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Abstract

:

Owing to the late development of offshore wind power in China, operational data and maintenance experience are relatively scarce. Due to the harsh environmental conditions, a reliability analysis based on limited sample fault data has been regarded as an effective way to investigate maintenance optimization for offshore wind farms. The chief aim of the present work is to develop an effective strategy to reduce the maintenance costs of offshore wind turbines in consideration of their accessibility. The three-parameter Weibull distribution method was applied to failure rate estimation based on limited data. Moreover, considering the impacts of weather conditions on the marine maintenance activities, the Markov method and dynamic time window were used to depict the weather conditions. The opportunistic maintenance strategy was introduced to cut down on the maintenance costs through optimization of the preventive maintenance age and opportunistic maintenance age. The simulation analysis we have performed showed that the maintenance costs of the opportunistic maintenance strategy were 10% lower than those of the preventive maintenance strategy, verifying the effectiveness of the proposed maintenance strategy.
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1. Introduction


In recent years, the wind power industry has made rapid progress globally. Due to abundant offshore wind energy resources, the installed capacity and power generation of offshore wind power are growing rapidly [1]. However, considering the large investment and high risk involved in offshore wind power, and the influence of weather conditions, the requirements for offshore wind farms in terms of operation and maintenance vessels, spare-parts management, and other influential factors are more strict. The special operating environment of offshore wind turbines, in which the equipment is affected by natural conditions, such as typhoons, tides, waves, can accelerate the failure of unit components, and the increased failure rate of electrical and mechanical systems finally leads to lower reliability. Thus, the reliability of wind turbines has become an important issue.



The Weibull distribution is an important statistical measure in reliability engineering, known to have good adaptability and availability for various forms of failure rate simulation in relation to mechanical and electrical products. In this paper, the construction of a Weibull equation is pursued. Based on the two-parameter Weibull equation, a location parameter was introduced to create what is known as a three-parameter Weibull equation. Many researchers are interested in three-parameter Weibull equations. In [2], a three-parameter Weibull distribution was used in the asphalt‒concrete fatigue assessment of aging. In [3], optimization of distribution was studied for an inventory system established by Weibull. In [4], a three-parameter Weibull distribution was proposed in a study on the mechanical sector. In [5], the three-parameter Weibull distribution equation was applied to predict wind power density. In [6], a mixed Weibull distribution parameter estimation method was discussed. In [7], the Weibull distribution was studied by using the three best linear unbiased parameter estimation based on previous unbiased estimation and quasi-optimal linearity. This literature review reveals that the three-parameter Weibull equation has been used in many fields, including machinery, architecture, and aerospace; however, so far few applications of the three-parameter Weibull distribution have been used in fault prediction for offshore wind turbines, especially for those with limited fault data.



Moreover, access to offshore wind farms is greatly restricted by wind and wave conditions, which hinders the operation and maintenance of the unit, thus resulting in an increase in outage time, a decrease in the availability of units, and an increase in operation and maintenance costs. It is necessary to consider the impacts of sea weather conditions related to unit operation and maintenance. The impact of weather conditions on wind turbine maintenance strategies has been investigated in previous works. In China, in [8], a wind turbine reliability evaluation method was proposed. Considering the special operating environment of offshore wind turbines, in [9], the impacts of weather, accessibility, and maintenance time on the maintenance strategy of offshore wind turbines were analyzed. In [10], an offshore wind turbine maintenance strategy with minimum cost and maximum reliability was established, considering the influence of wind speed and maintenance waiting time. In [11,12], a normal behavior model was proposed to further investigate wind turbine vibration and fatigue load by using neural networks and a stochastic approach considering the influence of wind speed. In [13], a survey of stochastic models for sea state and different offshore wind farms was made according to the different maintenance schemes of offshore wind turbines, combined with the failure rate and maintenance time for various components of the unit. In [14], a novel method for simulating wind and wave conditions for offshore sites was revealed, and the result indicated that the persistence of weather windows for significant wave height values can be captured by this approach. All these tests show promising results, and the weather model has been deemed accurate enough for simulations of offshore wind parks. Moreover, in [15], a Markov model based on a statistical analysis of wind speed and wave height was established, and finally, the predictions were made for maintenance waiting time. Although there have been some related studies on the effect of weather conditions on offshore wind turbine maintenance strategies, wind speed and wave height have not yet been simultaneously considered to evaluate the accessibility of offshore wind turbine maintenance.



