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Abstract: This study proposes optimal day-ahead demand response (DR) participation strategies
and distributed energy resource (DER) management in a residential building under an individual
DR contract with a grid-system operator. First, this study introduces a DER management system in
the residential building for participation to the day-ahead DR market. The distributed photovoltaic
generation system (PV) and energy-storage system (ESS) are applied to reduce the electricity demand
in the building and sell surplus energy on the grid. Among loads in the building, lighting (LTG) and
heating, ventilation, and air conditioning (HVAC) loads are included in the DR program. In addition,
it is assumed that a power management system of an electric vehicle (EV) charging station is
integrated the DER management system. In order to describe stochastic behavior of EV owners, the
uncertainty of EV is formulated based on their arrival and departure scenarios. For measuring the
economic efficiency of the proposed model, we compare it with the DER self-consuming operation
model without DR participation. The problem is solved using mixed integer linear programming
to minimize the operating cost. The results in summer and winter are analyzed to evaluate the
proposed algorithm’s validity. From these results, the proposed model can be confirmed as reducing
operation cost compared to the reference model through optimal day-ahead DR capacity bidding
and implementation.

Keywords: demand response contract; energy storage system; electric vehicle; optimization;
residential building; uncertainty; mixed integer linear programming

1. Introduction

Given the current energy and environmental conditions, renewable energy generation facilities
capable of fossil fuels are rapidly increasing, and research on distributed energy resources (DERs)
in the microgrid are proceeding expeditiously with decarbonization policies. Additionally, utilizing
demand response (DR) facilitates customers’ interaction and responsiveness as a producer role, brings
short-term advantages to the electricity market, and results in economic benefit for both customers and
the grid utility. Furthermore, curtailing demand from a long-term point of view reduces the overall
capital cost investment for plant construction and network upgrade and improves the power system
reliability [1,2]. In our current society, the efforts described above are applied in the operation of
residential building resources since they account for 36% of global energy consumption and 40% of
total carbon dioxide emissions, which increase by 2.5% each year [3].

For the above reasons, basic research related to the operation of DERs in residential buildings
including renewable energy sources is being advanced. Due to high capacity, easy control, and
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immediate reaction rate, research on the use of heating, ventilation, and air conditioning (HVAC) load
resource of the residential building is concentrated. Stamatescu et al. proposed a smart building
with HVAC systems and grid integration [4]. Furthermore, Zhao et al. modeled HVAC control of the
residential building that can contribute to the frequency regulation of the grid system [5,6], and Wang
et al. studied linear dynamic model for building a HVAC control system using a heuristic algorithm [7].
Additionally, combining lighting (LTG) and HVAC systems with building energy management system
is being investigated. The U.S. Department of Energy emphasizes the overall benefits of building
resource integration systems that include HVAC and LTG [8]. Motegi et al. discussed lighting
control with HVAC of residential buildings as a DR [9]. The residentialization of renewable energy
resources has led to diversification in the research on DERs in buildings. Photovoltaic generation
(PV), energy storage systems (ESSs), electric vehicle (EV) charging stations, and DR are considered
the DER of residential buildings in previous studies [10–13]. Ren et al. modeled a multi-objective
linear programming-based operation algorithm with renewable energy resources according to the
electricity rate and fuel gas rate [14]. Research on ESS application in the building DER operation
systems has been performed to ensure the stable provision of renewable energy sources [15–18]. As the
spread of EV supply increases, the integration between EV charging stations and the grid system,
namely vehicle-to-grid (V2G), has been studied as an additional DER of the building [19]. Sousa et al.
modeled the day-ahead DER optimization schedule algorithm with EV charging station constraints [20].
Furthermore, studies on the operation control of electric heating or heat storage systems in the building
are intensively carried out to utilize thermal energy as DR resources [21–23].

