation to AR in the convective regime.
The above mathematical expressions on the melting process provide the ability to compare and quantify
the melting rate by heating different sides of the rectangular enclosure with different aspect ratios.
Especially, in the range of aspect ratio that could provide a higher melting rate by heating the bottom
side than that by heating the right side. The answer is given in the last part of this paper by plotting
the neutral curve, which provides the critical aspect ratios in the Rayleigh number versus aspect ratio
diagram when the bottom and lateral heated wall need the same melting time.

In the same way, the correlation of Nusselt number for the melting process is also proposed based
on different heated side. Figure 15 shows the fitted correlations of Nusselt number compared with the
numerical results. And these correlations are shown in Equations (19)–(21). In Figure 15a, when the
top side is heated, the fitted correlation is as follows:

Nu = 1.155θ−0.5 (19)
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When the right side is heated, Jany and Bejan [38] proposed a unified mathematical expression for
the Nusselt number based on conduction, convection, and mixing regimes of heat transfer. They also
presented the necessary empirical constants based on their numerical simulation. In this work,
the influence of the aspect ratio is also considered. When the aspect ratio is implemented in their
expression and the empirical constant is slightly adjusted, it can be found that the Nusselt number can
be calculated as follows:

Nu = 3.7851θ−0.502 +
0.3465AR0.1

·Ra0.25
− 1.2617θ−0.502√

1 +
(
0.0175AR0.1 ·Ra0.35

· θ1.2
)−2

(20)

For the bottom heated cases, it is noticed that the evolutional Nusselt number is irregular by
the influence of irregular solid-liquid interface. It is, therefore, unnecessary to fit this irregular curve
because it is sensitive to any random process. However, the whole process corresponds to a useful
averaged Nusselt number. Hence, here is the above-mentioned correlation as follows:

Nu =

{
1.155θ−0.5 θ ≤ θc

0.4Ra0.25 θ > θc
(21)

Figure 16 shows the proposed correlations of dimensionless specific enthalpy (normal to latent
heat) and its comparison with numerical results. And these proposed correlations, are shown in
Equations (22)–(24). In Figure 16a, when the top side is heated, the fitted correlation is as follows:

E = 1.824θ0.498 +
Qi

hs f
(22)

In Figure 16b, when the right side is heated, the fitted correlation is as follows:

E = −0.2877X3 + 0.1706X2 + 1.558X +
Qi

hs f
(23)

In Figure 16(c1,c2), when the bottom side is heated, the fitted correlation is as follows:

E =

 1.824θ0.498 + Qi
hs f

θ ≤ θc

0.325θ ·Ra0.25
·AR0.1 + Qi

hs f
θ > θc

(24)

It is obvious that the aspect ratio plays an important role in the convective regime.
With above-mentioned correlations, these results could collapse to almost one line.

In order to validate the above-mentioned correlations, further evaluation is necessary. Here several
independent experimental data are selected by heating a different side [20,28,36,39–41] and the available
correlation in reference [38] as a comparison is shown in Figure 17. It seems that our proposed
correlations are in good agreement with several different independent experimental results. Compare
to the previous prediction, the present correlation exhibits a fidelity accuracy. Furthermore, the Rayleigh
number in these experiments are in a wide range from 105 to 108 as shown in Table 3, it suggests that
our proposed correlation could extend as high Rayleigh number as 108. Hence, these correlations could
be used to predict the melting of PCM in different rectangular enclosures by heating the different sides.
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Figure 16. Unified results for dimensionless enthalpy of PCM in rectangular enclosures with different
aspect ratios. (a) Heating the top side; (b) heating the right side; (c1) heating the bottom side (θ ≤ θc);
(c2) heating the bottom side (θ > θc).
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Figure 17. Validation of the results of the references by using the proposed fitted correlations. (a) Heating
the top side [39]; (b) heating the bottom side [20,28]; (c) heating the lateral side [41]; (d) heating the
lateral side [36,40].
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Table 3. The parameters from the references.

Case Zeng et al. [39]
(Lauric Acid)

Madruga et al. [28]
(N-Octadecane)

Kamkari et al. [20]
(Lauric Acid)

Kumar et al. [41]
(Gallium)

Kamkari et al. [40]
(Lauric Acid)

Faden et al. [36]
(N-Octadecane)

Ste 0.3383 0.4915 0.1468 0.0384 0.3383 0.0643
Ra 1.7119 × 107 1.3747 × 106 1.7119 × 107 5.9480 × 105 2.3666 × 108 6.6011 × 106

Pr 88.5719 60.8123 88.5719 0.0216 88.5719 56.0
α 7.5645 × 10−8 7.6287 × 10−8 7.5645 × 10−8 1.3767 × 10−5 7.5645 × 10−8 1.1512 × 10−7

H/W 0.05/0.12 0.01/0.01 0.05/0.12 0.0635/0.0889 0.12/0.05 0.04/0.04

At last, it comes to the theme of this work about how to design a rectangular enclosure of PCM
with the same heat storage capacity (the same cross-sectional area) by heating one sole side to achieve
higher melting rate. It is clear that the top heated scheme is never possible to be the optimum option.
The melting rate of PCM could be enhanced by a small aspect ratio for the bottom heated case or a
large one for the lateral wall heated situation. However, the melting rate of PCM could be at the same
level by choosing a suitable aspect ratio. By setting the same liquid fraction and non-dimensional
melting time in Equations (18) and (21), the neutral curves of critical aspect ratio and its relationship to
Rayleigh number can be plotted, as shown in Figure 18.
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Figure 18. The neutral curves of the critical aspect ratio when the bottom heated wall and lateral heated
wall need the same melting time.

