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Abstract: Wind power penetration has increased rapidly in recent years. In winter, the wind turbine
blade imbalance fault caused by ice accretion increase the maintenance costs of wind farms. It is
necessary to detect the fault before blade breakage occurs. Preliminary analysis of time series
simulation data shows that it is difficult to detect the imbalance faults by traditional mathematical
methods, as there is little difference between normal and fault conditions. A deep learning method
for wind turbine blade imbalance fault detection and classification is proposed in this paper. A long
short-term memory (LSTM) neural network model is built to extract the characteristics of the fault
signal. The attention mechanism is built into the LSTM to increase its performance. The simulation
results show that the proposed approach can detect the imbalance fault with an accuracy of over
98%, which proves the effectiveness of the proposed approach on wind turbine blade imbalance
fault detection.

Keywords: imbalance fault detection; LSTM; attention mechanism; blades with ice

1. Introduction

As a clean and renewable energy, wind power has developed rapidly in recent years [1]. With
the increasing penetration of wind power, the problems of high maintenance costs of wind turbines
and high failure rate have been highlighted [2,3]. Forty percent of the maintenance cost of a wind
farm is related to wind turbine component failure [4,5]. Wind turbines are generally installed on the
mountain or along the coastline, thus it is difficult to obtain the daily operating state of wind turbines.
Wind turbine failure mainly includes the mechanical failure of the gearbox, various bearing and
rotor [6], breakage of blades [7], an abnormal working state of generator and power electronics [8],
etc. When the wind turbines fail, the fault of which will arise power oscillation in the power system.
These problems lead to high maintenance costs and damage to the power grid. Therefore, it is
necessary to diagnose the potential danger of wind turbines to avoid more serious accidents before the
wind turbine has a devastating failure [9,10].

Traditional fault diagnosis methods are sensor-based monitoring. Installing a large number of
sensors in different parts of the wind turbine increases the investment cost. Therefore, it is necessary
to apply a more effective data-driven method in fault diagnosis to reduce the investment costs [11].
Various methods have been proposed in literature to solve this problem: Fault detection based on
the improved temporal constraint network method [12], the history-driven differential evolution
approach [13], cointegration residuals analysis [14], generator current signals [15], and machine
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learning method [16], etc. The machine learning-based approach has especially been applied in many
fields in recent years. Deep learning (DL) is one of the most important parts of this hot topic. Google’s
AlphaGo [17] and AlphaGo Zero [18] use the deep neural network to train themselves, and have had
great breakthroughs in recent years. Because of the great learning ability of DL, it can also be applied
in a power system.

Since 2006, DL has appeared as a new research field in machine learning research field [19].
DL can be used to extract the features of a large number of data [20–22]. Due to the high calculation
costs and the features being difficult to be extracted, it is not applicable to obtain the features by
using traditional mathematical methods [21]. Various DL-based approaches have been proposed
in literature for wind turbine fault detection due to the strong feature extraction ability of DL [23].
In general, the fault detection of the DL-based approach consists of two steps: First, one extracts the
fault features by neural network, and second, one realizes the classification based on the extracted
features [24]. Reference [25] applied the sparse auto-encoder in fault detection of the wind power
system transmission line, which realized the wind farm transmission line faults identification, with an
accuracy of 99%. A neural network-based approach for gearbox bearings fault detection was proposed
in [26]. Study [27] successfully applied an auto-encoder-based method in wind turbine gearbox fault
diagnosis. Convolutional neural network is used in fault detection of the wind turbine gearbox [28].
A deep auto-encoder-based method for wind turbine blade breakage diagnose is proposed in study [29],
and the accuracies of the detection results reach 100%. All these prove that the application of DL in a
power system is feasible. The imbalance fault caused by icing on wind turbine blades is difficult to
detect. It is necessary to find a feasible method to detect the fault.

This paper proposes a new method for the wind turbine blade fault detection by combining long
short-term memory (LSTM) with the attention mechanism. The contributions of this paper are as
follows:

(1) This paper proposes a data-driven method to solve the imbalance fault detection of wind turbine
blades which considers the imbalance faults caused by the ice accretion.

(2) A novel method based on LSTM and attention mechanism is proposed to solve the problem of
wind turbine blade imbalance fault diagnosis, and it overcomes the problem that traditional
methods have in extracting fault features.

