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Abstract: In this manuscript, distinct approaches were used in order to obtain the best electrical power
estimation from photovoltaic systems located at different selected places in Mexico. Multiple Linear
Regression (MLR) and Gradient Descent Optimization (GDO) were applied as statistical methods
and they were compared against an Adaptive Neuro-Fuzzy Inference System (ANFIS) as an
intelligent technique. The data gathered involved solar radiation, outside temperature, wind speed,
daylight hour and photovoltaic power; collected from on-site real-time measurements at Mexico City
and Hermosillo City, Sonora State. According to our results, all three methods achieved satisfactory
performances, since low values were obtained for the convergence error. The GDO improved the
MLR results, minimizing the overall error percentage value from 7.2% to 6.9% for Sonora and from
2.0% to 1.9% for Mexico City; nonetheless, ANFIS overcomes both statistical methods, achieving a
5.8% error percentage value for Sonora and 1.6% for Mexico City. The results demonstrated an
improvement by applying intelligent systems against statistical techniques achieving a lesser mean
average error.

Keywords: ANFIS; statistical method; gradient descent; photovoltaic system; sustainable development

1. Introduction

Considerable research has been developed internationally in the field of photovoltaic systems and
power generation [1–3]. Mexico is a country that receives abundant solar energy, with the northwest
region being the one with the highest annual incidence of solar radiation, achieving radiation indexes
between 5.6 and 6.2 kWh/m2 per day; nevertheless, its advances on the photovoltaic field are scarse
nowadays, although there are many possibilities of research in this topic [4].
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There are many scientific reports on statistical methods to estimate power generation [5–8].
Multiple Linear Regression (MLR) includes any study area, since it finds an approach to the relation
among variables [9].

A satisfactory photovoltaic power estimation involving meteorological variables was carried out
in [10] in which a Gradient Descent Optimization (GDO) minimizes the error value between the real
and estimated variables after many iterations; even so, it is mentioned that other techniques may
obtain better results despite their lower or greater complexity.

On the other hand, intelligent techniques have acquired a worldwide reputation as simple
methods to represent and replicate the behavior of a process with a not-so-understood performance.
These techniques have potential to model, precisely, linear and non-linear processes, the latter being
their strongest application. Some studies have used intelligent techniques to analyze photovoltaic
power behavior, e.g., in [11] an artificial neural network (ANN) was used to obtain a model to forecast
the photovoltaic energy; however, solar radiation was the only meteorological variable analyzed.
In [12], different ANN techniques were used to perform a comparative study of systems predicting
photovoltaic thermal energy data; nevertheless, due to solar radiation measurement devices being
expensive and requiring periodic maintenance, some results employed global solar radiation (GSR)
estimations through ANNs. In [13], it was established that a photovoltaic system is affected by
many meteorological conditions; a predictive model was proposed considering outside temperature,
solar radiation and direction and speed of wind. In [14], an ANN-Adaptive Neuro-Fuzzy Inference
System (ANFIS)-based forecast model for predicting the photovoltaic generation and wind energy
generation is presented and considers the susceptibilities to which renewable energies are exposed
due to nature’s vagaries. In [15], it is proved that an adaptive neuro-fuzzy inference system technique
provides a reliable tool to estimate temperature from photovoltaic systems. In [16], the solar still
productivity prediction aims to be improved by using an ANFIS due to its simple maintenance and
ready affordability.

The importance of achieving a satisfactory model design with a minimum error between estimated
and real values is crucial in precision studies or management tasks in which certain differences among
them may result in economic problems or loss of information.

As can be seen, diverse statistical and intelligent methods have been applied to estimate
photovoltaic power generation. However, this topic still is an open field that requires better estimation
methods, in particular, those related to intelligent systems.

Since it is relevant to develop new estimation strategies in photovoltaic systems, the aim of this
work is to compare ANFIS methodology with MLR and GDO as statistical approaches by comparing
electrical power estimation data from photovoltaic systems [10]. It was observed that all three methods
achieve a satisfactory estimation performance, but ANFIS had a better estimation capacity.