From the Rayleigh number adopted in the present simulation, the critical aspect ratio is 1.25 when
all of the PCM is changed to liquid, i.e., LF = 1.0. In fact, PCMs are not always expected to be melted
out in their designing condition of many applications. Therefore, the neutral curves of the critical
aspect ratio for LF = 0.5 and LF = 0.75 are also plotted in the same way. For the present numerical work,
the corresponding critical aspect ratios are 0.82 and 0.93. It is noted that as the aiming liquid fraction
reduces, the critical aspect ratio decreases. Based on the previous numerical results, it is clear that the
melting rate is low at the beginning and increases in the evolutional process for the bottom heated
cases. On the contrary, the melting rate reduces at the last stage of phase-changing for the lateral
heated case. Consequently, the critical aspect ratio reduces as the aiming liquid fraction decreases.

It should be pointed out that the mushy zone constant in the numerical simulations is set to 105,
which is the most selected constant, may not be suitable for all kinds of PCM. The reference density is
set to the density of liquid PCM. Consequently, the empirical constants of correlation are supposed to
be slightly changed based on the variation of mushy zone constant, different PCM, or variable density.
The influences of the mushy zone constant and the variable density on the critical aspect ratio are not
the scope of this study but would be the future work.

5. Conclusions

Considering the rectangular enclosure is frequently adopted in phase change energy storage,
the melting process in the rectangular enclosures with different aspect ratios heated from the different
sides are numerically studied in this work. The Rayleigh numbers in these cases are in the order
of 105. This study compared the melting rate for the enclosure with the same sectional area but a



Energies 2019, 12, 3100 18 of 21

different aspect ratio with different heated sides. It is clear that the top heated enclosure only affected
by the conductive regime, while the other heated sides could also benefit from the convective regime.
For the bottom heated side case, the difference to the top heated side is compared to the extract time
transition from conductive to the convective regime at a critical time. This transitional time is observed
as inversely proportional to the aspect ratio of the rectangular enclosure.

As the aspect ratio increases, the lateral heated side provides a more obvious advantage. On the
contrary, the bottom heated side may result in the best melting rate for the small aspect ratio cases.
However, the choice of aspect ratio is sometimes limited by many complex factors, such as the cost,
the area of the heated surface, available space, and so on. It is obscured to know which one is better
between the bottom and laterally heated schemes by their competitive melting rate of PCM as the
rectangular enclosure close to be a square. Therefore, it is desirable to know a critical aspect ratio for
one scheme better than the other for the design of the phase change energy storage.

In order to recommend the best aspect ratio of rectangular enclosure quantitatively for energy
storage, a series of correlations in dimensionless style for the liquid fraction and Nusselt number, as well
as the specific enthalpy, are proposed. These correlations are fitted from numerous numerical results
and validated for several independent experimental results in a broad range of Rayleigh numbers. It is
found that the proposed correlation could also predict the melting process much better than the other
available correlation in reference to the rectangular enclosure with different heated sides. The present
correlation could also be used for a higher Rayleigh number as large as 108. Base on the comparison of
different schemes on the heated side by using the proposed correlation expression, the neutral curves
of critical aspect ratio versus Rayleigh number is obtained in a diagram. The diagram shows that when
AR < 1.25, the total melting time of PCM in the cavity heated from below is the smallest (LF = 1.0).
The critical aspect ratios for LF = 0.5 and LF = 0.75 are respectively, 0.82 and 0.93. This study is helpful
for the selection of the appropriate aspect ratio and heating method to achieve excellent comprehensive
energy storage performance of PCM.
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Nomenclature

H, W height and width of the enclosure [m]
A section-cross area of enclosure [m2]
C mush zone constant [kg/m3

·s]
Q total heat transfer rate [J/kg]
cp specific heat [J/kg·K]
p pressure [N/m2]
t time [s]
hsf latent heat [J/kg]
T temperature [K]
k thermal conductivity [W/m·K]
e specific enthalpy of PCM [J/kg]
u, v velocity in x and y-direction respectively [m/s]
g gravitational acceleration [m/s2]
a coefficient
c correction factor



Energies 2019, 12, 3100 19 of 21

E dimensionless specific enthalpy
Ra Rayleigh number
Pr Prandtl number
Nu Nusselt number
Ste Stefan number
Fo Fourier number
AR aspect ratio of the rectangular enclosure
Greek symbols
ρ density [kg/m3]
µ dynamic viscosity [kg/m·s]
α thermal diffusivity [m2/s]
β thermal expansion coefficient [K−1]
γ liquid fraction
ε a small number, typically around 10−3

θ the dimensionless time
Subscripts
ref reference point
s solid
l liquid
m melting
w hot side
i initial state
c critical point
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