The rest of this paper is structured as follows. Section 2 presents the working condition and the
imbalance fault of wind turbine. The deep learning framework and the fault diagnosis method are
shown in Section 3. Section 4 presents the case study of this research. Finally, the conclusion and
summary of this paper is shown in Section 5.

2. Wind Turbines Imbalance Fault

The imbalance fault of wind turbine blades accounts for the majority of the wind turbine failures [4].
Under ideal conditions, the quality of the three wind turbine blades is equal. However, the mass of the
wind turbine blades is imbalanced in real-world scenarios due to various factors. For example:

(a) Due to the technical problems in the production process, there are some mass errors among
the blades.

(b) Wind turbines are usually installed at heights of tens or even hundreds of meters and the locations
are usually at the peaks of mountains or offshore. Wind turbine blades will be corroded by exposure
to harsh environments for a long time, which causes the imbalance of wind turbine blades.

(c) In addition, in dusty or extreme cold weather conditions, wind turbine blades will be covered
with dust or ice. When the dust or ice accumulates to a certain level, the imbalance fault of wind
turbines will occur.

This paper assumes that the imbalance faults of a wind turbine are caused by the wind turbine
blades, which are covered with ice. Wind turbines operate at variable wind speed conditions and the
wind speed curve is shown in the following Figure 1.
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Figure 1. The variable wind speed of test data.

In this research, in order to obtain the data of the wind turbine under different conditions, a 2MW
wind turbine with a doubly fed induction generator (DFIG) was built by G. H. Bladed simulation
software to verify the proposed method [30,31]. Figure 1 shows that the wind turbines were operating
under the variable wind speed which ranges from 4 to 11 m/s. Under this condition, the output power
curves of the wind turbine in normal state and fault state are shown in Figure 2.

Figure 2. The output power curves of the wind turbine: Blue line represents the output electrical power
of normal state under the variable wind speed. Red line presents the output electrical power of blade
in iced fault state under the variable wind speed.

It shows that the trends of the two curves are almost the same and it is difficult for traditional fault
analysis methods to distinguish the difference between normal state and iced state. Compared with
the traditional mathematical methods, this study adopts a neural network, which has proved to be
effective in extracting features and detecting the imbalance faults of wind turbine. At the same time,
the method of neural network could also reduce the calculation costs.

3. Deep Learning Framework and Training Process

A DL framework is shown in this section. Traditional DL mainly includes the following basic
network frameworks: fully connected neural network (FNN), convolutional neural network (CNN)
and recurrent neural network (RNN) [20]. RNN has advantages in processing time series data, LSTM is
an improved version of RNN and is good at extracting long-term dependency features. LSTM is used
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to extract features in the proposed approach of this paper. Compared with ordinary neural networks,
LSTM network can solve the vanishing gradient problem [32]. In addition, LSTM is outstanding in
feature extraction from temporal dependencies data [33]. When processing the time series data, LSTM
has high efficiency in the field of machine learning [34,35]. But with the length of data increasing,
LSTM has difficulty in feature extracting [33]. In order to enhance the learning ability of LSTM, this
study adds the attention mechanism after LSTM. The attention mechanism helps LSTM learn the
temporal dependencies data [36].

The DL framework proposed in this paper contains two parts: LSTM and attention mechanism.
The details are described in the following subsections respectively.

3.1. Recurrent Neural Network (RNN)

RNN is a neural network with a special structure. Compared with FNN and CNN, RNN can be
regarded as a network with memory. It stores the features of the previous moment which is used as
the next moment’s input. Thus RNN can better obtain the characteristics of time series data than CNN
and FNN.

A simple RNN include 3 layers: Input layer, hidden layer and output layer. The standard RNN
structure is shown in Figure 3:

Figure 3. A simple unfold recurrent neural network (RNN) structure.

Where it represents the input vector at the t-th moment. In hidden layers, every cell A has an
activation function. At each time step of the model, the RNN cell outputs an eigenvalue, which will be
sent to the next cell. The specific function of RNN is shown in Equations (1) and (2):

h′t = W× it + R× ht−1 + b, (1)

ht = sigmoid(h′t), (2)

where h′t represents the hidden state of the neural network at time t; W, R and b represent the weight
matrices and the bias vector, respectively. ht is the output of the t-th RNN cell and sigmoid is the
activation function. Because of this structure, RNN has memory function that can memorize the
features of the time series data.