2. Methodology

2.1. Statistical Methods

2.1.1. Multiple Linear Regression

To create a statistical representative model of the power generated by solar energy, the concept
of multiple linear regression was applied. The relation that exists among all the input variables and
the output is represented by a “linear regression”. Depending on the number of input variables,
the regression can be simple or multiple [6,17–19]. The purpose of multiple linear regression is to find
an estimation of the real output through an equation involving all the gathered data, as shown in
Equation (1).

y = β0 + β1x1 + β2x2 + ... + βkxk + ε (1)

where y is the estimated output, xk is the kth input variable, βk is the characteristic coefficient of every
variable and ε is the error between the model and the real data.
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To obtain Equation (1), a matrix “X” and a vector “y” are generated. The number of columns for
“X” is k + 1, with the condition that the first column is filled with ones. The dimension of the columns
and the vector “y” depends on the total quantity of data “n”. Consequently, Equation (2) is applied to
find the respective coefficient values.

X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
1 x31 x32 · · · x3k
...

...
...

...
1 xn1 xn2 · · · xnk

 y =


y1

y2
...

yn

 β =
(
X′X

)−1 (X′y) (2)

The data collected from Hermosillo, Sonora (located in the northwest region of Mexico) were
obtained with the support of the University of Sonora (UNISON), while the data from Mexico City
were issued by the Centro de Investigación y de Estudios Avanzados (CINVESTAV) campus Zacatenco.
Solar radiation, outside temperature, wind speed and daylight hour (time) served as the input
meteorological variables, while the electric power was the output for both of the PV systems. Each data
sample was registered every 5 min. According to the above, the matrix “X” and the vector “y” from
Equation (2) are shown in Equation (3).

X =
[

1 Solar Radiation Temperature Wind Speed Time
]

y = [Electric Power]
(3)

2.1.2. Gradient Descent Optimization

The GDO has been used to estimate different behaviors in several studies [20,21]. As seen in [10],
this method seeks the optimum βk coefficients now symbolized by θ. To achieve the minimum possible
error value in Equation (4), the cost function is used.

J [θ] =
1

2m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)2
(4)

where θ = β is as mentioned in Equation (1), x (i) represents the ith row of matrix “X” and y (i) is the
value of the ith row of vector “y”, both described in Equation (2). It is important to notice that, in this
case, the number of columns in matrix “X” is equal to the number of variables involved, omitting the
column full of ones. The gradient descent, denoted by Equation (5), aims to converge to the cost
function minimum by its partial derivative. The quickness of the convergence is given by α.

θk := θk − α
∂

∂θk
J [θ] (5)

Equation (6) represents the substitution of Equation (4) into Equation (5) and it is known as the
gradient descent implementation on linear regression method, which has to be repeated n-times until
the convergence is done.

θk := θk − α
1
m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)
· x(i)k (6)

Once all the coefficients have been computed, they are substituted into Equation (7)

hθ (x) = θ0 + θ1x1 + θ2x2 + ... + θkxk + ε (7)

where hθ (x) is the estimated output, xk is the kth input variable, θk is the characteristic coefficient for
every variable and ε is the error between the model and the real data.
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2.2. Intelligent Technique

An intelligent technique consists of a dynamic learning process in order to generate an output
as close as possible to the required one. Among the best intelligent systems are the artificial neural
network, fuzzy systems and the adaptive neuro-fuzzy inference system [22,23]. For this contribution,
an ANFIS is considered combining the strengths of a neural network and fuzzy systems, obtaining a
better performance.

An artificial neural network (ANN) imitates the processing of a human brain and it has a great
number of processing units (neurons or nodes) working in parallel. These nodes can be circular or
squared in order to represent different adaptive capabilities. A circular node employs fixed operations
that cannot be altered at any time (sum or product of inputs), unlike a squared node, which can be
modified by the user (activation functions).

All the neurons are highly connected among each other through links (synapse) with weights.
The network has a layer for all the inputs, a layer for one or more outputs and one or more hidden
layers between the input and the output.

A neural network requires previous assumptions so it can learn from examples by adjusting the
connection weights. The learning may be supervised if the right output is specified (being the case
for this work) or non-supervised if it has to explore the relations between the patterns and learn to
categorize the inputs [11,24].

A fuzzy system is able to apply conditional sentences as a human brain would. The objective of
every system that uses fuzzy logic is to describe the degrees of the output sentences (given by a series
of rules) according to the input ones. The “if–then” fuzzy rules are sentences with the form “if an event
A happens then an event B will occur”, where both events are known as the labels of fuzzy sets from
their corresponding membership functions (MF). The strength of this system is to be able to capture all
the imprecise modes of the reasoning, for example:

If the pressure is high, then the volume is small

where, analogous to the neural network, each and every variable has a specific type of membership
function according to its behavior, which can be triangular, trapezoidal, gaussian, etc., as well as to its
quantity [25].