Meanwhile, many researchers have theoretically investigated the opportunistic maintenance strategy from a different perspective. In [16], a two-level maintenance threshold strategy for wind farms was developed, considering opportunistic maintenance and imperfect maintenance based on reliability. In [17], opportunistic condition-based maintenance for systems subjected to degradation and shocks was proposed to determine an optimal maintenance policy for multi-bladed offshore wind turbines. In [18], a new bi-objective opportunistic maintenance optimization model was proposed, and a three-phase discrete event simulation was used to evaluate the performance measures considering the stochastic behavior of wind and limited maintenance capacity. In [19], an opportunistic maintenance approach for wind farms was developed to take advantage of the maintenance opportunities, considering imperfect maintenance actions. In [20], the trade-off between wind farm configuration and the maintenance strategy was investigated by a new bi-objective redundancy and maintenance optimization model.



The primary goal of this research is to carry out studies in an effort to reduce the operating costs of offshore wind turbines. In this paper, the impacts of weather conditions on the maintenance activities are considered, the Markov chain method and dynamic time window are introduced to represent the weather conditions, and a maintenance waiting time is proposed for offshore wind turbines. In addition, the opportunistic maintenance strategy was used to optimize the key components of the maintenance of the offshore wind turbines. Furthermore, the minimum maintenance cost within the maintenance duration was deemed the optimal objective, and the preventive maintenance time and opportunistic maintenance time have been optimized for the main components of wind turbines. In particular, the novelties can be reflected in the following aspects: (1)The three-parameter Weibull method, instead of the two-parameter Weibull method, was applied to the reliability analysis of offshore wind turbines with limited fault data; (2) the Markov chain method was adopted to evaluate the prediction of maintenance waiting time, considering the wind speed and wave height simultaneously; (3) the preventive opportunistic maintenance strategy has proven to be one of the methods available to generate maintenance cost efficiency, instead of the preventive maintenance strategy.



The remainder of this paper is organized as follows. Section 2 introduces the two-parameter Weibull model of onshore wind turbines by the least squares and maximum likelihood methods, and the three-parameter Weibull model of offshore wind turbines by the correlation coefficient, probability-weighted moment, and bilinear regression methods. In Section 3, we describe the construction of a Weibull equation for offshore wind turbines based on scant sample fault data. Section 4 describes the Markov prediction method. In Section 5, we develop an opportunistic maintenance strategy based on accessibility evaluation. Section 6 gives the opportunistic maintenance simulation based on maintenance waiting time. In Section 7, we propose conclusions and recommendations from our study and suggest areas for further research.




2. Reliability Analysis Model for Wind Turbines


For wind turbines, the commonly used reliability analysis model is the Weibull distribution. This distribution is derived from the analysis of material strength by Weibull. It is a very important distribution form in reliability engineering [21]. The probability density function of the Weibull model obtained from the weakest link theory is


f(t)={βα(t−γα)β−1exp[−(t−γα)β](t≥γ)0(t<γ)



(1)




Its distribution function is given by


F(t)={∫0tf(t)dt=1−exp[−(t−γα)β](t≥γ)0(t<γ)



(2)




Its inefficiency function is given by


λ(t)=f(t)1−F(t)



(3)







In Equations (1) and (2), α is the scale parameter, β is the shape parameter, β>0, and γ is the position parameter, γ>0. γ is the threshold value for failure, β is used to describe the dispersion of the measured values, and α is related to the average measured values.



In the failure analysis of the product, β is associated with the failure mechanism of the product, and the different values of β are accompanied by different fault mechanisms. When β<1, the failure-rate function is a decreasing function, showing the life distribution of products under the wear-out failure period. When β=1, the failure-rate function is constant, representing the products in the life distribution of the random failure period. When β>1, the failure-rate function is an increasing function, showing the distribution of products in the period of life [22].



2.1. Weibull Model of Onshore Wind Turbines


For onshore wind turbines, because of their simple operating conditions and abundant operation and fault data, in practical applications, the common assumption is that the device fails at time γ=0, and the corresponding expressions, Equations (1) and (2), respectively, can be simplified as follows:


f(t)=βα(tα)β−1exp[−(tα)β](t≥0),



(4)






F(t)=1−exp[−(tα)β](t≥0).



(5)







At present, the two-parameter Weibull analysis method is roughly divided into several categories, i.e., least-squares estimation, median rank regression, maximum-likelihood estimation, and method of moments. For engineering purposes, maximum likelihood is usually considered first due to its high accuracy, as compared to method of moment, which tends to be adopted only if the maximum likelihood function will be difficult to construct. In this paper, we used maximum likelihood rather than method of moment.