The learning ability of RNN decreases with the increase of dimension and amount of data,
however, LSTM can solve this disadvantage of RNN.

3.2. The Overall Framework

In Section 2, preliminary analysis shows that the features of the fault data are not obvious enough.
In order to detect the fault effectively, the combination of LSTM and attention mechanism to realize
wind turbines imbalance fault detection and classification is a feasible option.

In order to make the neural network more sensitive to the wind turbine imbalance faults, this
paper also considers other parameters of wind turbines, not including power and current, which
are shown in Equation (3), where v is the hub wind speed magnitude, ω is the rotor speed, p is the
electrical power, i is the turbine current and tm is the generator torque. The v, ω, p, i and tm are all
column vectors. In order to obtain the torque information during wind turbine blade rotation and
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better reflect the operation characteristics of the wind turbine, the sampling time interval of wind
turbine data in this research is 0.08 s.

Xt = [v ω p i tm], (3)

The overall structure of the imbalance fault detection is shown in Figure 4. It shows that the
attention mechanism is added after the output of LSTM cells, and the softmax function completes the
fault detection.

Figure 4. The overall structure of the imbalance fault detection.

3.2.1. LSTM

Since standard RNN just thinks about neighboring states, if the state is too far from the current
RNN, the data may be forgotten which could lead the neural network loss learning ability. However,
the LSTM doesn’t have that problem. Compared with RNN, LSTM has added three special gates in its
cell, the forget gate, input gate and output gate. The inner structure of LSTM is shown in Figure 5.
The most important part to the LSTM network is the cell state Lt [37]. The LSTM can control the three
gates to decide whether the outside data should be written in the cell or not.

Figure 5. The inner structure of long short-term memory (LSTM), where a circle with a σ represents
an activation function and a circle with a x represents multiply function. It, Ft, Ot are the output
information of input, forget and output gates; and these three control value are all connected with the
input Xt and the output of the previous moment Yt−1.

The functions of these three gates are shown in Equations (4)–(6), respectively,

It = σ(Wi ×Xt + Zi × Yt−1 + bi), (4)

Ft = σ
(
Wf ×Xt + Zf × Yt−1 + bf

)
, (5)

Ot = σ(Wo ×Xt + Zo × Yt−1 + bo), (6)



Energies 2019, 12, 2764 6 of 15

where the activation function σ is sigmoid function, and Wi, Wf, Wo, Zi, Zf and Zo are the weight of
each gate respectively, the shapes of which are all matrices, and bi, bf, bo are the biases vector of these
three gates. The input data Nt is show as Equation (7),

Nt = th(Wt ×Xt + Zt × Yt−1 + bt), (7)

where th is the activation function, tanh, Wt and Zt are the weight matrices, and bt is the input biases
vector. After obtaining the three gates state and the input information, the intermediate variable Mt

can be described as below:
Mt = It ×Nt, (8)

where × denotes matrix multiplication. The state value of input gate, It, is range from 0 to 1, it
determines proportionately how much input to pass to the next step. Therefore, the LSTM cell
information Lt and the output state Yt can be formulated as Equations (9) and (10). Like It, the state
value of forget gate and output gate, Ft and Ot, both range from 0 to 1.

Lt = Mt + Ft × Lt−1, (9)

Yt = th(Lt) ×Ot, (10)

After getting the output information of the LSTM, they all will be sent into the attention mechanism
for further processing. Attention mechanism multiplies different time series data by a weight coefficient
then obtains the final dynamic characteristics.

In this research, the updating of training parameters is based on gradient descent method and the
specific algorithms are shown as below:

Wnew = Wold − lr·
∂E

∂Wold
, (11)

Znew = Zold − lr·
∂E
∂Zold

, (12)

bnew = bold − lr·
∂E
∂bold

, (13)

where Wnew and Znew represent the new weights Wi, Wf, Wo, Wt or Zi, Zf, Zo, Zt after updating of the
neural network. Similarly, bnew represents the new bias of the network. Wold, Zold and bold are the
weights and bias of the previous training. lr is the learning rate of the neural network and E is the loss
function value. In this research, the loss function of the model is sparse softmax cross entropy with
logits [38]. This loss function is a combination of softmax and cross entropy functions. Comparing
with softmax cross entropy with logits and cross entropy, the calculation speed of the selected function
is faster.