Figure 1 shows three trapezoidal membership functions for the variable called “pressure”.
Each of them represents a range of values labeled as low (blue), medium (red) and high (yellow).
This advantage allows to embrace all the possible data and to classify them as necessary.

Figure 1. Example of three trapezoidal membership functions.

ANFIS is the union of both methods mentioned above, the neural network and fuzzy systems,
in which the advantages of both cooperate in order to achieve easier and faster estimations [26].

The ANFIS consists of if–then rules and input–output pairs. Moreover, for the training,
the learning algorithms of neural networks are used. In order to simplify the explanations, a basic
fuzzy inference system consists of two inputs (x and y) and one output (z) [27]. Figure 2 shows that,
if each input consists of three membership functions (represented as squared nodes, because they
can be modified by the user), then the input layer would have six neurons (three for each input) and,
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in turn, the output layer would just have one neuron. As for the hidden layers, the first one of them
will be formed by each of the if–then fuzzy rules mentioned before; by this, an ANFIS is created.

Figure 2. Adaptive Neuro-Fuzzy Inference System (ANFIS) structure with two inputs and three
membership functions for each one.

The variables used to train the ANFIS are radiation, outside temperature, wind speed,
daylight hour and electrical power, as mentioned in Section 2.1.1. Figure 3 presents the MF of
input variables for the intelligent system. The behavior of each variable helps to identify the type of
MF to be declared. Solar radiation, wind speed and daylight hour, due to their rapid change with
respect to time, have 4, 3 and 3 triangular MF, respectively. As for temperature, which presents a slow
variation with time, it has 3 gaussian MF.

Figure 3. Membership functions for ANFIS: (a) Triangular for solar radiation; (b) gaussian for
temperature; (c) triangular for wind speed; (d) triangular for daylight hour.
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According to the above, the structure of the ANFIS is presented in Figure 4. The method applied to
train the ANFIS is called hybrid training. This process consists of two steps; the first one computes the
result of the next linked node according to the nodes behind, i.e., based on Figure 2 each circular node
depends on two rectangular nodes (MF of variables x and y). Once all the nodes have been calculated
and the output is obtained, the second step must identify the error in each node and minimize it during
the training iterations in order to improve the estimation result. The first and second steps are based
on least squares and gradient descent, respectively.

This ANFIS model was applied for both locations by using the MATLAB R© software in order
to prove its effectiveness against the statistical method, regardless of the place where the system
is installed.

Figure 4. ANFIS structure.

3. Results

Seven different cases or sets of data were computed to analyze which estimation technique
executes a better performance for the Hermosillo site (HS) and the Mexico City site (MCS). Every case
was represented by data collected during a whole month; consequently, the first case corresponds to six
months of collected data, while the seventh case stands for the accumulation of all data. According to
Section 2.1.1, the time step of each estimation, regardless of the method, was five minutes. The former
was considered to generate a greater amount of data allowing a better estimation result by the ANFIS.
Figures 5 and 6 present the physical systems for each location, HS and MCS, respectively.

Figure 5. Physical system for the Hermosillo site (HS).
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Figure 6. Physical system for the Mexico City site (MCS).

3.1. Hermosillo Site

Table 1 shows the resulting equations for the monthly and overall electrical power estimation by
MLR and GDO with 1000 repetitions to minimize Equation (4), considering the data gathered from HS
as mentioned in Sections 1 and 2, and by using the MATLAB R© software. Figures 7 and 8 present the
resulting estimation for each method considering a random period to achieve a reliable comparison
and a better appreciation of the behavior (24th November to 24th December). The computational
load for the overall case using MLR and GDO resulted in total durations of approximately 30 s and
10 min, respectively.

Table 1. Monthly and overall Multiple Linear Regression (MLR) and Gradient Descent Optimization
(GDO) equations for HS.