Practically, median-rank regression can perform well in the case of extreme values occurring when the number of failures is small. Generally, based on the least squares method, the mean variable will be replaced by the median-rank variable so as to alleviate the estimated deviation caused by the extreme value. In this study, the maintenance optimization was based on a small sample, and the extreme value was carved out; therefore, the least squares method, rather than median-rank regression, was pursued, as follows.



2.1.1. Least-Squares Estimation


By the principle of extremum, the equation can be defined as follows:


{∂F∂a=−2∑i=0nxi(yi−axi−b)=0∂F∂b=−2∑i=0n(yi−axi−b)=0



(6)







The solution equation is shown as follows:


{a=n∑i=0nxiyi−∑i=0nxi∑i=0nyin∑i=0nxi2−(∑i=0nxi)2b=1n∑i=1nyi−an∑i=1nxi



(7)







The two-logarithm transformation of Equation (5) is


ln(ln(11−F(t)))=βln(t)−βln(α)



(8)







Comparison with the one-element linear-regression equation gives:


{x=ln(t)y=ln(ln(11−F(t)))a=βb=−βln(α)



(9)







Parameters α and β can be obtained from Equation (7).




2.1.2. Maximum-Likelihood Estimation


Maximum-likelihood estimation is an effective method of parameter estimation. It has strong applicability, especially in the case of incomplete life. The basic idea is to select the undetermined parameters first so that the probability of samples appearing in the field of observation is greatest; then the sample value is taken as the unknown parameter’s point estimated value [23].



The likelihood function is


L(t1,t2,…,tn,α,β)=∏i=1nβα(tiα)β−1exp[−(tiα)β]



(10)







For the convenience of calculation, the logarithm of Equation (10) is taken as a natural logarithm:


{lnL(t1,t2,…,tn,α,β)=n(lnβ−lnα)+(β−1)∑i=1nln(tiα)−∑i=1n(tiα)β∂lnL∂α=∂lnL∂β=0



(11)







Then, the likelihood equation is given by


{βα∑i=1n(tiα)β−nβα=0nβ+∑i=1nln(tiα)−∑i=1nln(tiα)βln(tiα)=0.



(12)







Solving the equation gives the parameters α and β.





2.2. Weibull Model of Offshore Wind Turbines


The three-parameter Weibull distribution is used in the life tests of materials with a low stress level, which have better characteristics of curve fitting as compared to the two-parameter Weibull distribution. In the Weibull distribution function, the positional parameter is the threshold value for the failure time of targeted devices and is used to estimate the earliest failure time. Changes in positional parameters will affect the curve displacement of the probability density curve. Generally, when the unit operation time exceeds the positional parameter, the unit starts to fail.



In contrast with onshore wind farms, the conditions of operation and maintenance of offshore wind farms are extremely complicated due to tidewater, typhoons, and corrosion, which result in an increasing probability of the unit components’ failure as well as increased maintenance costs. In addition, due to the particularity of the environment, when a unit failure occurs at an offshore wind farm, maintenance personnel may not be able to reach the site for several months due to harsh weather conditions, which results in difficulty in obtaining component failure data and failure models. Therefore, it is crucial to carry out reliability prediction as soon as possible.



As part of our research, we performed a comparative analysis of the two-parameter Weibull distribution and the three-parameter Weibull distribution. The Weibull three-parameter equation prevails in short-term failure prediction and can be used effectively before t = γ. With regard to short-term failure rate prediction, an abrupt and abnormal rise in the failure rate has taken place under the two-parameter Weibull distribution. On the contrary, the failure rate curve under the three-parameter Weibull distribution displays a rational and smooth rising trend.



However, three parameters exist at the same time, so estimating the parameters of the three-parameter Weibull distribution is difficult. The least-squares method and the maximum-likelihood method are no longer applicable to the three-parameter Weibull distribution. MATLAB is a mathematics software produced by MathWorks. It is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numerical calculation, mainly including MATLAB and Simulink. The paper applied MATLAB software for data calculation and simulation.



2.2.1. Correlation Coefficient Method


The two-logarithm transformations of Equation (2) are obtained by


ln(ln(11−F(t)))=βln(t−γ)−βln(α).