3.2.2. Attention Mechanism

When dealing with long input sequence, only the output of the LSTM neural network, yt, is used
as the information representation of the entire input sequence, that means all information of the input
sequence is compressed into a fixed length vector. As the length of the input sequence continues to
increase, the ability of the overall model to process information will be limited and weakened. In order
to solve this problem, this research has introduced the attention mechanism in the decoding phase.
Attention mechanism can be considered as a simple three-layer neural network, which includes input
layer, hidden layer and output layer. The input in this paper is the last layer’s output of a multi-layer
LSTM, which is a vector and the length of this vector is equal to the time steps of LSTM.
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Attention mechanism has great advantages on time series learning, and the core goal of attention
mechanism is turning the fixed output Yt into a dynamic context vector Ct. Its characteristic equation
can be broken down into the following three steps:

1. The first step is calculating the parameter at i-th time, ui,t, which is described as Equation (14):

ui,t = VT
× tanh(Wa × Yt + ba), i, t = 1, 2, · · · , n_steps, (14)

where ui,t is a model which scores how well the input of i-th moment and the output of t-th moment
match, VT, Wa, ba. are the pending training parameters, and tanh is the activation function.

2. The second step is normalizing the data obtained at step one, then getting the weight score αi,t of
each state, which is shown as Equation (15),

αi,t =
eui,t∑n_steps

k=1 eui,k
, i, t = 1, 2, · · · , n_steps, (15)

where αi,t is a weight coefficient, which is the normalized probability distribution of ui,t at each
time step based on Equation (14).

3. Obtaining the dynamic characteristics vector Ct by multiplying the output of LSTM by the
probability, which is shown in Equation (16),

Ct =

n_steps∑
t=1

αi,t·Yt, i, t = 1, 2, · · · , n_steps, (16)

After getting the dynamic context vector Ct, the process of decoding is almost the same as the
traditional sequence classification based on LSTM.

3.3. The Training Process

The training process of the algorithm is shown as in Table 1. All parameters have been described
in the previous subsection.

Table 1. The training process of the algorithm of the neural network.

Algorithm Training Process of the Network

Input: The parameters of the wind turbineXt.
Output: The kind of imbalance faults and the accuracies of network.

1 Randomly initialize the weights W and biases b of the network model.
2 for i in max-iterations:
3 Obtain the accuracy and loss value of training network.

4
Error back propagation (E), update the weights and biases based on gradient descent

method:
Wnew = Wold − lr· ∂E

∂Wold
, Znew = Zold − lr· ∂E

∂Zold
, bnew = bold − lr· ∂E

∂bold

5 for i%200 = 0:
6 Test and obtain the kind of faults, accuracies and error value of network.
7 end
8 end

More details regarding the working principle of the proposed method can be described as follows:
Firstly, the raw data of wind turbine under normal and imbalance fault operation state are generated
by simulation software. The shape of raw data is a two dimensional matrix: [v ω p i tm], which has
been described in Equation (3). But the shape of input data of LSTM must be a three-dimensional array,
so that the first task of the model need to do is reshape the raw data into a three dimensional array of
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shape [batch size, time step, n-inputs], where batch size and time step are the training parameters of
the neural network and can be adjusted, and n-inputs represents the number of different kinds of wind
turbine operation data, which in this paper is five. After the raw data has been reshaped, one then
mixes fault data with normal data as the dataset of the model. The dataset will be randomly divided
into a training set and testing set. Finally, after learning the features of these dataset, the model can
classify the fault signals and normal signals by sparse softmax cross entropy with logits function.

4. Case Study

This paper uses the G. H. Bladed software to simulate the wind power generator with different
kinds of imbalance fault, then collects the main information by this software to do the following data
processing. This study randomly chooses the 80% of each dataset as a training set, and the remaining
20% of the dataset is divided into 10% for the validation set and 10% for the testing set.

Hardware environment and software platform: The training of network is completed on a PC
with Intel(R) Core i9-7900X @ 3.30GHz CPU, 64G DDR4 RAM and Nvidia GeForce RTX 2080 Ti (11GB
VRAM). And the software platforms are WINDOWS-10 (Professional) operating system and Pycharm
3.6 (64 bit). This paper uses the GPU version of TensorFlow to build the LSTM neural network and
accelerate the hardware.