Method Month Equations

Aug y = −2305.4 + 1.4182x1 + 116.4097x2 + 8.686x3 − 2078.9x4
Sep y = −498.9858 + 1.8082x1 + 36.7926x2 + 32.4585x3 − 1042.6x4
Oct y = −190.6163 + 1.6737x1 + 38.1824x2 + 9.8075x3 − 1075.2x4

MLR Nov y = −120.4414 + 2.1624x1 + 13.5544x2 + 18.5136x3 − 379.8749x4
Dec y = 26.2042 + 1.9806x1 + 12.1240x2 + 12.0973x3 − 405.2137x4
Jan y = 142.9390 + 2.1120x1 + 18.8379x2 + 20.2070x3 − 792.1223x4

Total y = 84.9221 + 2.0035x1 + 9.7233x2 + 15.5707x3 − 386.3517x4

Aug y = 0.0067 + 2.2334x1 + 0.2415x2 + 0.0186x3 + 0.0036x4
Sep y = 0.0050 + 2.2366x1 + 0.1711x2 + 0.0182x3 + 0.0025x4
Oct y = 0.0064 + 2.2069x1 + 0.1931x2 + 0.0251x3 + 0.0032x4

GDO Nov y = 0.0029 + 2.2732x1 + 0.0764x2 + 0.0108x3 + 0.0014x4
Dec y = 0.0036 + 2.1411x1 + 0.0814x2 + 0.0114x3 + 0.0018x4
Jan y = 0.0044 + 2.3776x1 + 0.0932x2 + 0.0138x3 + 0.0020x4

Total y = 0.0044 + 2.2387x1 + 0.1156x2 + 0.0154x3 + 0.0022x4

Figure 7. MLR results from HS.
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Figure 8. GDO results from HS.

Table 2 displays the monthly and overall trained parameters applying the ANFIS technique
with the structure specified in Section 2.2 by using the MATLAB R© software, with a hybrid mode
and 1000 iterations. Finally, Figure 9 shows the resulting estimation within the same time range,
i.e., total durations of approximately 30 s and 10 min in MLR and GDO, respectively. The computational
load for the overall case using this method resulted in a total duration training of approximately 1.5 h.

Table 2. Monthly and overall trained membership function (MF) parameters for HS.

Month Trained MF Parameters

Solar Radiation Outside Temperature Wind Speed Daylight Hour

Aug

a b c σ c a b c a b c
−394.1 5.593 405.2 2.463 26.73 −3 0.9994 4.997 0.05206 0.3462 0.5417
5.593 405.2 804.9 2.434 32.47 1.005 4.999 9 0.3214 0.5721 0.7766
405.2 804.9 1205 2.434 38.23 5 9 13 0.5417 0.7538 1.01
804.9 1205 1604

Sep

a b c σ c a b c a b c
−394.2 0.4883 395.2 4.142 22.39 −5.5 0.001136 5.497 0.02085 0.2968 0.5208
0.4883 395.2 789.9 4.138 32.14 −1.51× 10−11 5.501 11 0.2645 0.5625 0.73
395.2 789.9 1185 4.137 41.89 5.5 11 16.5 0.5 0.7479 1.021
789.9 1185 1579

Oct

a b c σ c a b c a b c
−474 0.1488 474.3 4.193 16.56 −7 0.0005153 6.999 0.0396 0.3274 0.5382
0.1489 474.3 948.5 4.184 26.42 0.04423 7.001 14 0.2215 0.5069 0.75
474.3 948.5 1423 4.185 36.28 6.925 14 21 0.5021 0.7389 0.9879
948.5 1423 1897

Nov

a b c σ c a b c a b c
−375.6 0.3992 376.4 4.399 12.4 −6 −0.00118 5.873 0.08051 0.336 0.5347
0.3991 376.4 752.4 4.381 22.72 −0.005881 5.998 12 0.2085 0.5 0.7248
376.4 752.4 1128 4.389 33.05 5.92 12 18 0.5 0.7117 0.9466
752.4 1128 1504

Dec

a b c σ c a b c a b c
−390.7 1.12 393 5.623 5.238 −5.5 0.004238 5.418 0.08844 0.3785 0.5287

1.12 393 784.8 5.599 18.41 −0.0002569 5.502 11 0.2034 0.5139 0.7245
393 784.8 1177 5.606 31.6 5.552 11 16.5 0.5546 0.684 0.943

784.8 1177 1568

Jan

a b c σ c a b c a b c
−408.1 0.9953 410.1 4.522 7.837 −4.5 −0.001668 4.493 0.08968 0.3261 0.5139
0.9953 410.1 819.2 4.513 18.47 0.09047 4.497 9 0.3044 0.5216 0.7491
410.1 819.2 1228 4.512 29.11 4.496 8.999 13.5 0.5417 0.7097 0.9521
819.2 1228 1637

Total

a b c σ c a b c a b c
−474 0.1488 474.3 7.79 5.226 −7 0.001869 6.848 0.01973 0.3254 0.4923
0.1488 474.3 948.5 7.783 23.55 −0.0008495 7.001 14 0.2726 0.5248 0.9075
474.3 948.5 1423 7.781 41.89 6.917 14 21 0.5243 0.6577 0.9961
948.5 1423 1897
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Figure 9. ANFIS results from HS.

