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Abstract: This paper proposes a new probabilistic power flow method for the hybrid AC/VSC-MTDC
(Voltage Source Control-Multiple Terminal Direct Current) grids, which is based on the combination
of ninth-order polynomial normal transformation (NPNT) and inherited Latin hypercube sampling
(ILHS) techniques. NPNT is utilized to directly handle historical records of uncertain sources to build
the accurate probability model of random inputs, and ILHS is adopted to propagate the randomness
from inputs to target outputs. Regardless of whether the underlying probability distribution is
known or unknown, the proposed method has the ability to adaptively evaluate the sample size
according to a specific operational scenario of the power systems, thus achieving a good balance
between computational accuracy and speed. Meanwhile, the frequency histograms, probability
distributions, and some more statistics of the results can be accurately and efficiently estimated as
well. The modified IEEE 118-bus system, together with the realistic data of wind speeds and diverse
consumer behaviors following irregular distributions, is used to demonstrate the effectiveness and
superiority of the proposed method.

Keywords: probabilistic power flow; AC/VSC-MTDC hybrid grids; uncertainty; ninth-order
polynomial normal transformation; inherited Latin hypercube sampling

1. Introduction

The Voltage Source Converter based Multiple Terminal Direct Current (VSC-MTDC) technique
has become the most feasible solution to the integration of remotely located large wind farms (WFs), as
it can effectively support the AC grid, facilitate the integration of fluctuant wind power, and improve
the transfer efficiency [1]. With more and more WFs integrated into AC grids by using VSC-MTDC, the
fluctuant wind power will significantly increase the stochastic nature of the power system, thus further
exacerbating the operational condition of the hybrid AC/VSC-MTDC grids [2]. Nevertheless, the
deterministic power flow (DPF) cannot fully account for the random variables. Hence, the probabilistic
power flow (PPF) methods for the hybrid AC/VSC-MTDC grid are rising with the aim of accurately
evaluating the impact of probabilistic uncertainties.

In power system operation, the PPF analysis treats the uncertainties (such as wind speeds and
loads) as input variables, and it focuses on accurately obtaining the statistical information of outputs
including mean, standard deviation, frequency histogram, and even probability density function (PDF)
based on the results within an acceptable computational time. To achieve this goal, the following
problems are necessary to be considered and addressed:
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(1) the probability model of input variables needs to be accurately built based on the historical
records, regardless of whether the underlying distribution is known or unknown;

(2) the probabilistic method holds a good balance between computation accuracy and speed;
(3) the mean, standard deviation, frequency histogram, and even the PDF of output results obtained

from PPF calculation can be comprehensively available.

The first problem is the issue of handling random input variables. With the construction of
a VSC-MTDC system, the power grid will constantly expand, and massive uncertain sources will
emerge [3]. These uncertain sources in a hybrid AC/VSC-MTDC grid may follow arbitrary distributions
since they are distributed in a wide geographic space and affected by various complex factors e.g.,
meteorological conditions. Meanwhile, the correlation amongst these random variables of adjacent
areas cannot be neglected. Hence, the established probability model of input variables in the hybrid
AC/VSC-MTDC grid should have the ability to consider correlated random variables following diverse
even irregular distributions. However, the uncertain sources in PPF calculation were assumed to
follow some common probability distributions. Under such assumption, the loads were subject to
Gaussian distributions in [4–6]; and, the wind speeds were set to follow Weibull distributions in [7–9].
Subsequently, based on the selected common distributions with their analytical expressions, the
NATAF transformation can be applied to establish the correlation relationship amongst random input
variables [7,8,10]. In a few cases, the established probability model according to assumption makes
sense. Unfortunately, the loads and wind speeds in a practical hybrid AC/VSC-MTDC grid may not
follow common distributions but irregular distributions. Based on the assumption of input variables
following common distributions, the approximated probability model will bring significant error,
resulting in an accuracy loss.

The polynomial normal transformation technique is not only able to handle the random variables
following irregular distributions but also has the ability to deal with the correlations among these
variables. In [11], the third-order polynomial normal transformation (TPNT) is introduced into the PPF
analysis for pure AC grid to directly deal with historical records of wind speeds and loads. To improve
the accuracy in the approximations of some irregular distributions, Headrick proposes the fifth-order
polynomial normal transformation (FPNT) [12]. However, these two techniques are still limited to a
portion of distribution types and hence are unable to accurately model some distributions of wind
speeds and loads that follow irregular or extremely uncommon distributions in practice. In this paper, a
ninth-order polynomial normal transformation (NPNT) technique [13,14] is firstly employed to model
the random variables existing in the hybrid AC/VSC-MTDC grid. Owing to the ability to take the extra
fifth/seventh to tenth moments into consideration, the NPNT can accommodate many distributions
which are difficult for TPNT/FPNT, and correlation issue of multiple random variables modeling can
be also addressed well by means of NPNT.

Probabilistic modeling on the random input variables is just the initial step of the PPF analysis
for hybrid AC/VSC-MTDC grid discussed herein, the following critical step is to propagate the
randomness from inputs to target outputs by means of probabilistic methods [15]. As the DPF of the
hybrid AC/VSC-MTDC grid is quite time-consuming and more complex than DPF of pure AC grid, the
selected probabilistic methods should keep a good balance between computation accuracy and speed.
Generally, probabilistic methods in the power system can be classified into three groups: analytical
method, approximate method, and Monte Carlo Simulation (MCS) [16]. The major advantage of
analytical methods is fast computing speed. However, most of the analytical methods assumed that the
original models were linear and the uncertain sources were uncorrelated, resulting in poor accuracy [17].
The basic idea of the approximate method is to select critical samples to approximate input PDFs,
and then these samples are fed into the DPF model [7,18]. Generally, the approximate method could
improve the computational efficiency, while maintaining acceptable accuracy. Unfortunately, frequency
histograms and PDFs of results cannot be directly obtained by use of these methods, which is quite
restricted for further results analysis.