The aforementioned studies involve research on robust DER optimization including DR issuance
assumption with unexpected circumstances. Furthermore, there have been studies on optimizing DR
participation using DERs. Pipattanasomporn et al. proposed an intelligent home energy management
algorithm for managing high-power-consumption household appliances with simulation for DR
analysis [24]. Chen et al. evaluated real-time-priced DR management for residential appliances
via stochastic optimization [25]. Korkas et al. considered DR management under thermal comfort
requirements and created a robust solution based on changing occupancy patterns in microgrids and
weather conditions [26]. Gao et al. modeled the robust demand control of residential buildings under
load prediction uncertainty [27].

The DR program is well worth exploiting in terms of system operation and is continuously
encouraged through political assistance [28–31]. Nevertheless, due to consistent and generic DR
promotion policies, statistical data [32] show that the rate of DR participation by residential building
operators still remains low. Besides, according to the aforementioned studies, there has been a paucity
of concern about the optimal design of participating capacity under the specified DR contract conditions.
To compensate for the deficiency, this study presents a practical optimization algorithm of day-ahead
residential building resource operation including DR participation to contribute to the grid system.
The proposed model includes:

• Assessment of DR potential considering PV generation,
• Load model of LTG and HVAC for DR participation,
• ESS SOC management including prevention of simultaneous charging/discharging,
• EV SOE management with EV owner’s behavior uncertainty.

The algorithm’s objective involves minimizing operating costs under conditions that reflect
contractual DR settlement, and the PV and ESS installation promotional rates [33–36]. Financial
incentives are designed to encourage the spread of renewable energy generation systems by helping to
reduce the cost of system installation. Direct cash incentives and tax credits are the two most common
types of financial incentives. Direct cash incentives include rebates, subsidies, and performance-based
incentives, which reduce the initial cost of operating a renewable energy system and fund investments
in loans, power purchase agreements, or property-assessed clean energy (PACE) financing. After the
renewable energy generation system is installed, it is possible to obtain financial support continuously
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in the form of tax benefits [37]. In the US, the introduction of financial incentive policies for renewable
energy has achieved grid parity of PV system installations in most states [38]. In Germany, by applying
renewable energy policy named Erneuerbare-Energien-Gesetz (EEG), the goal is to achieve a share
of renewable energy in gross electricity power production of 35% by 2020 and of 80% by 2050 [39].
In this study, incentives of renewable energy sources are included in the DR contract to encourage
the diffusion of renewable energy generation systems. It is assumed that a separate meter is used for
monitoring each source, and the amount of DR participation involves net demand reduction of the
whole residential building DER system.

In the case of summer and winter, the DER self-consuming operation model and the DER operating
model under the DR individual contract conditions are respectively simulated and the results are
compared to evaluate how much the proposed model has improved.

The rest of the paper is organized as follows: Section 2 presents the DER operation system
in the residential building and subsequently proposes an optimization algorithm of day-ahead
scheduling strategy. To generate hourly scenarios, uncertainties associated with the system are defined
mathematically. The optimization model is formulated in Section 3, and objective functions and
constraints are established precisely. In Section 4, optimization simulation results are enumerated and
discussed. Finally, this study’s conclusions are described.

2. DER Operation System in the Residential Building

2.1. Residential Building Energy System Overview

The DER operation system consists of PV, ESS, and EV charging station. All energy produced
by the PV is used to reduce the building’s load demand. The ESS helps reduce the building load by
charging from the grid during off-peak times and discharging to the building during peak times. The
EV charging station is installed in the parking lot of a residential building and exchanges energy with
the battery of parked EVs to contribute to the building’s net energy reduction [40,41]. The building
system operator is assumed to be able to earn revenues from the operation of the EV charging station
through power supply contract with the grid system operator. Depending on the DR contract terms
issued in peak time zones, energy resources are determined to have an appropriate DR participation
capacity. In addition to the above-described resources, energy resources include LTG and HVAC,
which are demand-reduction resources within buildings. The structure of the DER operation system in
DR participation time interval is shown in Figure 1.
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2.2. Uncertainty Modeling of EV

Optimizing scheduling the day before operation requires considering uncertainties in the DER
operation model. Therefore, the proposed model has three factors of uncertainty, namely PV generation
efficiency, building peak-load consumption, and the status of each EV in the charging station. Proper
probability density functions (PDFs) have to be chosen for each DER to reflect the uncertainties and
create simulation scenarios [42]. For example, the beta PDF can be used to describe the distribution of
irradiance that influences the PV output at a specific location [43]. However, the uncertainties of PV
generation and building peak-load consumption are omitted from the formulas in this study because
their actual data are used for this study’s experiment. The following scenario creation method is
proposed for EV status information.