Each case analyzed contemplates a different range of time (different month) and its respective
ANFIS gets trained according to the data gathered within that period. Given that meteorological
inputs vary in time, so do the ANFIS coefficients for every case; nevertheless, even if they are changing,
the variation range is not too wide, as can be seen from solar radiation, outside temperature and
daylight hour. As for wind speed, its variation is due to a smaller relationship with the output than
with the other inputs, as well as to the different behaviors in each month.

3.2. Mexico City Site

Analogous to the HS case, the same procedure was applied to the data registered from the Mexico
City site (MCS) mentioned in Sections 1 and 2, achieving approximately the same time duration to
find the beta and theta parameters. For the MLR and GDO methods, Table 3 presents the monthly and
overall estimation equations. Figures 10 and 11 depict the resulting MLR and GDO estimation in the
period 24th November to 24th December (same as HS) for a better appreciation of the convergence of
the method.

Table 3. Monthly and overall MLR and GDO equations for MCS.

Method Month Equations

Jul y = 727.5535 + 52.7725x1 + 8.6209x2 + 28.9473x3 − 947.31789x4
Ago y = 2527.4 + 55.7540x1 − 110.5462x2 + 19.4716x3 + 849.8508x4
Sep y = 1093.9 + 58.4495x1 − 27.2714x2 + 28.7514x3 − 82.2214x4

MLR Oct y = −99.2276 + 57.0806x1 − 20.0065x2 + 52.4617x3 + 1326.5x4
Nov y = −1059.8 + 57.7075x1 − 32.4315x2 + 12.1205x3 + 3016.3x4
Dec y = −1430.5 + 53.7683x1 − 15.8521x2 + 109.1599x3 + 2953.6x4
Total y = 70.2756 + 55.1011x1 + 33.8665x2 + 90.3112x3 − 689.5238x4

Jul y = 0.0927 + 53.4273x1 + 2.2298x2 + 0.1005x3 + 0.0491x4
Ago y = 0.1083 + 56.0178x1 + 2.5973x2 + 0.1441x3 + 0.0580x4
Sep y = 0.1159 + 59.0818x1 + 2.7233x2 + 0.1431x3 + 0.0625x4

GDO Oct y = 0.1035 + 57.3927x1 + 2.2950x2 + 0.1899x3 + 0.0560x4
Nov y = 0.0908 + 57.2318x1 + 1.9788x2 + 0.1036x3 + 0.0463x4
Dec y = 0.0913 + 53.3033x1 + 1.8920x2 + 0.0441x3 + 0.0477x4
Total y = 0.1005 + 55.9815x1 + 2.2910x2 + 0.1290x3 + 0.0533x4
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Figure 10. MLR results from MCS.

Figure 11. GDO results from MCS.

The same ANFIS structure with 1000 epoch hybrid training for the HS case was employed to
obtain the estimation model of the photovoltaic system with the data collected from MCS. Table 4
shows the monthly and overall trained MF parameters. Figure 12 displays the comparison between
the resulting estimation against real data with the same time range as for MLR and GDO. The time
duration to train the neuro-fuzzy system was approximately the same as in the HS case.
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Table 4. Monthly and overall trained MF parameters for MCS.

Month Trained MF Parameters

Solar Radiation Outside Temperature Wind Speed Daylight Hour

Jul

a b c σ c a b c a b c
−356 1 358 4.274 13.02 −8.5 −0.005509 8.509 0.01522 0.3264 0.5521

1 358 715 4.238 23 0.1882 8.494 17 0.2917 0.5493 0.8816
355 712 1070 4.227 33.01 8.492 17 25.5 0.5612 0.7535 1.102
715 1072 1429

Ago

a b c σ c a b c a b c
−371.7 1 373.7 4.481 14.01 −8 −0.002784 7.967 0.02276 0.4896 0.4934

1 373.7 746.3 4.452 24.5 0.1432 7.997 16 0.343 0.5799 0.7157
373.7 746.3 1119 4.45 34.9 7.984 16 24 0.5584 0.8143 1.099
746.3 1119 1492