Energies 2019, 12, 3088 3 of 21

The MCS method could provide the “accurate” results (including statistical moments and PDFs),
which are usually applied to validate the other methods. Unfortunately, the computational burden
of such method is extremely heavy. In order to overcome this issue, MCS based on the conventional
Latin hypercube sampling (CLHS) [19] is proposed, which generates the samples in a stratified way to
cover the input PDFs more evenly and largely, thus getting a higher efficiency and accuracy in PPF
analysis. Meanwhile, moments and PDFs of PPF results can be directly obtained by use of CLHS [11].
The drawback of the CLHS lies in that the highly structured form of the sample set hiders it from
directly adding an additional sample set to an already obtained sample set [20,21]. That is to say, unlike
conventional MCS, the size of CLHS cannot be increased simply by generating additional samples,
since the new sample set (including the original and the additional sample set) cannot preserve the
stratification properties that make CLHS so effective [22]. This naturally results in a problem regarding
how many samples are required for PPF of the complex hybrid AC/DC grids with diverse operational
scenarios. In particular, for a practical power system operation, a small sample may not yield the
accurate PPF results, while a large sample will decrease the efficiency.

In order to address the deficiency issues mentioned above, an inherited Latin hypercube sampling
(ILHS) method [22] is proposed to extend sample size, making full use of the existing samples
generated by CLHS. The ILHS does not only inherit the advantages of CLHS but also possesses
higher computational efficiency and flexibility compared with CLHS. In this paper, a PPF method with
combining the NPNT and ILHS is proposed for the first time for the power system, particularly such
hybrid AC/VSC-MTDC grid, to overcome the limitations of PPF methods aforementioned. The main
contributions of this paper are as follows:

(1) Based on historical records, the proposed method has the ability to handle random variables
following irregular distributions even with correlations.

(2) Based on an acceptable computational accuracy for a specific operational scenario of the hybrid
AC/VSC-MTDC grid, the proposed method could adaptively evaluate the sample size, achieving
a good balance between computational accuracy and speed.

(3) The statistical moments (such as means and standard deviations) and PDFs of the PPF results can
be accurately and directly obtained by means of the proposed method.

The remainder of the paper is organized as follows. The DPF model of the hybrid AC/VSC-MTDC
grid is given in Section 2. Section 3 introduces the formulation and procedure of the NPNT method.
The CLHS and ILHS are introduced in Section 4. Section 5 describes the procedure of combining ILHS
and NPNT for PPF analysis on a hybrid AC/VSC-MTDC grid. Section 6 presents the case studies and
the discussions, followed by conclusions in Section 7.

2. Power Flow Calculation for Hybrid AC/VSC-MTDC Grid

2.1. VSC Model

In general, the ith VSC in VSC-MTDC is viewed as a controllable voltage source Uci= Uci∠δci
with connecting an impedance Zci= Rci+ jXci, as shown in Figure 1. Then, the converter is connected
with a filter and a transformer. The AC bus i is connected with the filter Bfi through the transformer
represented by Zt f i= Rt f i+ jXt f i. The apparent power from the converter and flowing to AC bus

Usi= Usi∠δsi, respectively, are Sci= Pci+ jQci and Ssi= Psi+ jQsi. The equations of the power flow
injecting to AC bus can be expressed as [23]: Psi = −U2

siGt f i + UsiU f i[Gt f i cos(δsi − δ f i) + Bt f i sin(δsi − δ f i)]

Qsi = U2
siBt f i + UsiU f i[Gt f i sin(δsi − δ f i) − Bt f i cos(δsi − δ f i)]

, (1)

where U f i = U f i∠δ f i is the voltage at the filter.
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The corresponding equations of power flowing from the ith converter can be written as: Pci = U2
ciGci −UciU f i[Gci cos(δ f i − δci) − Bci sin(δ f i − δci)]

Qci = −U2
ciBci + UciU f i[Gci sin(δ f i − δci) − Bci cos(δ f i − δci)]

. (2)

The filter generates the reactive power which can be expressed as:

Q f i = −U2
f iB f i. (3)

The active power balance of the ith converter can be written as:

Pci + PDCi + PLoss_i = 0. (4)

Generally, the PDCi is determined as:

PDci = udi

n∑
j = 1
j , i

Ydij × (udi − udj), (5)

where udi is the DC voltage at the ith converter, and Ydij is the conductance matrix of DC grids.
The can be obtained by:

PLoss_i = KA + KBIci + KCI2
Ci, (6)

where KA, KB, and KC are constant parameters in [23], and Ici is the AC current magnitude.
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Figure 1. A steady-state model of a Voltage Source Converter station.

2.2. Control Modes of VSC

To keep the active power balance of VSC-MTDC system, at least one VSC should be selected as an
active power regulator with using the constant udi control mode. The control modes of VSC are shown
as follows:

(1) the constant udi, Qsi control (udi −Qsi);
(2) the constant udi, Usi control (udi −Usi);
(3) the constant Psi, Qsi control (Psi −Qsi);
(4) the constant Psi, Usi control (Psi −Usi).

In a practical power system, the increasing WFs are integrated into the main AC grid through
the advanced VSC-MTDC system. Unfortunately, the output power of WFs generally varies. The
constant control modes shown above are not suitable for the VSCs on WF side (WFVSC). To handle this
problem, a dual-mode control strategy (DMC) is introduced for WSVSC in [24]. DMC control mode
cannot only actively adjust the VSC to adapt the varying output of a WF but also has the ability to
maintain the voltage of the WSVSC AC, thus improving the frequency and voltage stability of the WFs.
Hence, the DMC control mode is adopted in case studies of this paper. The detailed control modes and
methods can be accessed in [25,26].
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2.3. Power Flow Calculation for Hybrid AC/VSC-MTDC Grids

The DPF problem of the hybrid AC/VSC-MTDC grid is usually solved by using the sequential
method. In [24], the detailed procedures of DPF calculation for hybrid AC/VSC-MTDC were given.
Actually, the DPF calculation for hybrid AC/DC grids can be viewed as an implicit function with
multi-dimensional random input and output variables, which can be expressed as:

Y = H(X), (7)

where X represents input variables (such as loads, traditional generation and WFs’ output power),
while Y denotes output variables that mainly includes the voltages and branch flow of AC and DC grids.
Therefore, if the randomness of wind power and load in hybrid AC/VSC-MTDC grid is considered, the
model above will become a PPF problem.

3. Ninth-Order Polynomial Normal Transformation for Random Inputs Modeling

The uncertain sources like wind speeds are affected by diverse factors such as meteorological and
geographical conditions, and hence they may not follow the common distributions but being subject to
irregular distributions. Meanwhile, the correlations amongst these variables cannot be neglected. In
this section, the NPNT is introduced to handle this problem based on historical records.