Status of EVs

Scenarios of EV stats are commonly generated based on truncated Gaussian PDF that can reflect
the pattern of EV owners’ behavior, such as arrival time, departure time, and state of energy (SOE) in
the probability distribution [44–46]. Hence, the formulation is modeled as given in Equations (1a)–(1d).

PSOE,ini
n = f TG

n (x;µSOE; σSOE; (PSOE,ini,min; PSOE,ini,max)) (1a)

PSOE,des
n = f TG

n (x;µSOE; σSOE; (PSOE,des,min; PSOE,des,max)) (1b)

tarv
n = f TG

n (x;µarv; σarv; (tarv,min; tarv,max)) (1c)

tdep
n = f TG

n (x;µdep; σdep; (tdep,min; tdep,max)) (1d)

f TG indicates the truncated Gaussian PDF with a mean of µ and a variance of σ2. EV owners want to
discharge from their EV batteries to sell the electricity to the market while also charging the batteries to
drive. Therefore, as shown in Figure 2, the random initial SOE and desired SOE of EVs are generated
within the minimum battery capacity range in which the EV can operate. The arrival and departure
time boundaries are set based on the parking duration pattern of the commuting vehicles.
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2.3. Structural Framework of the Scheduling Method

Since the decision to participate in DR through the contract is done the day before, it is important to
establish a day-ahead time-based operational strategy for each DER based on forecasted generation and
consumption. In this study, the optimal day-ahead strategies of DERs and DR capacity are developed
considering related uncertainties. The scenarios of PV generation and load consumption of the building
are created by importing the forecasted data set. The scenarios of SOE and the time variable for
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EVs are randomly created using the aforementioned truncated Gaussian PDFs. Subsequently, the
optimal scheduling model is constructed with the generated scenarios. The model involves an objective
function, namely the net cost minimization of the residential building operation. The model also
adopts ESS, EV, LTG, HVAC, and the overall power balance constraints. In addition, the operation
plan iterates calculations toward the optimal result based on the reward and penalty price condition.
Figure 3 shows the scheduling method’s structural framework.
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3. Optimization Model

3.1. Objective Function

In this study, the objective function involves minimizing the operational costs of residential
buildings in terms of loss and maximizing revenues from electricity transactions. The loss includes the
electricity charge for all the energy used in the building. The revenues contain the benefit of reducing
the building load through PV generation, the benefit of operating ESS, the sale of electricity to EVs,
and the benefit of DR participation by individual contract with the grid-system operator. The overall
objective function is formulated as given in Equations (2a) and (2b) and the following terms of loss and
revenues are modeled as shown in Equations (3a)–(3l).

Minimize Fn (2a)

Fn =
∑

t

Lelec
t −RPV

t −RESS
t −REV

t −RDR
t (2b)

• Term 1: Loss from electricity charges

Term 1 denotes the electricity charge for building load consumption. Electricity costs are divided
into the cost for general use and the cost for EV charging and distinguished into contractual basic rate
and usage fee; it is formulated in Equation (3a).

Lelec
t = Cbase,gen + (PG2ESS

t + PG2B
t −

∑
n

PB2EV
t,n ) ×Cuse,gen

t + Cbase,EV +
∑

n
PB2EV

t,n ×Cuse,EV
t (3a)
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• Term 2: Revenue from PV generation

Term 2 denotes the revenue from the PV generation. It is expressed as the sum of profits from
self-consumption and profits from selling surplus electricity. The profit from self-consumption is a
discount on the electricity charge by the amount of PV-generated power used for self-consumption. The
profit from selling surplus electricity is calculated by applying the system marginal price (SMP) and
renewable energy certificated incentive (REC). The revenue is described as shown in Equations (3b)–(3e).