(13)







Equation (13) is changed into


{a=βb=−βln(α)X=ln(t−γ)Y=βln(t−γ)−βln(α)=aX+b



(14)







The relationship between X and Y is a linear relationship, as shown in Equation (14). Equation (14) shows that when the estimate of γ is correct, a linear relationship exists between X and Y, i.e., the correlation coefficient between X and Y is a maximum. The correlation coefficient r between X and Y is obtained by


r=Cov(X,Y)Var[X]Var[Y]



(15)







According to the flowchart shown in Figure 1, column vectors containing (k − 1), correlation coefficients are obtained. The step size p can be adjusted according to the actual situation and is selected as 0.01 in the paper. The correlation coefficient r initially increases and then decreases. The position of the corresponding maximum correlation coefficient is found as N, and the optimal estimation value of the position parameter is recorded as


{ti=ti−(N2−N)p/2γ^=(N2−N)p/2



(16)







After obtaining the estimated value of the position parameter, we can obtain the estimated value of the parameters by least-squares or maximum-likelihood estimation.




2.2.2. Probability-Weighted Moment Method


For small samples, probability-weighted moments are unbiased and have small errors; this is suitable for the reliability assessment of offshore wind turbines with a small amount of sample data. Therefore, the probability-weighted moments of the sample are used to estimate the distribution parameters, and the accuracy is high.



The inverse probability distribution function for the random variables X of the Weibull three-parameter distribution, which is shown in Equation (17), is obtained using Equations (1) and (2).


x=γ+α[−ln(1−F)]1/β



(17)







From this equation, the following can be obtained:


M1,0,k=γ1+k+αΓ(1+1/β)(1+k)(1+1/β)



(18)







Let M1,0,k=M(k); then


{M(0)=γ+αΓ(1+1/β)M(1)=γ2+αΓ(1+1/β)2(1+1/β)M(3)=γ4+αΓ(1+1/β)4(1+1/β)



(19)







The equation is solved, and the estimated values of parameters α, β, γ can be acquired.


{α^=M(0)−γΓ{ln[(M(0)−2M(1))(M(1)−2M(3))]/ln(2)}β^=ln(2)ln[(M(0)−2M(1))(2M(1)−4M(3))]γ^=4[M(3)M(0)−M(1)2](4M(3)+M(0)−4M(1))



(20)








2.2.3. Bilinear Regression Method


Least-squares estimation is a linear-regression analysis method for a linear equation. It can only be used to solve two-parameter estimation problems. For the estimation of three parameters, two linear equations must be combined.



Let α=t01/β; then, Equation (2) can be transformed as follows:


ln(ln(11−F(t)))=βln(t−γ)−ln(t0)



(21)






(ln(11−F(t)))1/β=tα−γα



(22)







Equations (21) and (22) are linearly independent; they are linear equations that can be expressed as yk=akxk+bk, k=1,2 and xi,yi can be depicted, respectively, as


{y1=ln(ln(11−F(t)))a1=βx1=ln(t−γ)b1=−ln(t0)y2=(ln(11−F(t)))1/βa2=1αx2=tb2=−γα



(23)







According to the least-squares method, Equations (21) and (22) can be substituted into Equation (7) separately, and the combination can be obtained:


{γ=t¯−[t2¯−(t¯)2](ln(11−F(t)))1/β¯t(ln(11−F(t)))1/β¯−t¯⋅(ln(11−F(t)))1/β¯α=[exp(β⋅ln(t−γ)¯−ln(ln(11−F(t)))¯)]1/ββ=ln(t−γ)⋅ln(ln(11−F(t)))¯(ln(t−γ))2¯−(ln(t−γ)¯)2−ln(t−γ)¯⋅ln(ln(11−F(t)))¯(ln(t−γ))2¯−(ln(t−γ)¯)2



(24)







As long as the accuracy is given, the values of β and γ can be estimated iteratively, and Equation (24) is substituted to obtain the estimated value of α.






3. Analysis of Results


3.1. Verification of Reliability Analysis Method for Wind Turbines


Taking the failure shutdown data of a 3 MW wind turbine at an offshore wind farm in Jiangsu province in China as an example, the method of parameter estimation is verified in this work. The wind farm has 19 wind turbine units installed, each operating at 3 MW, and first operated in June 2017. Typical fault data were collected from the Supervisory Control and Data Acquisition system (SCADA) and selected from July 2017 to July 2018, as shown in Table 1.



The method of Weibull parameter estimation proposed in this paper is used to estimate the parameters and failure-rate function of the fault data, as shown in Table 2. The failure-rate curves of two- and three-parameter Weibull distribution are shown in Figure 2.