3.1. Polynomial Coefficients Evaluation for Modeling the Uncertainties

The key idea of polynomial normal transformation lies in that polynomial arithmetic of standard
normal random variable is used to model random variable following arbitrary distribution. According
to [13], the ninth-order polynomial normal transformation can be formulated as{

xo = µx + σxx
x = a0 + a1z + · · ·+ akzk + · · ·+ a9z9 , (8)

where xo is a continuous random variable in practical power grid like wind speeds, µx and σx are mean
and standard deviation value of input uncertain variables, respectively, x denotes the normalized
random variable. z is a standard normal random variable, and ak (k = 1, 2, . . . , 9) are the undetermined
coefficients. If the suitable ak (k = 1, 2, . . . , 9) are obtained, the stochastic variables following irregular
distributions can be stimulated.

In general, the statistical moments are used to denote the data characteristics of random variables.
The probability weighted moment (PWM) in this paper is used to characterize the uncertainties.
Reference [27] presents a method to obtain the PWMs of uncertain input variables by using historical
records of uncertainties. Sorting the input random variables into an ascending order x1 ≤ · · · ≤ xi · · · ≤

xn, the PWM βr can be solved by

βr =
1
n

n∑
i=r+1

(i− 1)(i− 2) · · · (i− r)
(n− 1)(n− 2) · · · (n− r)

xi. (9)

The first 10 PWMs (β0−β9) of random variables can be calculated by Equation (9). By using
Equations (10) and (11), the polynomial coefficients ak (k = 0, 1, . . . , 9) can be easily obtained.

Az
r,k =

∫ +∞

−∞

zk
·Φr(z) ·ϕ(z)dz (10)
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

Az
0,0 · · · Az

0,k · · · Az
0,9

... · · ·
... · · ·

...
Az

r,0 · · · Az
r,k · · · Az

r,9
... · · ·

... · · ·
...

Az
9,0 · · · Az

9,k · · · Az
9,9


·



a0
...

ak
...

a9


=



β0
...
βk
...
β9


, (11)

where Φ(z) and ϕ(z), respectively, are the cumulative distribution function (CDF) and PDF of the
standard normal variable. Az

r,k (r = 0, 1, . . . , 9; k = 0, 1, . . . , 9) is a constant value which can be evaluated
by numerical integration. Note that the polynomial coefficients of NPNT can be easily obtained, as
Equation (11) is linear.

3.2. Correlation Coefficients Estimation in Standard Normal Space

Generally, the correlations among uncertain sources cannot be ignored. Suppose that x1, x2 are two
correlated and normalized random variables following arbitrarily distributions. Using the procedure
of polynomial coefficients calculation introduced above, x1 and x2 can be expressed as

x1 = a1,0 + . . .+ a1,izi
1 + . . .+ a1,9z9

1
x2 = a2,0 + . . .+ a2,izi

2 + . . .+ a2,9z9
2

(12)

If the correlation coefficient ρz between z1, z2 (following standard normal distributions) can
be determined, the correlated x1, x2 can be simulated by using correlated standard normal random
variables. To obtain the ρz the functional relationship between ρx and ρz is established, which is

ρxσ1σ2 + µ1µ2 = E(x1x2)

= E

( 9∑
i=0

a1,izi
1

) 9∑
j=0

a2,iz
j
2

 (13)

where µr and σr are the means and standard deviations of xr (r = 1, 2), respectively.
The product moments E(zi

1z j
2) can be expressed as a polynomial of ρz which is introduced in detail

in [13]. Note that the correlation coefficient ρx between x1, x2 can be obtained by historical records.
Hence, the correlation coefficient ρz can be determined by solving Equation (13).

3.3. NPNT for Modeling Multiple Random Variables in Hybrid AC/VSC-MTDC Grid

Actually, the normalized m-dimension random variable xi in X can be formulated as xi =
∑9

k=0 ai,kzk
i .

Then, based on theρx(i,j) of RX= [ρ x(i, j)]ni, j=1, theρz(i,j) (i,j) of RZ= [ρ z(i, j)]ni, j=1 can be easily obtained.
Note that RZ is the equivalent correlation matrix of RX in the standard normal space. Then, random
matrix X can be simulated by:

(1) obtain the standard normal random variables Z with the correlation matrix RZ;
(2) calculate the correlated multivariate random vector X by using correlated standard normal

vector Z.

The detailed procedures of modeling multiple random variables by NPNT can be accessed in [13].
The key advantage of using NPNT in PPF analysis for AC/VSC-MTDC grids lies in that NPNT merely
uses historical records of uncertain sources without assuming the PDFs of uncertainties in advance.
That is to say, it is able to accurately handle correlated random variables, regardless of whether the
underlying distribution is known or unknown.

4. Inherited Latin Hypercube Sampling Technique

The powerful NPNT can be adopted to build an accurate probability model of random inputs
based on practical recordings. Then, the next crucial step is to propagate the randomness from inputs
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to target outputs by using the sampling technique with the DPF model of hybrid AC/VSC-MTDC grid.
In this section, the CLHS is briefly introduced, followed by the detailed introduction of ILHS.

4.1. Conventional Latin Hypercube Sampling Technique

In general, the sampling and permutation are the two major steps of CLHS [19]. The purpose
of sampling is to obtain representative samples that could reflect the distribution regions of input
random variables, and then the permutation technique is used to control the correlation of generated
samples. The qth CDF Fq value of input variables Xp,q ranges from 0 to 1, which is divided into Pnum

non-overlapping intervals. Note that Pnum (1, 2, . . . , p) donates sample size, and Qnum (1, 2, . . . , q)
represents the number of input variables. The procedure of CLHS is given below.

Procedure 1: CLHS

1. Sampling:
(1) Generate a random matrix with uniform distribution U = [up,1, up,2, . . . , up,q].
(2) Obtain the sample point matrix on uniform distribution R = [rp,1, rp,2, . . . , rp,q] by using rp,q = (p − up,q).
(3) The sample values on the qth original distribution can be obtained by Xp,q = F−1

q (rp,q).
2. Permutation

(1) Cholesky decomposition is adopted herein to obtain the permutation matrix of sample points, making
the correlations trend closer to theoretical values [28].

4.2. Inherited Latin Hypercube Sampling Design

It is well-known that CLHS exhibits higher computational speed than the MCS method. However,
the drawback of CLHS lies in that its highly structured form makes it difficult to directly add extra
samples to an already generated sample matrix [21]. This naturally leads to a question regarding how
many samples are sufficient in PPF analysis for the complex hybrid AC/VSC-MTDC grid based on
CLHS. Actually, a small sample may not guarantee accurate PPF results, while a large sample will
decrease the computational efficiency. Therefore, the extension work makes sense to further improve
the computational flexibility of CLHS.