RPV
t = RPV,sel f

t + RPV,surp
t (3b)

RPV,sel f
t = PPV,sel f

t ×Cuse,gen
t × γPV,disc (3c)

RPV,surp
t = PPV,surp

t × (CSMP
t + CREC) (3d)

PPV2B
t = PPV,sel f

t + PPV,surp
t (3e)

• Term 3: Revenue from ESS operation

Term 3 denotes the revenue from the ESS operation. It is calculated by adding the basic revenue
for encouraging ESS installation and settlement revenue through ESS charging and discharging. The
amounts of ESS charging and discharging at peak time zones are used to calculate the basic revenue.
The ESS charge amount at the off-peak time zone is applied to estimate the settlement revenue, and the
total revenue is formulated as given in Equations (3f)–(3h).

RESS
t = RESS,base + RESS,sett

t (3f)

RESS,base =
∑

t

(PESS2B
t − PG2ESS

t ) ÷ Preg,gen
×Cbase,gen

× γESS,inc, t ∈ Tpeak (3g)

RESS,sett
t = PG2ESS

t ×Cuse,gen
t × γESS,disc, t ∈ To f f−peak (3h)

• Term 4: Revenue from the sale of electricity to EVs

Term 4 denotes the revenue from the sale of electricity to EVs. The revenue is formulated in
Equation (3i).

REV
t =

∑
n

(PSOE,des
n − PSOE,ini

n ) ×CEV,ch
t (3i)

• Term 5: Revenue from DR participation

Term 5 denotes the revenue from DR participation according to the contract. The DR revenue
consists of monthly contractual basic revenue and settlement revenue based on DR participation time
interval and capacity. It is formulated as shown in Equations (3j)–(3l).

RDR
t = RDR,base + RDR,sett

t (3j)

RDR,base = PDR,reg
×CDR,base (3k)

RDR,sett
t = PDR

t ×CSMP
t − (PDR,reg

− PDR
t ) ×CSMP

t × γDR,pen (3l)

3.2. Constraints

According to the aforementioned objective function, the constraints involve PV generation, SOC
management of ESS, SOE management of EV, DR participation, and power balance. The constraints
are defined as follows.
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3.2.1. PV Generation

The PV generation amount is scheduled at each time interval within the limitation of the maximum
generation capacity as shown in Equation (4).

0 ≤ PPV2B
t ≤ PPV2B,max (4)

3.2.2. SOC Management of ESS

The charging and discharging speed and efficiency of ESS correspond to constants at every time
interval. The unit time interval (∆t) is set to an hour and the minimum charging or discharging time
interval (τ) is set to a minute. Based on the aforementioned time intervals, the formulation of charging
and discharging amount of ESS is as shown in Equations (5a)–(5e).

0 ≤ τG2ESS
t ≤ ∆t (5a)

0 ≤ τESS2B
t ≤ ∆t (5b)

0 ≤ τG2ESS
t + τESS2B

t ≤ ∆t (5c)

PG2ESS
t = vESS,ch

× ηESS,ch
× τG2ESS

t (5d)

PESS2B
t = vESS,dch

× ηESS,dch
× τESS2B

t (5e)

In fact, the simultaneous charging/discharging of the ESS can be prevented by applying the
one-minute control variable of the charging/discharging operation. The constraints of the one-minute
control of the ESS are omitted since this optimization problem is focused on the hourly schedule of
resource operation. Furthermore, once the charge/discharge scheduling time during the time interval is
determined, the profit, cost, and SOC at each time interval are unchanged even if the one-minute control
is applied. The one-minute control of the ESS is simply implemented with formulating aforementioned
constraints in Appendix B.

Based on Equation (5f), the ESS operates within the minimum and maximum limitation of SOC.
Equation (5g) is a formulation about the continuity constraint of SOC between each time interval.
The initial SOC is arbitrary. The present SOC is derived using the SOC of the previous time interval
and the amount of charging and/or discharging at the present time interval.