According to the failure-rate function estimates given in Table 2, the reliability of the wind turbine is predicted from the last fault time, as shown in Table 3.



Comparative analyses are given as follows:




	1)

	
As shown in Table 2, for the two-parameter Weibull distribution, the least-squares, and maximum-likelihood methods are suitable to obtain similar results. For the three-parameter Weibull distribution, the correlation coefficient method, bilinear regression method, and probability-weighted moment method produce similar results.




	2)

	
As shown in Figure 2, given the two-parameter Weibull failure-rate curve from the beginning (t = 0), and the three-parameter Weibull distribution of the failure-rate curve from the beginning (t = γ), the Weibull three-parameter equation prevails for short-term failure prediction of key defects occurring in newly operated wind turbines and can be used to effectively avoid the impact of short-term reliability prediction of atypical failure data before t = γ.










3.2. Simulation Analysis of Maintenance Costs of Wind Turbines


As shown in Figure 3, according to the wind turbine preventive maintenance strategy, the maintenance cost of component i is


Ci(Tp(i))=CicFi(Tp(i))+Cip[1−Fi(Tp(i))]+CN∫0Tp(i)tf(t)dt+Tp(i)∫Tp(i)∞f(t)dt.



(25)







In this equation, Cic is the failure maintenance cost of component i; Cip is the preventive maintenance cost of component i; Tp(i) is the preventive maintenance service life of component i; CN is the fixed maintenance cost; Ci(Tp(i)) is the expected cost rate of long-term operation of component i (Chinese ¥/day).



The key components of the wind turbine are subject to Weibull distribution; the distribution parameters are shown in Table 4. The maintenance costs are shown in Table 5.



Using the two- and three-parameter Weibull reliability analysis methods, the maintenance costs are seen to vary over time, as illustrated in Figure 4, Figure 5 and Figure 6.



Using the two- and three-parameter Weibull reliability analysis methods, the optimal preventive maintenance time and maintenance cost of key components of the wind turbine can be determined; these are shown in Table 6.



It can be seen from Table 6 that the maintenance cost of the unit can be reduced by 8% using the reliability analysis method of the three-parameter Weibull model.





4. Markov Prediction Method


This method uses a mathematical model to analyze the evolution of objects [24]. In the Markov process, the time series is regarded as a stochastic process. By studying the initial probability of different states of things and the state transition matrix, the state change trend is determined, and the future state of things can be predicted. This method has been widely used in communications, biology, the social sciences, and other fields [25].



4.1. Markov Theory


4.1.1. Markov Process


If the random process {X(t),t∈T} satisfies the following condition [26]:




	(1)

	
If the state of the stochastic process {X(t),t∈T} at time t is known, and the state at time t + 1 is only related to the state at time t and independent of the state before time t, then it is considered that the stochastic process {X(t),t∈T} has Markov property.




	(2)

	
When the state space of the stochastic process {X(t),t∈T} is S, if for any n ≥ 2, and any t1<t2<…<tn∈T in the condition X(ti)=xi,xi∈S,i=1,2,…,n−1, the conditional probability distribution function of X(tn) is equal to its probability distribution function under the condition X(tn−1)=xn−1, which is


P(X(tn)≤xn|X(t1)=x1,X(t2)=x2,⋯,X(tn−1)=xn−1)=P(X(tn)≤xn|X(tn−1)=xn−1)



(26)














4.1.2. Markov Chain


The Markov chain is a discrete-time stochastic process with Markov property, and the model is usually expressed as λ=(S,P,Q), where the meaning of each element is as follows [27]:




	1)

	
S represents a non-empty set of all possible states in a random process. State is the result of a random process occurring at a certain moment. P is a one-step state transition probability matrix. Conditional probability can be expressed as follows:


P{X(t+1)=j|X(t)=i}=Pij



(27)








	2)

	
Q is the initial state probability distribution vector, Let Q=[q1,q2,…,qn] denote the probability that the stochastic process is in state xi at time t = 0 is qi, then


∑i=1nqi=1



(28)















4.2. Data Processing Based on Markov Method


When using the Markov chain model for predictive analysis, the random variables need to be processed as follows:




	(1)

	
State division of random variables;




	(2)

	
Calculation of state transition probability;




	(3)

	
Test of “Markov property”.









4.2.1. State Division of Random Variables


For the state division of random variables, the following methods are possibilities [28]:




	(1)

	
Sample mean value-mean variance partition method;




	(2)

	
Ordered clustering method;




	(3)

	
Fuzzy clustering method.