Figure 2 shows the schematic diagram of the ILHS method. The basic idea of ILHS lies in that it is
desirable to start with a small sample size for conducting PPF analysis of a hybrid AC/VSC-MTDC
grid as an initial step and then gradually extend the sample size if deemed necessary. As well known,
refining the existing sample matrix instead of recreating a totally new one could reuse obtained CLHS’s
results, leading to a significant improvement in the computational efficiency for PPF analysis. This is
extremely meaningful for PPF analysis of the hybrid AC/VSC-MTDC grid since DPF simulation of the
hybrid AC/VSC-MTDC grid is more expensive than the pure AC grid. Meanwhile, based on a given
convergence criterion for a specific operational scenario of the hybrid AC/VSC-MTDC grid, the ILHS
could adaptively change the sample size, thus obtaining higher computational accuracy and efficiency.
Furthermore, the moments and PDFs can also be accurately and directly obtained by use of ILHS.
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To illustrate the key idea of ILHS, the two variables uma, umb following uniform distributions are
defined. It is assumed that three sample points are generated in the first step by using CLHS, as shown
in Figure 3a. The next step for ILHS is to generate new sample points while inheriting obtained sample
points. It is assumed that six sample points are needed. That is to say, three additional sample points
should be generated by ILHS. The variables uma, umb can be divided into six non-overlapping intervals,
as shown in Figure 3b. The spaces represented by the inherited sample points are shaded with green.
If shaded spaces are removed from Figure 3b, the unrepresented variable space will emerge as a blank
space, as shown in Figure 3c.
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Actually, the three additional sample points can be filled into the blank space in Figure 4a. By using
CLHS, the positions of the three additional sample points can be easily determined. It can be observed
that inherited sample points (denoted by red dots) and the additional sample points (represented by
black square dots) form the new sample set covering the input probability space more evenly and
largely, as shown in Figure 4b. Then, these new sample sets can be permutated and transformed
into the original probability space. It is valuable to note that, in PPF analysis based on ILHS, the
obtained PPF results corresponding to inherited sample points can be reused, thus resulting in the
improvement of accuracy while retaining the computational efficiency. The main implement steps of
ILHS in handling multiple variables are elaborated as Algorithm 1 [22].
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Algorithm 1: ILHS

NOTE: it is assumed that the PPF analysis based on CLHS has been executed as the first step with using the sample

size Pnum. Hence, the inherited sample set U =
[
up,1, up,2, . . . , up,q

]
is viewed as the input variables in ILHS.

Procedure:
(1) C_criterion = 1.
(2) k = 2, where k represents the iterations.
(3) While C_criterion = 1.
(4) Divide the uniform distributions into kP intervals with equal probability.
(5) Generate sample points in unrepresented variable space.

(6) Obtain the new sample set Unew =
[
ukp,1, ukp,2, . . . , ukp,q

]
on uniform distributions.

(7) The new sample set is permutated by using Cholesky decomposition.
(8) Select the samples in the unrepresented variable space and transform these samples into original probability space.
(9) Feed the transformed samples into DPF module of hybrid AC/VSC-MTDC grids.
(10) Analyze the results (the results include the newly obtained and inherited PPF outputs).
(11) If

∣∣∣(Ik
Y − Ik−1

Y )/Ik
Y

∣∣∣ ≤ β, where Ik
Y denotes the statistical moments of PPF outputs after the kth extension, β

represents the threshold value.
(12) C_criterion = 0
(13) Else
(14) k = k + 1;
(15) End
(16) End

5. Combination of NPNT and ILHS for PPF Analysis of Hybrid AC/VSC-MTDC Grid

The procedures of combining NPNT and ILHS for conducting PPF analysis on a hybrid
AC/VSC-MTDC grid is presented in Figure 5. As the initial step for PPF analysis, modeling of
random inputs is critical. However, the direct information about probabilistic characteristics of inputs
is rather limited in realistic engineering applications, while the raw statistical data is more or less
available in practice; moreover, even if raw data is sufficient for fitting the PDF but not always in
a common PDF type, thus leading to an accuracy loss. Therefore, NPNT is used to handle the raw
statistical data and build the probability model of random inputs.

Once the accurate input probability model is built, the next step is to propagate the randomness
from the input probability model to target outputs by means of ILHS. The steps of combining TPNT
and CLHS methods are introduced in [11]. The similar idea can be applied to the combination of NPNT
and ILHS herein as well. In addition, the basic idea of combining NPNT and CLHS or ILHS methods
is summarized as (1) obtain the samples on uniform distributions; (2) transform these samples into
standard normal space; (3) transform the samples of standard normal space into original space by using
ninth-order polynomial. The core steps are highlighted in the green part of Figure 5. The advantages
of the proposed method are shown below.

(1) The proposed method can deal with the random variables following irregular distributions even
with correlations merely based on historical records.

(2) The results obtained in the previous simulations can be reused by the proposed method, thus
improving the computational speed and efficiency.

(3) The proposed method has a better adaptability and flexibility for diverse operational scenarios
of the complex AC/VSC-MTDC grids as it is able to adaptively evaluate sample size adequacy,
based on an acceptable accuracy.

(4) The statistical moments (such as means and standard deviations) and PDFs of PPF results could
be accurately and directly obtained by use of the proposed method.
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6. Case Studies

6.1. System, Data, and Scenarios

The modified IEEE 118-bus system was applied in this paper to demonstrate the effectiveness and
superiority of the proposed method. As shown in Figure 6, seven additional wind farms (including WF1,
WF2, WF3, WF4, WF5, WF6, and WF7) were added to the modified IEEE 118-bus system respectively
at buses 35, 36, 43, 44, 45, 46, and 90. Meanwhile, the wind farms WF8, WF9, and WF10 were
connected to the AC grid at bus 30, 38, 84, and 115 through a five-terminal DC grid incorporating VSCs.
The parameters of the IEEE 118-bus system can be found in Matpower 6.0 [29]. The parameters of
the VSCs and DC lines are given in [3]. In this paper, the control modes of the VSCs are presented in
Table 1. Note that the base power of the AC and DC grids were set to be 100 MVA.