PSOC,min
≤ PSOC

t ≤ PSOC,max (5f)

PSOC
t = PSOC

t−1 + PG2ESS
t − PESS2B

t (5g)

The constraints on battery deterioration, depreciation, and performance degradation are omitted
to accommodate the conceptual implementation of economically optimal ESS operation scheduling for
this study.

3.2.3. The SOE Management of EV

As shown in Equations (6a)–(6e), (6g) and (6h), the basic contents of the constraints are the same
as those of the ESS due to battery characteristics. Additionally, a binary variable is multiplied for the
charging equation and the discharging equation to indicate the presence of each EV in the charging
station as described in Equations (6c) and (6d). The variable is determined through the generated
scenarios of arrival and departure time for EVs. To avoid creating the peak load demand of the
building by charging many EV batteries simultaneously, a constraint is additionally complemented as
shown in Equation (6f). The EV batteries operate within the minimum and maximum limitation of
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SOE as described in Equation (6g) and the continuity constraint of SOE between each time interval is
formulated as shown in Equation (6h).

0 ≤ τB2EV
t,n ≤ ∆t (6a)

0 ≤ τEV2B
t,n ≤ ∆t (6b)

0 ≤ τB2EV
t,n + τEV2B

t,n ≤ ∆t (6c)

PB2EV
t,n = vEV,ch

× ηEV,ch
× τB2EV

t,n ×XEVinSt
t,n (6d)

PEV2B
t,n = vEV,dch

× ηEV,dch
× τEV2B

t,n ×XEVinSt
t,n (6e)∑

n
PB2EV

t,n ÷ ∆t ≤ PB2EV,max
t (6f)

PSOE,min
≤ PSOE

t,n ≤ PSOE,max (6g)

PSOE
t,n = PSOE

t−1,n + PB2EV
t,n − PEV2B

t,n (6h)

As expressed in Equations (6i) and (6j), the initial SOE should be the same as that of the arrival
time and the desired SOE for EV owners should be equal to that of the departure time.

PSOE
tarv
n ,n = PSOE,ini

n (6i)

PSOE
tdep
n ,n

= PSOE,des
n (6j)

3.2.4. DR Participation

A DR participation plan is considered to reduce the peak load of the grid system at the peak time
zone. Typically, HVAC and LTG loads are involved in DR since they can react instantaneously among
the load resources of a residential building. In the case of a HVAC load, the average DR participation
capacity can be derived in the form of kW per volume for the building’s space [47]. In the case of
an LTG load, an illuminance reduction greater than 15% of the initial illuminance can be accepted
without inconvenience [48]. Accordingly, the maximum allowable capacity of HVAC and LTG load is
determined as shown in Equations (7a) and (7b).

PDR,HVAC,max
t = PHVAC

t × ηDR,HVAC (7a)

PDR,LTG,max
t = PLTG

t × ηDR,LTG (7b)

To decide whether to participate in DR, a binary variable is included as in Equations (7c) and (7d).

XDR
t × PDR,HVAC

t ≤ PDR,HVAC,max
t (7c)

XDR
t × PDR,LTG

t ≤ PDR,LTG,max
t (7d)

As described in Equations (7e) and (7f), the total DR participation capacity at a peak time zone is
aggregated and applied in the revenue calculation.

PDR
t = XDR

t × (PPV,sel f
t + PESS2B

t +
∑

n
PEV2B

t,n + PDR,HVAC
t + PDR,LTG

t ), t ∈ Tpeak (7e)

PDR
t = 0, t < Tpeak (7f)
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3.2.5. Load Balance

The total amount of electricity consumed by the building precisely corresponds to the amount of
electricity provided from the building as shown in Equation (8a). Furthermore, the constraint to limit
the electricity usage of the building for each time interval is included for the stable power supply of
the grid system as given in Equation (8b).