Data pre-processing: Firstly, add different labels to the different imbalance faults data obtained
from G. H. Bladed. Then divide the data into appropriate time-step length as a batch.

4.1. Experimental Results

Figure 6 shows that the imbalance fault occurs at the 10,000th sampling points and disappears at
the 20,000th points. Figure 7 shows that when the imbalanced fault is detected, the model gives a pulse
signal with a value of 1. When the fault disappears, the value of the pulse drops to 0. Because of signal
transmission and data calculation, there will be a short time (1.8 s) delay which is shown in Figure 7.

Figure 6. Imbalance fault occurs from the 10,000th to 20,000th sampling points.

In order to prove the feasibility of the proposed method, this paper provides the detection results
under different imbalanced fault conditions. The number of iced wind turbine blades ranges from one
to three and the mass of ice is also variable. The detection results of network under one wind turbine
blade iced condition are shown in Figure 8, and the parameter of imbalance fault is obtained every 200
iterations. The fault detection accuracy of the neural network is more than 99%. The result shows that
the proposed DL-based approach is effective in detecting the wind turbine fault.
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Figure 7. The fault is detected by the proposed model.

Figure 8. The accuracy and loss value of the neural network.

The accuracies of a neural network with 256 attention size and the accuracy of LSTM without
attention mechanism are shown in Figure 9. It can be observed that LSTM combined with attention
mechanism can increase the convergence rate. In the early stages, the accuracy of the neural network
with attention mechanism hardly changes but the accuracy of the network without attention mechanism
slowly rises. As the attention mechanism can hold more features of the time series data, when the
network finds the best gradient descent direction, the accuracy of the neural network with attention
mechanism rises rapidly. Finally, the accuracy of the network model with attention mechanism is
higher than the LSTM without attention mechanism. It proves that the performance of the neural
network can be improved by adding attention mechanism.

The accuracies of neural network with different attention size are listed in Table 2. With the
increase in attention size, the accuracies of neural network increase. The results in this research show
that the best attention size of LSTM combines with attention mechanism is 256, the accuracy of which
reaches 99.8%.
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Figure 9. The accuracy curves: The red curve is the accuracy of model with 256 attention size, and the
blue curve is the accuracy of LSTM without attention mechanism.

Table 2. The accuracies of models with different attention size.

Attention Size Iced Number Accuracy

50
One blade

Two blades
Three blades

98.8%
99.2%
99.0%

128
One blade

Two blades
Three blades

98.7%
99.0%
98.3%

256
One blade

Two blades
Three blades

99.6%
99.8%
99.3%

The accuracies of the neural network with different time-step are shown in Figure 10. It can be
observed that in the early stage of the learning process, the accuracy of model with one time-step
rises rapidly; but in the end, the accuracy of model with only one time-step is much lower than
others with a larger time-step. The reason for this phenomenon is that the datasets are temporal
dependencies and only one time-step leads the neural networks can’t obtain the temporal correlation
characteristics commendably.

The accuracies of models with different time-step length are listed in Table 3. With the increase of
time-step, the accuracy of network also increases.

The accuracies of models with different batch size are listed in Table 4. It shows that the highest
accuracy of neural networks with batch size of 48 is not more than 88%. Because the batch size of the
dataset will determine the direction of gradient descent, a too small batch of dataset will make the
direction of gradient descent uncertain, which decreases the learning ability of the neural network.
When the batch size of the model increases, the accuracy improves significantly.
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Figure 10. The accuracies of neural network with different time-step under two blades with ice
accretion condition.

Table 3. The accuracies of models with different time-step.

Time-Step Iced Number With Attention
Mechanism

Without Attention
Mechanism

1
One blade

Two blades
Three blades

87.5%
83.5%
86.9%

83.4%
85.5%
85.6%

48
One blade

Two blades
Three blades

97.2%
99.0%
99.2%

93.4%
95.6%
94.9%

96
One blade

Two blades
Three blades

99.6%
99.8%
99.8%

98.1%
98.3%
98.6%

Table 4. The accuracies of models with different batch size.