In a practical power system, different areas may have different types of loads with diverse
characteristics and following various distributions. In this paper, it was assumed that the loads in the
test system can be categorized into three groups: commercial load, industrial load, and residential
load. Assumed that the same type of load has a similar probability characteristic. In order to simulate
the probability characteristic of such practical loads, the realistic historical records of commercial
load, industrial load, and residential load in a southern provincial power grid of China were used.
The procedures for modeling different types of loads are given in Appendix A. The types of loads in
the test system are presented in Table 2.
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Figure 6. The modified IEEE-118 bus system with a VSC-MTDC system.

Table 1. Control modes of VSCs.

DC Bus Control Modes udi
(p.u)

Usi
(p.u)

Psi
(p.u)

Qsi
(p.u)

1 DMC \ 1.00 \ \

2 Psi −Qsi \ \ 0.98 0.3
3 udi −Qsi 1.00 \ \ 0.38
4 Psi −Usi \ 1.00 0.65 \

5 Psi −Qsi \ \ 0.65 0.3

Table 2. Types of loads at different buses in the modified IEEE 118-bus system.

Commercial Loads Industrial Loads Residential Loads

Locations

Loads at buses 75, 76, 77, 78,
79, 80, 82, 83, 84, 85, 86, 88,
90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110,
112, 116, and 118

Loads at buses 1, 2, 3, 4, 6, 7, 8,
11, 12, 13, 14, 15, 16, 17, 18, 19, 33,
34, 35, 36, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 62, 66,
67, 74, 113, 115, and 117

Loads at buses 20, 21, 22,
23, 24, 27, 28, 29, 31, 32,
70, 72, 73, and 114

The realistic wind speeds may not follow common distributions like Weibull distributions.
The data of wind speeds are based on historical records in a southern provincial power grid of China,
which is applied to the wind farms in this case study. An emphasis is put on that the historical
records of wind speed and load are collected from the same area. It was assumed that the correlation
coefficients amongst wind speeds at wind farms WF1, WF2, WF3, WF4, WF5, WF6, and WF7 were
0.3, and correlation coefficients amongst wind speeds at wind farms WF8, WF9, and WF10 were 0.4.
Moreover, assuming that the correlation coefficients among commercial loads were set to be 0.2, the
correlation coefficients among residential loads were 0.25, and the correlation coefficients between any
two industrial loads were set to be 0.1. The rated capacities of these wind farms were set to 100 MW,
and the power factors of these wind farms were set to be 0.95. The wind farm output model in 7 was
applied in this case study.
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6.2. Performance Evaluation on Probability Model of Random Inputs

The frequency histogram was applied as a major metric to evaluate the accuracy of NPNT for
modeling of uncertain inputs. A frequency histogram similarity index (FHSI) [30] was used in this
paper to denote the degree of overlap between any two frequency histograms obtained by means of
reference method and the methods in comparison, which is

FHSI =

1−
1
2

Ns∑
i=1

[(Binre f erence
i − Bincompared

i )
2
+ (Perre f erence

i − Percompared
i )

2
]

1
2

× 100%, (14)

where Binre f erence
i and Bincompared

i respectively are the values of locations of each Bin interval, while

Perre f erence
i and Percompared

i denote percentages of the number of samples fall in each Bin interval. Ns

represents the number of Bin intervals. Actually, the number of Bins in frequency histogram must be
identical, and 100 was applied for all tests in this paper. The range of FHSI is between 0 and 1. A larger
FHSI represents that the obtained frequency histogram is closer to the reference’s, indicating the higher
accuracy is achieved in terms of modeling uncertain variables. FHSI >90% is regarded as “accurate” in
this paper.

In order to evaluate the performance of NPNT, the frequency histograms of loads and wind speeds
obtained by historical records were regarded as the references for validation. To further demonstrate
the superiority of NPNT, the results fit by NPNT were compared with those obtained from TPNT,
FPNT, Gaussian, and Weibull distributions. The Gaussian and Weibull distributions were frequently
used in the probabilistic analysis of the power system, which were directly applied to fit the historical
records in this paper. Note that the number of samples of historical records is 9000; accordingly, in
Figure 7, NPNT, FPNT, TPNT, Gaussian, and Weibull distributions generate 9000 samples as well for a
fair comparison.
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normal transformation (FPNT), third-order polynomial normal transformation (TPNT), Gaussian, and
Weibull distributions.

Figure 7 presents the frequency histograms of the active power of load at bus 1, bus 20, bus 75, and
wind speeds obtained by historical records, NPNT, FPNT, TPNT, Gaussian, and Weibull distributions.
Obviously, the frequency histograms obtained by historical records cannot be fitted well with Gaussian
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and Weibull distributions. The reason for this lies in that the random variables in the practical power
system may not follow common distributions but irregular distributions. Furthermore, frequency
histograms obtained using FPNT and TPNT are biased compared with the reference results obtained
by using historical records. Meanwhile, it is obvious that the frequency histograms of NPNT can fit
very well with the frequency histograms of reference results. Compared with FPNT and TPNT, NPNT
has the ability to control the first to tenth moments of historical records, leading to the improvement in
the accuracy of modeling random inputs.

The accuracy index FHSIs obtained by NPNT, FPNT, TPNT, Gaussian, and Weibull distributions
also support the conclusions given above, as shown in Table 3. Using common distributions (such as
Gaussian and Weibull distributions) may not fit well with frequency histograms obtained by historical
records in practice. For example, the maximum and average values of FHSIs obtained Gaussian
and Weibull distributions respectively are 85.74%, 78.45% (for Gaussian distribution) and 86.42%,
82.85% (for Weibull distribution). The average values of FHSIs obtained by NPNT, FPNT, and TPNT,
respectively, are 93.92%, 89.40%, and 86.66%. Actually, most FHSIs of NPNT are greater than 93.5%,
qualifying the NPNT as “accurate.” NPNT allows the accuracy control of higher-order moments, which
yields a more accurate simulation of input random variables. Hence, in the next section, NPNT is
applied to simulate correlated random variables in PPF analysis.

Table 3. Frequency histogram similarity indexes (FHSIs) obtained by NPNT, FPNT, TPNT, Gaussian,
and Weibull distributions.