PG2B
t + PPV2B

t + PESS2B
t +

∑
n

PEV2B
t,n + PDR,HVAC

t + PDR,LTG
t = PLOAD

t +
∑

n
PB2EV

t,n (8a)

PG2B
t ≤ PG2B,max (8b)

4. Numerical Studies

4.1. Case Studies

The proposed model is evaluated by collecting hourly load consumption data of 14 August 2017
for the summer case and 25 January 2017 for the winter case from the building of Research Institute
for Solar and Sustainable Energies (RISE) in the Gwangju Institute of Science and Technology (GIST)
in Korea.

Table 1 lists the characteristics of electricity charge. Information data of time-based electricity
charge for general usage, EV charging cost, and the SMP are described as shown in Figures 4 and 5.
The green bars indicate the off-peak time zone, the yellow bars indicate the mid-peak time zone, and
the orange bars indicate the peak time zone.
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Table 1. Electricity charge data.

Cbase,gen (KRW/kWh) Cbase,EV (KRW/kWh) CREC (KRW/kWh) Preg,gen (kW) Preg,EV (kW)

7220 2390 80 700 200Energies 2019, 12, x FOR PEER REVIEW  10 of 20 
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Further case data of PV generation, ESS characteristics, EV characteristics, DR characteristics, and
the load data for the HVAC and LTG in a residential building are described in Appendix A.

4.2. Simulation Results

To verify the usefulness of DR participation in DER optimal operation, the simulation results of
the DER operational optimization excluding DR participation and the DER operational optimization
including DR participation are compared for summer and winter. The results are as described as
shown in Table 2.

Table 2. Optimal operation cost comparison.

Operation Cost without
DR (KRW)

Operation Cost with
DR (KRW) Cost Decrease (%)

Summer 4,902,500 4,529,700 7.6
Winter 5,035,700 4,768,100 5.3

Previous studies have shown that the generation of peak loads closely correlates with
temperature [49,50]. Actually, the load used for heating and cooling occupies a large portion of
the total load usage. Therefore, in summer, the peak time zone is biased in the daytime. Figure 6
shows the optimal load consumption scheduling results in the summer case. In the case with DR
participation, the overall strategy is to reduce the load during the peak time zones to pursue profits
through DR participation.

Figure 7 shows hourly total charge and discharge amount according to charging and discharging
scheduling within a unit time. The charging and discharging strategies of the ESS are both the same
to gain revenue through charge rate discounts in off-peak time zones. However, in peak time zones,
particularly between 15 h and 18 h, there is a big difference in the charging scheduling to consider the
DR participation amount after 16 h.
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The optimal SOE scheduling results of EVs are the same as those of the ESS because of the battery’s
general characteristics. In this experiment, random data of five EVs are applied and the results are
color-coded as shown in Figure 8.
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Figure 8. Optimal SOE of EV scheduling results in summer: (a) Without DR; (b) with DR.

In winter, based on the historical load consumption data, peak time zones are divided into daytime
and evening after work. Figure 9 shows the optimal load consumption scheduling results in winter.
Similar to summer, there is a difference in the load reduction for DR participation between each result.
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Based on the simulation results of Figures 10 and 11, it is confirmed that ESS and EVs are involved
in load reduction through economical charging and discharging schedules by time zone. The DR
participatory model takes a strategy of charging in an off-peak time zone or mid-peak time zone and
discharging during peak time zone aggressively to contribute to DR as expected.
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The purpose of this study is to validate through experiments that ESS, EV, HVAC load, and LTG
load establish the day-ahead optimal operation plan by determining the amount of DR participation
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as shown in Figure 12. The result has the numerical effect of significantly reducing operating costs
compared to the basic DER operation model without DR participation.
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4.3. Discussions

The optimization problem of this study is aimed at reducing the operating cost of the building
through DR participation scheduling, which can obtain the highest profit, and the experimental results
confirm the objective adherence of the algorithm. The optimal scheduling based on the seasonal
electricity cost was derived and the load usage avoidance in the peak time zone was achieved only
through economic constraints. Operating costs based on actual data were compared between DR
participation case and DR non-participation case. As a result, resource management including DR
incentive could achieve cost savings of 5–7%. Considering the deterioration cost of ESS and EV and
the time-based control of HVAC and lighting loads, more empirical results can be derived.