Sep

a b c σ c a b c a b c
−377.7 1 379.7 5.096 10 −10.5 −0.0001171 10.5 0.04167 0.3015 0.5584

1 379.7 758.3 5.096 22 0.01522 10.5 21 0.2981 0.5556 0.8166
379.7 758.3 1137 5.096 34 10.5 21 31.5 0.566 0.8042 1.069
758.3 1137 1516

Oct

a b c σ c a b c a b c
−353.7 1 355.7 4.463 9.003 −7.5 −0.001309 7.497 0.01042 0.2663 0.4574

1 355.7 710.3 4.453 19.5 0.0376 7.499 15 0.3247 0.4896 0.8325
355.7 710.3 1065 4.455 30 7.504 15 22.5 0.4612 0.7494 1.052
710.3 1065 1420

Nov

a b c σ c a b c a b c
−314.7 1 316.7 5.124 6.014 −6 0.007692 5.994 0.03837 0.3368 0.5183

1 316.7 632.3 5.067 17.99 −0.01071 6.005 12 0.307 0.4896 0.736
316.7 632.3 948 5.065 30.02 5.907 12 18 0.4931 0.6581 0.9685
632.3 948 1264

Dec

a b c σ c a b c a b c
−295.7 1 297.7 5.313 3.003 −5.5 −0.0008596 5.494 0.04514 0.2633 0.5084

1 297.7 594.3 5.31 15.5 −2.43E-10 5.499 11 0.3472 0.4868 0.7411
297.7 594.3 891 5.314 28 5.505 11 16.5 0.4805 0.7325 0.9757
594.3 891 1188

Total

a b c σ c a b c a b c
−377.7 1 379.7 6.813 3.01 −10.5 −0.00304 10.5 −0.008574 0.3395 0.498
0.9999 379.7 758.3 6.791 19 0.04036 10.5 21 0.2713 0.5833 0.8143
379.7 758.3 1137 6.783 35.01 10.5 21 31.5 0.5576 0.8047 1.115
758.3 1137 1516

Figure 12. ANFIS results from MCS.

3.3. Error Analysis

In order to demonstrate the impact of the intelligent technique over statistical approaches, an error
analysis was applied for every result obtained in Sections 3.1 and 3.2 for HS and MCS. Considering [10],
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Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to achieve a
solid comparison between MLR, GDO and ANFIS. MAE is one of the most implemented errors in
estimation studies to measure and analyze precision and is described by Equation (8), and MAPE
computes the percentage error value as in Equation (9).

MAE =

N
∑

s=1
|Pm − Pe|

N
(8)

MAPE(range)%
=

N
∑

s=1

∣∣∣ Pm−Pe
max(Pm)−min(Pm)

∣∣∣
N

· 100 (9)

where “s” is the sample taken into consideration, “N” is the total amount of data samples gathered,
“Pm” is the photovoltaic electrical power real measure and “Pe” is the estimated value.

Table 5 presents the monthly and overall MAE and MAPE for each applied technique in HS.
By the analysis of these results, an improvement of GDO over MLR can be observed by achieving a
lesses error value; nonetheless, the ANFIS overcomes both MLR and GDO, successfully obtaining
lower error values for every time range. By increasing “N” in Equations (8) and (9) from the first to
the last data sample, Figure 13 displays graphically the overall MAE and MAPE behavior of each
implemented technique, showing and proving a clearly better performance by ANFIS against the
statistical methods.

Table 5. Error comparison between MLR, GDO and ANFIS for HS.

MLR GDO ANFIS

Month MAE MAPE MAE MAPE MAE MAPE

(W) (%) (W) (%) (W) (%)

Aug 296.5 11.8 299.8 11.9 23.8 0.9
Sep 222.7 8.3 203.7 7.6 96.3 3.6
Oct 276.9 9.5 268.0 9.2 168.1 5.8
Nov 142.7 5.3 138.2 5.1 96.2 3.6
Dec 190.8 7.5 178.9 7.0 129.4 5.1
Jan 192.0 7.1 184.5 6.8 126.3 4.7

Total 209.3 7.2 200.1 6.9 169.2 5.8

Figure 13. Error behavior comparison between MLR, GDO and ANFIS from HS: (a) MAE behavior;
(b) MAPE behavior.