Methods,
The Number of Samples

NPNT,
9000 FPNT, 9000 TPNT, 9000 Gaussian, 9000 Weibull, 9000

Load at bus1 94.36% 88.70% 86.92% 85.74% 86.42%
Load at bus20 94.01% 88.66% 85.62% 85.03% 76.48%
Load at bus75 94.34% 90.37% 87.28% 85.63% 78.61%

WF1 92.87% 85.05% 81.43% 76.66% 83.29%
WF2 94.05% 90.05% 88.05% 74.32% 84.05%
WF3 94.32% 88.32% 86.32% 78.19% 83.25%
WF4 93.28% 89.28% 87.28% 76.24% 83.28%
WF5 94.21% 90.21% 86.21% 77.36% 82.21%
WF6 93.92% 90.92% 87.92% 79.56% 84.92%
WF7 93.61% 89.61% 87.61% 74.23% 83.61%
WF8 94.49% 90.49% 86.49% 79.12% 82.49%
WF9 93.89% 89.89% 87.89% 72.26% 83.89%
WF10 93.59% 90.59% 87.59% 75.46% 84.59%

6.3. Performance Evaluation of Proposed PPF Method

In this section, the performance of the proposed PPF method will be comprehensively evaluated.
The reference results are obtained by using the MCS based NPNT method, in which the MCS generates
50,000 sample points. It is sufficient to yield reliable PPF results. The proposed method in this paper is
combined NPNT with ILHS, which is denoted as NPNT-ILHS.

6.3.1. Comparison with the CLHS Method

In this subsection, the CLHS is combined with NPNT to form the NPNT-CLHS method for
comparison. The proposed method NPNT-ILHS adds 100 samples in each iteration until convergence
is reached. The average value of the first to ninth order raw moments of VSC3′s output active power is
set to be the convergence criterion; meanwhile, the threshold value is set to 5%.

The relative errors of the first to ninth raw moments of VSC3′s output active power obtained by
using NPNT-ILHS and NPNT-CLHS methods are shown in Figure 8. Meanwhile, Figure 9 presents
the average values of FHSIs of DC bus voltages corresponding to different sample sizes. It can be
investigated that the computational accuracy of the NPNT-CLSH method and proposed method
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NPNT-ILSH are almost the same. The difference between the relative errors of the first to ninth
raw moments of VSC3′s output active power is given in Figure 8c. Obviously, most of the values
in Figure 8c are smaller than 4%. With using 3600, 3700, and 3800 samples, the average values of
FHSIs of DC bus voltages, respectively, are 94.32%, 92.15%, and 94.07% for NPNT-CLHS while 94.09%,
92.47%, and 93.89% for NPNT-ILHS (as shown in Figure 9). The numerical results indicate that the
computational accuracy of the proposed method is very close to the NPNT-CLSH’s. On the other hand,
it can be found in Figure 8a,b and Figure 9 that the convergence trend of NPNT-CLHS and NPNT-ILHS
methods are nearly identical.
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When the samples are increased from 100 to 3800 with an interval 100, the computational time
of NPNT-ILSH and NPNT-CLHS methods are shown in Figure 10. When the sample size is 100, 200,



Energies 2019, 12, 3088 15 of 21

300, 400, and 500, the computational time of NPNT-ILSH and NPNT-CLHS methods, respectively,
are 21.75, 21.91, 22.05, 22.24, and 22.51 s for NPNT-ILHS, while 21.71, 42.36, 65.98, 85.75, and 103.89
s for NPNT-CLHS. It can be found from Figure 10 that the computational time of the NPNT-ILHS
method is lower than 40 s in each iteration; however, the computational time of the NPNT-CLHS
method is higher than 400 s in most trials. The total computational time of the NPNT-ILSH (1021 s) is
less than 5% of NPNT-CLHS methods (20,588 s). Evidently, the proposed method NPNT-ILSH can
significantly save computational time, compared with the NPNT-CLHS method. The key reason for
this lies in that, in PPF analysis, the NPNT-ILHS method can refine the obtained sample matrix and
thus reuse the obtained PPF results, leading to the improvement of computational efficiency for PPF
calculation. As for the NPNT-CLHS method, however, it could not estimate the reasonable sample
size for a specific operational scenario of a hybrid AC/VSC-MTDC grid in advance and thus it needs
to repeatedly undertake trials using the total new sample matrix, resulting in an unusually heavy
computational burden.
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6.3.2. Comparison of PPF Methods with Using Different Input Probability Models

The test in this subsection is mainly used for comparison in terms of computation accuracy. The
comparison methods include CDNT-MCS, TPNT-MCS, and FPNT-MCS, as shown in Table 4. These
methods use the same sampling method MCS, and the sample size is 50,000. The methods of building
input probability model are different. Common distributions and NATAF transformation are used to
build the input probability model in CDNT-MCS, while input random variables are handled by using
TPNT and FPNT in TPNT-MCS and FPNT-MCS. Note that the convergence criterion and the threshold
value are same as the ones of the NPNT-ILHS method presented in Section 6.3.1.

Table 4. The comparison methods.

Sampling Methods (Sample Size) Methods of Building the Input
Probability Model Short Name

MCS (50,000) Common distributions + NATAF
transformation CDNT-MCS

MCS (50,000) TPNT TPNT-MCS
MCS (50,000) FPNT FPNT-MCS

Figure 11 presents the contours of frequency histograms of the VSC3′s active power output and
AC bus 38′s voltage magnitude obtained by NPNT-ILHS, CDNT-MCS, TPNT-MCS, and FPNT-MCS
methods. Evidently, compared with CDNT-MCS, TPNT-MCS, and FPNT-MCS methods, the proposed
method NPNT-ILHS can fit very well with reference’s frequency histogram. As shown in Table 5, the
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FHSIs obtained by using NPNT-ILHS, CDNT-MCS, FPNT-MCS, and FPNT-MCS are presented. The
average FHSI values of NPNT-ILHS, CDNT-MCS, FPNT-MCS, and FPNT-MCS method respectively are
93.35%, 83.33%, 88.43%, and 85.45%. The maximum FHSI value of the proposed method NPNT-ILHS
achieves 94.16%. Actually, the good performance of the proposed method NPNT-ILHS in PPF analysis
is guaranteed, which mainly lies in two reasons. Firstly, the accurate probability model of input
variables following irregular distributions can be built based on the NPNT method. This provides a
good base for ILHS to propagate the randomness from inputs to target outputs. Secondly, based on
a given convergence precision for a specific operational scenario of the hybrid AC/VSC-MTDC grid,
the ILHS could adaptively assess the sample size, thus getting higher computational accuracy while
holding a good efficiency.
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Figure 11. Frequency histograms of PPF results: (a) the frequency histograms of the VSC3′s active 
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Figure 11. Frequency histograms of PPF results: (a) the frequency histograms of the VSC3′s active
power output; (b) the frequency histograms of voltage magnitude of AC bus 38.