In this paper, only the first method is used and will be briefly described below.



Suppose a random observation set of random variable X is x1,x2,…,xn, the sample mean is x¯, and the sample mean variance is s. If the absolute value |r| of the auto-correlation coefficients of this set is ≤0.30, it can be approximated as an independent and identically distributed sequence. According to the central limit theorem:


{P{x¯−s≤x¯≤x¯+s}=2Φ(1.0)−1≈0.68P{x¯−1.5s≤x¯≤x¯+1.5s}=2Φ(1.5)−1≈0.87



(29)








4.2.2. Calculation of State Transition Probability


Before using the Markov chain for prediction, it is necessary to estimate the transition probability of the Markov chain from the historical observation sequence.



Suppose a set of observation sequences in a random variable X is x1,x2,…,xm, which contains n states, namely the state space S={1,2,…,n}. Use fij to indicate the frequency of the observation sequence from state i to state j through one step, i,j∈S. A matrix (fij)i,j∈S composed of fij(i,j∈S) is called a transfer frequency matrix. The value obtained by dividing the element of the i-th row and the j-th column in the transfer frequency matrix by the sum of the elements of the i-th row is called the maximum likelihood estimation of the transition probability, P^ij,i,j∈S, as follows:


P^ij=fij∑j=1nfij



(30)








4.2.3. Test of “Markov Property”


It is necessary to test whether the random variable sequence has “Markov property” before applying the Markov chain model to solve practical problems. Usually, a discrete sequence of the Markov chain can be tested using the χ2 statistic.



The marginal probability is denoted as P·j, as follows:


P·j=∑i=1nfij∑i=1n∑j=1nfij



(31)







Then, when n is sufficiently large, the statistics obeys the χ2 distribution with a degree of freedom of (n−1)2, where Pij is the transition probability.


χ2=2∑i=1n∑j=1nfij|logPijP·j|



(32)







Given the significance level α, we can get the value of χα2(n−1)2 from the lookup table, and finally calculate the value of the available statistic χα2. If χα2>χα2(n−1)2, it can be considered that the random sequences x1,x2,…,xm have “Markov property” [29].





4.3. Markov Prediction Model


The operation and maintenance of offshore wind turbines are affected by weather conditions, such as sea wind speed and wind direction, and sea conditions, such as wave height and cycle. Among them, wind speed and wave height are the two most important factors affecting the accessibility of wind turbines [30]. As a consequence, in this paper, the accessibility of offshore wind turbines is studied mainly by considering the wind speed and wave height.



Offshore wind speed and wave height are characterized by time variation and randomness. Commonly used research methods include Gaussian statistics, the Markov method, and the auto-regressive moving average method. The Markov method was used to build the model since the method can accurately describe the long-term and seasonal wind speed and wave height distribution [31].



There are three main methods for Markov chain prediction [32]:




	(1)

	
Markov chain prediction based on absolute distribution;




	(2)

	
Superimposed Markov chain prediction;




	(3)

	
Weighted Markov chain prediction.









In the case of unrestricted visual conditions, the operation and maintenance of offshore wind farms only need to consider the effects of wind speed and wave height. On the other hand, according to the monitoring of coastal sea conditions by the National Ocean Forecasting Station, the relationship between the average wind speed at sea and the effective wave height can be expressed as in Equation (33) [33]:


Hs=0.038V2.0+0.1950



(33)




where Hs is the effective wave height, and V represents the wind speed. Based on this, the paper simplifies the weather conditions at sea, and the wind speed prediction value can be obtained according to Equation (33).



Due to the fact that the wind speed and wave height at sea have obvious periodicity and seasonality and the state transition probability satisfies the “time homogeneity” characteristic, this paper uses the Markov chain prediction method based on absolute distribution to model the weather of offshore wind farms. The detailed method and steps for modeling are as follows:




	(1)

	
State division of historical observation data of wind speed and wave height. In this paper, ∆Hs = 0.1 m, ∆V = 1 m/s or ∆Hs = 0.4 m, ∆V = 1 m/s were used as the standard interval grouping method to classify the state of the sea wind and waves.




	(2)

	
According to the state group established by step (1), a frequency transfer matrix (fij)i,j∈S and a Markov chain state transition probability matrix (P^ij)i,j∈S having a step size of one can be obtained.




	(3)

	
Test of “Markov property”.