Table 6 presents the monthly and overall MAE and MAPE for each applied technique in MCS.
As well as for the HS case; an improvement of GDO over MLR can be seen; nonetheless, the ANFIS
overcomes again both MLR and GDO, successfully obtaining lower error values for every time range.
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Analogous to Figure 13, Figure 14 displays graphically the overall MAE and MAPE behavior of each
implemented technique for MCS, proving as well an improved performance by ANFIS compared to
the statistical methods.

Table 6. Error comparison between MLR, GDO and ANFIS for MCS.

MLR GDO ANFIS

Month MAE MAPE MAE MAPE MAE MAPE

(W) (%) (W) (%) (W) (%)

Jul 588.8 1.0 590.6 1.0 334.1 0.6
Aug 1234.4 2.1 1192.9 2.0 732.9 1.3
Sep 727.6 1.3 726.3 1.3 345.8 0.6
Oct 733.6 1.3 741.8 1.3 441.4 0.8
Nov 715.5 1.3 741.4 1.4 477.6 0.9
Dec 794.1 1.7 812.8 1.7 638.3 1.4
Total 1142.2 2.0 1130.4 1.9 924.7 1.6

Figure 14. Error behavior comparison between MLR, GDO and ANFIS from MCS: (a) MAE behavior;
(b) MAPE behavior.

4. Conclusions

An ANFIS was used to estimate the photovoltaic electrical power generated by solar energy
at two different locations, Hermosillo and Mexico City. The intelligent technique demonstrated a
better performance than the MLR and GDO as statistical methods. The reported results for MCS
showed that all three methods achieved a satisfactory estimation performance by their comparison
against real measured values; nonetheless, the ANFIS system clearly displayed an improvement
among the methods employed. For the case of HS, the MAE overall values with respect to GDO
and MLR were 200.1 W and 209.3 W, and the MAPE overall values with respect to GDO and MLR
were 6.9% and 7.2%. For the MCS, the MAE overall values with respect to GDO and MLR were
1130.4 W and 1142.2 W, and the MAPE overall values with respect to GDO and MLR were 1.9% and
2.0%. Consequently, GDO produced better results than MLR overall and in almost every monthly
case; however, ANFIS outperformed both MLR and GDO in every case, achieving overall results with
respect to MAE and MAPE of 169.2 W and 5.8% for HS and 924.7 W and 1.6% for MCS.

As outlined in Section 3, even when the ANFIS computational time is considerably greater than
the one involved in statistical methods, the neuro-fuzzy result displays a better performance. It should
be mentioned that, although the intelligent method took approximately 90 min to be trained, it is quite
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an acceptable amount of time and can even be considered fast in terms of neuro-fuzzy models with
months of data.

During a period of a year, the times of dusk and dawn are modified by minutes, resulting in
different times to end and begin each day; as outlined in Section 3.1, for every transition day, dusk and
dawn times may vary due to external variables, e.g., cloudiness. These issues generate discrepancies
between the estimated and the real data, as seen in the results section, regardless the applied method;
nonetheless, these may be minimized by gathering a greater amount of data to fulfil the range of
changing time values.

The ANFIS proved to have a better performance than the conventional statistical methods,
demonstrating that this kind of intelligent system is a potential tool to be considered for power
estimation in Mexico.

Author Contributions: Research ideas and global design: N.P.-D., J.A.R.-H. and F.A.-V.; analysis of the results:
Y.M., E.F.V.-C. and E.J.H.-L.; revision of the document: H.A., A.G.-J. and J.F.H.-P.; data gathering: R.A.P.-E.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the University of Carmen (UNACAR), University of
Sonora (UNISON), Centro de Investigación y de Estudios Avanzados (CINVESTAV) campus Zacatenco and
Consejo Nacional de Ciencia y Tecnología (CONACYT), with the master scholarship program and the mobility
scholarship 291249.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive Neuto-Fuzzy Inference System
ANN Artificial Neural Network
◦C Celsius degree. It is a temperature scale used by the International Systems of Units
GDO Gradient Descent Optimization
GSR Global Solar Radiation
HS Hermosillo Site
kWh/m2 Quantity of kilowatts during an hour striking a squared meter area
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCS Mexico City Site
MF Membership Function
MLR Multiple Linear Regression
MPH Miles Per Hour
PV Photovoltaic
W Watt. It is a unit of power defined as a derived unit of 1 joule per second (J/s)
W/m2 Quantity of watts striking a squared meter area
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