5. Conclusions

This study proposes an optimal DER management model of a residential building to estimate the
day-ahead DR participation capacity and corresponding hourly operation plan of resources. The model
was consistent with the DR engagement strategy in a DR contract environment; it was composed of
a PV, ESS, EV charging station, HVAC, and LTG load resource for DR. Uncertainties from the DER
were defined and applied to generate hourly scenarios and the optimization model was an object
to minimize the operation cost of DERs in a residential building. To derive the practical net cost
of DER operation, the cost functions of each DER were defined in detail based on electrical energy
policies. There were constraints of PV generation, SOC management of ESS, SOE management of EV,
DR participation capacity, and load balance in the DER operation optimization model. Case studies
of the proposed model were performed by comparing the DER optimization algorithm excluding
DR participation and the algorithm including DR participation in both summer and winter cases.
The numerical study results verified that the day-ahead optimal operation plan could determine the
DR participation capacity and corresponding DER management efficiently by time zone. The model
was finally validated by confirming that the operation cost is reduced compared to the reference model.
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Nomenclature

Sets
Tpeak Peak time zones
To f f−peak Off-peak time zones
Indices
t Index for time interval
n Index for EVs
Parameters
PPV2B,max Maximum limit of power from PV to building
PSOC,min/PSOC,max Minimum/Maximum limit of SOC
PB2EV,max

t Maximum limit of power from building to EV
PSOE,min/PSOE,max Minimum/Maximum limit of SOE
PSOE,ini,min/PSOE,ini,max Minimum/Maximum limit of initial SOE
PSOE,des,min/PSOE,des,max Minimum/Maximum limit of desired SOE
PG2B,max Maximum limit of power from grid to building
PLOAD

t Power load consumption by building
Preg,gen Contract-registered power capacity for general usage of building
PDR,HVAC,max

t Maximum limit of building’s HVAC load participation in DR
PDR,LTG,max

t Maximum limit of building’s lighting load participation in DR
PDR,reg Contract-registered DR participation capacity
f TG
n Truncated Gaussian probability density function (PDF)
µSOE/σSOE Mean/Standard deviation of PDF for initial/desired SOE uncertainty
µarv/σarv Mean/Standard deviation of PDF for arrival time uncertainty
µdep/σdep Mean/Standard deviation of PDF for departure time uncertainty
tarv,min
n /tarv,max

n Minimum/Maximum limit of arrival time

tdep,min
n /tdep,max

n Minimum/Maximum limit of departure time
Cbase,gen Basic rate of the electricity charge for general use
Cuse,gen

t Usage fee of the electricity charge for general use
Cbase,EV Basic rate of the electricity charge for EV charging
Cuse,EV

t Usage fee of the electricity charge for EV charging
CSMP

t System marginal price (SMP)
CREC Renewable energy certificated incentive (REC)
CEV,ch

t Charging fee for EV
CDR,base Basic grants per unit capacity of DR participation
γPV,disc Discount ratio of electricity charge for PV promotion in contract
γESS,inc Incentive ratio for ESS operation in contract
γESS,disc Discount ratio of electricity charge for ESS promotion in contract
γDR,pen Penalty ratio for DR participation in contract
∆t Unit time interval in an hour
vESS,ch/vESS,dch Charging/Discharging speed of ESS
vEV,ch/vEV,dch Charging/Discharging speed of EV battery
ηESS,ch/ηESS,dch Charging/Discharging efficiency of ESS
ηEV,ch/ηEV,dch Charging/Discharging efficiency of EV battery
ηDR,HVAC Allowable HVAC load capacity rate for DR participation
ηDR,LTG Allowable lighting load capacity rate for DR participation
Variables
PPV2B

t Power from PV to building

PPV,sel f
t PV-generated power for self-consumption

PPV,surp
t Surplus PV-generated power for selling

PESS2B
t Power from ESS to building

PG2ESS
t Power from grid to ESS

PSOC
t State of charge (SOC) of ESS

PB2EV
t,n Power from building to EV

PEV2B
t,n Power from EV to building

PSOE
t,n State of energy (SOE) of EV

PSOE
tarv
n ,n/PSOE

tdep
n ,n SOE at arrival/departure time of EV

PSOE,ini
n Initial SOE

PSOE,des
n Desired SOE
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PG2B
t Power from grid to building