	(4)

	
If the state at time t is known at which the wind speed and the wave height is i, the initial distribution can be considered to be as follows:


P(0)=(0,⋯,0,1,0,⋯,0)



(34)







The absolute distribution of wind speed and wave height at t + 1 is


P(1)=P(0)P=(pi1,pi2,⋯,pin)



(35)







The predicted state j at time t + 1 satisfies Equation (36):


pij=max{pij,j∈S}S={1,2,⋯,n}



(36)







Then, the wind speed and wave height at time t + k can be obtained.




	(5)

	
Duration prediction of accessibility and inaccessible state. According to the current ship performance and sea level in China, referring to the domestic and foreign related literature [34], and combined with the weather and ocean conditions in the sea area where the offshore wind farm is located, the operation and maintenance of offshore wind farms are generally operated at wind speed V ≤ 10 m/s and wave height Hs ≤ 2 m. According to Equation (32), when the wave height is less than 2 m, the wind speed can meet the ship’s sea conditions. Therefore, the paper only needs to consider the wave height.



Suppose H is a set of accessibility states that contains multiple wind speeds and wave height states; according to Equation (36), the one-step state transition probability matrix P˜ for H and its complement S−H (denoted as H˜) can be obtained. The steady-state distribution vector is π˜={π˜H,π˜H˜}, where π˜H,π˜H˜ represent the probability of state set H and H˜, respectively.


P˜=[p˜HHp˜HH˜p˜H˜Hp˜H˜H˜]



(37)







Assuming that τ(τ=1,2,…,l) is the duration of the state set H, the probability that the state set H lasts for l durations is


p{τ=l}=p{X1∈H,X2∈H,⋯,Xl∈H|X0∈H˜,Xl+1∈H˜}=π˜2p˜21(p˜11)l−1p˜12



(38)




where X1,X2,Xs,Xl represent the states of the first, second, s-th, and l-th periods, respectively. Then, the average duration E(τ) can be obtained according to Equation (39):


E(τ)=∑i=1∞p{τ=i}i



(39)







Similarly, the probability p˜{τ=l} of the state H˜ lasting for l periods of time and the average duration E˜(τ) are


p˜{τ=l}=π˜1p˜12(p˜22)l−1p˜21



(40)






E˜(τ)=∑i=1∞p˜{τ=i}i



(41)








	(6)

	
Maintenance waiting time prediction analysis. The operation and maintenance of offshore wind turbines are affected by climate and tides, resulting in increased waiting time for maintenance and limited actual maintenance time. Assuming that personnel, vessels, spare parts, etc., are adequately prepared, the waiting time for maintenance depends only on the weather conditions.









Assuming that the unit components fail at time t and the total time required for failure repair and transportation is tn, the maintenance waiting time can be estimated using the dynamic time window. The specific steps are as follows:




	1)

	
Determine the season w at time t, and then calculate the cumulative probability distribution based on the probability (πw) of each state in the season. A random number between (0, 1) is generated, and the cumulative probability distribution interval in which the random number is located is determined; thereby, a state Xt,w of the wind speed and the wave height at the same moment can be obtained.




	2)

	
If Xt,w∈H, then initialize the duration tlo=Δt of the reachable state and the maintenance waiting time twa=0; if not, let tlo=0, twa=Δt, where ∆t is the Markov model step size.




	3)

	
According to the one-step state transition matrix Pw, the probability vector of the state Xt,w converted to the next moment state is PX,w, and Xt,w=PX,w. The next time state Xt+1,w is obtained according to the method in step (1).




	4)

	
If Xt+1,w∈H, update the reachable state duration tlo=tlo+Δt, t=t+1; otherwise, tlo=0, twa=tlo+Δt, t=t+1.




	5)

	
Repeat steps (3) and (4) until tlo≥tn, where twa is the waiting time for this maintenance activity.











5. An Opportunistic Maintenance Strategy Based on Accessibility Evaluation


A wind turbine is a complex multi-component system. Once a component fails, the functions of other components will also be affected, resulting in overall shutdown and the need for maintenance of the unit. The paper intends to study a maintenance strategy for offshore wind turbines in combination with equipment fault repair and preventive maintenance.



5.1. Opportunistic Maintenance Strategy


The opportunistic maintenance strategy refers to the fact that, when a component in the system is repaired or replaced due to a malfunction or other reason, it also provides an opportunity for preventive maintenance or replacement of other components, considering the fact that the maintenance of multiple parts at the same time can effectively save fixed maintenance costs and increase availability.