Table 5. FHSIs obtained by using NPNT-ILHS, CDNT-MCS, FPNT-MCS, and FPNT-MCS.

PPF Methods VSC3′s Active
Power Output

Voltage Magnitude of
AC Bus 38

Voltage Magnitude of
AC Bus 45

Voltage Magnitude of
DC Bus 2

NPNT-ILHS 93.35% 94.16% 93.13% 93.46%
CDNT-MCS 83.37% 84.66% 83.33% 82.15%
FPNT-MCS 88.87% 89.78% 87.93% 87.15%
TPNT-MCS 84.23% 85.78% 85.67% 86.12%

However, frequency histograms obtained by CDNT-MCS, TPNT-MCS, and FPNT-MCS methods
are biased compared with those obtained by the reference method in Figure 11. The computation
errors of these methods are mainly caused by inaccurate probability model of random input variables.
It is demonstrated in Section 6.2 of this paper that the historical records may not follow the common
distributions. Hence, the CDNT-MCS method, based on the assumption of input variables following
common distributions, will bring error into PPF analysis. Although TPNT-MCS and FPNT-MCS
methods build the probability model according to historical records, the frequency histogram of
the reference’s result cannot be fitted very well by using these two methods. The FHSIs of voltage
magnitude of AC bus 45 of TPNT-MCS and FPNT-MCS methods respectively are 85.67% and 87.93%,
which are lower than the FHSI value (93.13%) obtained by proposed method NPNT-ILHS. Moreover,
the NPNT has the ability to control the first to the tenth moments of historical records and it is able to
build more accurate probability model of inputs, thus leading to an increase in computational accuracy.

6.3.3. Comparison with other PPF Methods

The point estimation method (PEM) is a popular method for solving the PPF problem. In [31], the
PEM is combined with TPNT to deal with the PPF problem in pure AC grid. The similar idea can be
applied in this paper as well. In this subsection, two PEMs [32] (including 2n+1 PEM and 4n+1 PEM)
are combined with NPNT to form the NPNT-2PEM and NPNT-4PEM methods for comparing with
proposed method NPNT-ILHS. Meanwhile, two convergence criterions are defined for NPNT-ILHS
method to obtain different PPF results with different purposes.
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(1) NPNT-ILHS(a): the convergence criterion for NPNT-ILHS(a) is introduced in Section 6.3.1.
(2) NPNT-ILHS(b): The average value of the first to third order raw moments of VSC3′s output

active power is set to be convergence criterion; meanwhile, the threshold value equals to 5%.

The relative errors of the first to ninth raw moments of DC bus 2′s voltage magnitude is given
in Table 6. Table 7 presents the average values of relative errors of DC bus and AC bus voltage
magnitudes obtained by means of NPNT-2PEM, NPNT-4PEM, NPNT-ILHS(a), and NPNT-ILHS(b)
methods. Meanwhile, the computational time and the number of samples of these methods are given
in Table 8. The relative errors of the ninth order raw moment of DC bus 2′s voltage magnitude
obtained using NPNT-2PEM, NPNT-4PEM, NPNT-ILHS(a), and NPNT-ILHS(b) methods, respectively,
are 70.14%, 39.39%, 10.46%, and 68.45%. The average values of relative errors of the third order raw
moment of AC bus voltage magnitudes obtained by using NPNT-2PEM, NPNT-4PEM, NPNT-ILHS(a),
and NPNT-ILHS(b) methods, respectively, are 15.69%, 9.56%, 1.84%, and 12.56%. The computational
time of NPNT-2PEM, NPNT-4PEM, NPNT-ILHS(a), and NPNT-ILHS(b) methods respectively are,
49.64, 99.06, 1024.13, and 88.26 s. The NPNT-ILHS(a) shows the highest accuracy with the lowest
computational efficiency. The computational accuracy of NPNT-ILHS(b) is higher than NPNT-2PEM’s
but lower than NPNT-4PEM’s. Accordingly, the computational time of NPNT-ILHS(b) stands between
NPNT-2PEM and NPNT-4PEM methods.

Table 6. The relative errors (%) of the first to the ninth raw moments of DC bus 2′s voltage magnitude.

The Relative Errors (%) NPNT-ILHS(a) NPNT-ILHS(b) NPNT-2PEM NPNT-4PEM

The first order raw moment 0.05 0.48 0.93 0.35
The second order raw moment 0.51 3.16 3.44 1.37
The third order raw moment 1.91 11.98 12.43 9.70

The fourth order raw moment 1.69 24.14 26.88 15.49
The fifth order raw moment 9.48 21.09 23.21 22.90
The sixth order raw moment 6.84 32.15 35.61 26.49

The seventh order raw moment 2.51 41.98 48.91 29.31
The eighth order raw moment 3.54 50.45 60.37 31.65
The ninth order raw moment 10.46 68.45 70.14 39.39

Table 7. The average values of relative errors (%) of DC bus and AC bus voltage magnitudes.

Statistic
Moments Relative Errors (%) NPNT-ILHS(a) NPNT-ILHS(b) NPNT-2PEM NPNT-4PEM

The first order
raw moment

The average values of
errors of DC bus voltages 0.07 0.68 1.05 0.47

The average values of
errors of AC bus voltages 0.13 0.64 0.98 0.41

The second
order raw
moment

The average values of
errors of DC bus voltages 0.58 3.04 3.56 1.54

The average values of
errors of AC bus voltages 0.43 2.84 3.19 1.49

The third order
raw moment

The average values of
errors of DC bus voltages 1.84 11.56 15.69 9.56

The average values of
errors of AC bus voltages 1.65 11.04 14.77 9.38

Table 8. The computational time and the number of samples.