Batch Size Iced Number With Attention
Mechanism

Without Attention
Mechanism

48
One blade

Two blades
Three blades

87.5%
85.4%
83.3%

81.2%
77.1%%
79.2%

2048
One blade

Two blades
Three blades

97.8%
98.6%
99.1%

94.1%
94.3%
97.3%

4096
One blade

Two blades
Three blades

98.1%
99.8%
100%

97.9%
98.2%
98.8%

It can be observed from Tables 3 and 4 that time-step and batch-size are important parameters for
neural network: When their values are too large, the memory is heavily occupied and the training time
of neural networks increase significantly. The best time-step and batch size of the model in this paper
are 96 and 4096 respectively.

When the mass of ice accretion of the wind turbine blades increases, the features of imbalance
fault of wind turbine blades are becoming more and more obvious. Compared with 15 kg, the accuracy
curves of model with 15 kg and 30 kg ice accretion of each blade are shown in Figure 11. It shows that
the accuracy of 30 kg ice accretion of each blades reaches 100%.
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Figure 11. The accuracies of models under different mass of ice accretion condition: (a) 15 kg ice on
each blade, (b) 30 kg ice on each blade.

4.2. Methods Comparison

In order to prove the validity of the method proposed in this paper, this simulation compares
the proposed method with standard RNN network. Take the icing on the surface of two blades of a
wind turbine as an example, the results of a standard RNN compared with the LSTM with attention
mechanism (LSTMAM) are shown in Figure 12.

Figure 12. The accuracies of recurrent neural network (RNN) and LSTM with attention mechanism
(LSTMAM) with different Batch size.

It is obvious that in Figure 12, no matter how the batch size increases, the accuracies of RNN
are no more than 74%; but the lowest accuracy of the proposed method is 87.5%. This paper also
compares the proposed method with other methods, such as support vector machines (SVM) and
Gaussian processes classification (GPC). Take the icing on the surface of two blades of a wind turbine
as an example, the results are shown in Table 5. It shows that the accuracies of SVM and GPC are
much lower than LSTMAM. Because traditional SVM and GPC are applicable to a small-scale dataset,
but when the dimension and complexity of data increase, it is difficult to classify the faults by these
methods. The results show that the proposed method outperforms various benchmark methods.

Table 5. The accuracies of different methods.

Approach Accuracy

RNN 71.3%
SVM 65.0%
GPC 48.3%

LSTMAM 99.8%
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A high sampling frequency is required in this research. When the imbalance fault occurs, the
variation will occur on the low speed shaft torque and the rotating frequency of shaft is called 1 P [39].
Meanwhile, there is the fluctuation on aerodynamic torque on hub and effect on rotor speed caused by
tower shadow. The spectra of the shaft torque or the output electric power of wind turbine with three
blades will have fluctuation at 3 P frequency, which is three times the shaft rotating frequency. It is
necessary to judge the frequency of 1 P and 3 P to detect whether the wind turbine has imbalance fault.
The rotor speed of the wind turbine shown in this research is from 9 to 18 r/min, which corresponds to
the 1 P and 3 P oscillation frequency from 0.15 to 0.3 and 0.45 to 0.9 Hz respectively. And the sampling
frequency in this research is 12.5 Hz. According to Nyquist Sampling Theory [40], if the sampling
frequency is too low, it is difficult to observe 1 P and 3 P frequency, which leads to inaccurate or the
inability to detect the fault by the proposed method.

The noise of raw data can influence the learning of neural networks, which makes the model
misjudge the signal. There are some artificial intelligence methods which can deal with the noise
problem and with relatively mature technology, such as the auto-encoder [41], variational auto-encoder,
stacked denoising auto-encoder [42], etc. These methods can effectively improve the robustness of the
model to the noise.

5. Conclusions

This paper proposes an DL-based method which combines LSTM and an attention mechanism
for wind turbine imbalance fault detection and classification. Compared with the standard LSTM,
combining the LSTM and an attention mechanism can improve the learning ability and the convergence
rate. This paper not only analyzes the voltage and current signals, but also considers other factors, such
as wind speed and the torque of the hub in the dataset. Furthermore, compared with standard RNN,
SVM and Gaussian Processes classification methods, the proposed method has a better performance in
imbalance fault detection. The simulation results show that the proposed method is feasible in wind
turbine blade imbalance detection and the highest accuracy of the proposed method is 100%.
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