PDR
t Total load participation in DR

PDR,HVAC
t Building’s HVAC load participation in DR

PDR,LTG
t Building’s lighting load participation in DR

x Random variable generated based on PDF
tarv
n Arrival time of EV

tdep
n Departure time of EV

Lelec
t Loss from electricity charges of building

RPV
t Total revenue from PV generation

RPV,sel f
t Revenue from PV generation for self-consumption

RPV,surp
t Revenue from surplus PV generation

RESS
t Total revenue from ESS operation

RESS,base Basic revenue from ESS operation
RESS,sett

t Settlement revenue from ESS operation
REV

t Total revenue from EV battery operation
RDR

t Total revenue from DR participation
RDR,base Basic revenue from DR participation contract capacity
RDR,sett

t Settlement revenue from actual DR participation capacity
τG2ESS

t Time interval in minutes that power is transferred from grid to building
τESS2B

t Time interval in minutes that power is transferred from ESS to building
τB2EV

t,n Time interval in minutes that power is transferred from building to EV
τEV2B

t,n Time interval in minutes that power is transferred from EV to building
XEVinSt

t Binary decision variable for presence of EV in charging station
XDR

t Binary decision variable for DR issuance

Appendix A Case Data of DERs

PV generation data are described as shown in Figure A1 and the characteristics are listed in Table A1.Energies 2019, 12, x FOR PEER REVIEW  16 of 20 
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Figure A1. PV generation data: (a) 14 August 2017 (summer); (b) 25 January 2017 (winter).

Table A1. Photovoltaic generation system (PV) data.

PPV2B,max (kW) γPV,disc

100 0.5

The characteristics of ESS are listed in Table A2.

Table A2. ESS data.

γESS,inc γESS,disc vESS,ch (kW/min) ηESS,ch,ηESS,dch PSOC,min (kWh) PSOC,max (kWh)

3.6 0.5 30 0.92 10 100

The characteristics of EV are listed in Table A3.
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Table A3. EV data.

CEV,ch (KRW/kW) vEV,ch (kW/min) ηEV,ch,ηEV,dch PSOE,min (kWh) PSOE,max (kWh)

173.8 0.8 0.95 1 30

Table A4 lists the characteristics of DR. The load data of the HVAC and LTG in the residential building are
described as shown in Figure A2.

Table A4. DR data.

CDR,base (KRW/kW) PDR,reg (kW) γDR,pen ηDR,HVAC ηDR,LTG

1000 100 1.5 0.66 0.76
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Appendix B Example of ESS Operation

In order to avoid simultaneous charging and discharging in one minute, constraints are additionally
complemented as shown in Equations (A1)–(A3).

uG2ESS
t,m + uESS2B

t,m ≤ 1 (A1)

60∑
m=1

uG2ESS
t,m = τG2ESS

t (A2)

60∑
m=1

uESS2B
t,m = τESS2B

t (A3)

m denotes a minute and u indicates a decision variable of charging/discharging at each minute. As expressed in
Equation (A1), at every hour and minute, charging and discharging action cannot occur simultaneously. In this
research, we decide the charge/discharge time during an hour. Hence, sum of u at each hour corresponds to the
required charge/discharge time schedule as described in Equations (A2) and (A3).

Based on the aforementioned constraints, the minute operation of the ESS at 14:00–15:00, 14 August 2017 in
Figure 7b is simulated as shown in Figure A3.
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Based on the aforementioned constraints, the minute operation of the ESS at 14:00–15:00, 14 
August 2017 in Figure 7b is simulated as shown in Figure A3. 

 

Figure A3. ESS minute operation example of 14:00–15:00, 14 August 2017. Figure A3. ESS minute operation example of 14:00–15:00, 14 August 2017.
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