PPF Methods Reference
Method NPNT-ILHS(a) NPNT-ILHS(b) NPNT-2PEM NPNT-4PEM

Time (s) 11,132.75 1024.13 88.26 49.64 99.06
The number of

samples 50,000 3800 400 219 437
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The proposed method NPNT-ILHS also shows more flexibility compared with NPNT-2PEM and
NPNT-4PEM method as it can adaptively assess the sample size according to the given convergence
level in a specific operational scenario of the hybrid AC/VSC-MTDC grids. For example, if the accurate
PDFs of PPF results are required in an operational scenario, a more strict convergence target can be
set for the proposed method NPNT-ILHS (like NPNT-ILHS(a)) to achieve the satisfactory accuracy
while keeping the relatively low computational cost. However, the PEM methods have no ability
to accurately estimate the PDFs in the complex AC/DC grids, and the MCS method is extremely
time-consuming (the computational time of the reference method is 11,132.75 s). On the other hand,
if the accurate high order moments of PPF results are not required for an operational scenario, the
proposed method could flexibly set a relaxed convergence (like NPNT-ILHS(b)) to save computational
time. Unfortunately, the PEM method seems rigid compared with the proposed method NPNT-ILHS,
as the PEM method cannot smoothly adjust to select the number of sample points. Hence, the proposed
method in this paper has a better adaptability and flexibility for diverse operational scenarios of the
complex AC/VSC-MTDC grids.

6.3.4. Performance Evaluation with Different Correlation Levels

The correlations between wind speeds are non-negligible in modern power systems. It is assumed
that the correlation coefficients between wind speeds at WF8, WF9, and WF10 increase from 0.0 to 1.0
at intervals of 0.1. Note that the defined simulation conditions given in Section 6.1 of case studies will
be still used in subsequent calculations, and the convergence criterion for NPNT-ILHS was introduced
in Section 6.3.1.

Tables 9 and 10 present the maximum and average errors of the first to third raw moments of DC
bus voltages obtained using the proposed method against the reference results when the correlation
coefficients between wind speeds at wind farms WF8, WF9, and WF10 increase from 0.0 to 1.0 at
intervals of 0.1. These results above reveal that the average errors (regarding the first to third raw
moments) of DC bus voltages are lower than 4%, while the maximum errors of the first to third raw
moments of DC bus voltages are lower than 5%. Obviously, the test results illustrate the good accuracy
and robustness of the proposed method in handling various correlation levels.

Table 9. The average errors of the first to third raw moments of DC bus voltages with different
correlation coefficients.

Average Errors (%) DC Bus 1 DC Bus 2 DC Bus 3 DC Bus 4 DC Bus 5

The first raw moments 0.56 0.09 0 0.05 0.08
The second raw moments 1.39 0.28 0 0.32 0.35
The third raw moments 3.97 1.82 0 1.75 1.83

Table 10. The maximum errors of the first to third raw moments of DC bus voltages with different
correlation coefficients.

Maximum Errors (%) DC Bus 1 DC Bus 2 DC Bus 3 DC Bus 4 DC Bus 5

The first raw moments 0.97 0.15 0 0.19 0.21
The second raw moments 1.89 0.37 0 0.45 0.48
The third raw moments 4.94 2.03 0 2.17 2.09

7. Conclusions

A new PPF method based on NPNT and ILHS, particularly for the hybrid AC/DC grids, was
proposed in this paper. The correlated random variables following arbitrary distributions can be
accurately considered and handled by means of the proposed method. Meanwhile, based on an
acceptable computational accuracy for a specific operational scenario of the AC/VSC-MTDC hybrid
grid, the proposed method could adaptively evaluate the sample size, achieving a good balance
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between computational accuracy and speed. Furthermore, the means, standard deviations, and PDFs
of the results can be accurately and efficiently estimated by using the proposed method. A modified
IEEE 118-bus system, with the realistic data of wind speeds and diverse consumer behaviors following
irregular distributions, was applied to verify the effectiveness and superiority of the proposed method
NPNT-ILHS. The conclusions can be drawn as follows:

(1) Practical historical records of uncertain sources such as wind speeds and loads may not follow
the common distributions but irregular distributions. Most FHSIs of NPNT are greater than 93.5%,
indicating that the NPNT could accurately deal with the correlated random variables following either
common or irregular distributions.

(2) The inaccurate probability models of random input variables will cause the computation errors
in PPF analysis for the AC/VSC-MTDC hybrid grids. Compared with the average FHSI values of
CDNT-MCS (83.33%), TPNT-MCS (85.45%), and FPNT-MCS (88.43%) methods, the average FHSI value
of proposed method NPNT-ILHS achieves 93.35%, illustrating the good computational accuracy of the
proposed PPF method. Actually, modeling of random inputs is extremely critical for PPF analysis.
Thus, the authors are seeking a more advanced polynomial normal transformation model to further
improve the performance of the proposed PPF method.

(3) The computational accuracy of NPNT-CLHS and NPNT-ILHS methods are quite close.
However, the total computational time of the NPNT-ILSH (1021 s) is less than 5% of NPNT-CLHS
methods (20,588 s). Compared with the NPNT-CLHS method, the proposed method could significantly
improve the computational efficiency for the complex AC/VSC-MTDC hybrid grid.

(4) Compared with NPNT-2PEM and NPNT-4PEM methods, the proposed method NPNT-ILHS
has a better adaptability and flexibility. Furthermore, under the operation scenarios with different
correlation levels, the maximum errors of the first to third raw moments of DC bus voltages of proposed
method are lower than 5%, indicating the good accuracy and robustness in handling various correlation
levels of operational scenarios.
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Appendix A

The procedures for modeling different types of loads are given as follows:
(1) Use Equation (A1) to standardize the historical records of commercial load, industrial load,

and residential load.
xcd =

xocd − µxc

σxc
, c = 1, 2, 3; d = 1, 2, 3, · · · , (A1)

where xocd represents the historical record of load, µxc and σxc respectively are mean and standard
deviation values of corresponding historical data, xcd is the normalized variable, c denotes the type of
load such as commercial load, industrial load and residential load, while d represents the number of
historical records.

(2) Use Equation (A2) to obtain data of loads applied in this case study.

x∗d =


x1d × σt1 + µt1 , t1 ∈

{
Commercial loads

}
x2d × σt2 + µt2 , t2 ∈

{
Industrial loads

}
x3d × σt3 + µt3 , t3 ∈

{
Residential loads

} , d = 1, 2, 3, · · · , (A2)
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where µt1 , σt1 , µt2 , σt2 and µt3 , σt3 respectively are mean, standard deviation values of commercial
loads, industrial loads and residential loads. In this paper, it is assumed that load values of the IEEE
118-bus system in Matpower6.0 are mean values for the specified loads, and the standard deviation
values equal to 5% of corresponding mean values.
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