The principle of the opportunistic maintenance strategy for failure repair combined with preventive maintenance of components is shown in Figure 7.




5.2. Opportunistic Maintenance Model


5.2.1. Opportunistic Maintenance Probability Density Function


According to the opportunistic maintenance strategy in Figure 7, the expected replacement rate of the component consists of three parts, complete replacement, incomplete repair, and minimum maintenance. This paper only considers the opportunistic maintenance strategy for a complete replacement. According to the update process theory, when the component is repaired for a period of time, the maintenance rate is close to constant, which is the reciprocal of the expected replacement cycle of the component. According to the opportunistic maintenance strategy shown in Figure 7, the replacement rate λi of one component consists of three parts, as shown in Equation (42):


λi=1/Ei(T)=λci+λoi+λpi



(42)




where λi=Pi(f)×λi; λoi=Pi(o)×λi; λpi=Pi(p)×λi are the failure replacement rate, opportunistic replacement rate, and preventive replacement rate of one component, respectively. Pi is the replacement probability and Ei(T) is the expected life of the component.



Since the opportunistic replacement of component i is caused by the failure replacement or preventive replacement of other components, the opportunistic replacement probability density function of the component i can be approximated as an exponential distribution function, as follows:


gi(t,To(i))=δiexp[−δi(t−To(i))]



(43)






δi=∑j≠iN(λci+λpi)



(44)




where gi(t,To(i)) represents the opportunistic replacement probability density function of the component i, δi is the exponential distribution function, and N is the number of key components of the unit.




5.2.2. Key Component Replacement Probability of the Wind Turbine


According to the opportunistic maintenance strategy shown in Figure 7, the probability of each replacement is as follows:


Pi(c)=∫0To(i)fi(t)dt+∫To(i)Tp(i)fi(t)×G¯i(t,To(i))dt,



(45)






Pi(o)=∫To(i)Tp(i)F¯i(t)×g¯i(t,To(i))dt,



(46)






Pi(p)=F¯i(Tp(i))×G¯i(Tp(i),To(i)),



(47)






F¯i(t)=1−∫0tfi(u)du,



(48)






G¯i(t,To(i))=1−∫Toitgi(u,To(i))du,



(49)




where fi(t) is the failure probability density function of component i, which obeys the Weibull distribution.




5.2.3. Opportunistic Maintenance Optimization Model


During one replacement cycle of a wind turbine component, the maintenance cost of component i consists of replacement costs, downtime losses, and rental vessel costs. The expected repair cost of component i during a replacement cycle can be expressed as follows:


Ei(C)=[Cci+(twa+tn)Ce]Pi(c)+CoiPi(o)+[Cpi+(twa+tn)Ce]Pi(p)+CN



(50)




where Cci, Cpi, Coi represent the costs of failure maintenance, preventive maintenance, and opportunistic maintenance, respectively, of component i; Ce is the loss per unit downtime, and CN is the rental vessel cost.



During one replacement cycle of a wind turbine component, the expected life of component i can be expressed as follows:


Ei(T)=∫0To(i)t×fi(t)dt+Tp(i)×Fi¯(Tp(i))×Gi¯(Tp(i),To(i))+∫To(i)Tp(i)t[fi(t)×Gi¯(t,To(i))+Fi¯(t)×gt(t,To(i))]dt



(51)







According to the above analysis, by optimizing the opportunistic maintenance age and preventive maintenance service age of each key component of the unit to minimize the average cost rate, the following optimization model is established:


minZ(To,Tp)=∑i=1NEi(C)Ei(T)s.t.  0<To<Tptlo≥tn



(52)




where Z(To,Tp) is the average cost rate of the unit.






6. Simulation Analysis


6.1. Accessibility Evaluation Simulation Analysis


Due to a lack of weather and ocean data for offshore wind farms, this paper takes the historical observation data from an observation station in the Yangtze River estuary (30° N, 128° E) in the East China Sea as an example to model the sea weather.



The data on wind speed and wave height in the article were recorded every half hour from 0:00 on 1 January 2014. The 17,306 data points recorded in 2014 were used to make a forecast analysis of wind speed and wave height in 2015.



6.1.1. Wind Speed and Wave Height State Prediction


Using the Markov method, the wind speed and wave height can be divided into n states, and the state set is S = {1,2,⋯,n}. In this paper, Hs = 0.1 m, 0.2 m, 0.3 m, 0.4 m are used as grouping criteria to predict the 100 data points of wind speed and wave height in January 2015. The results are shown in Figure 8, Figure 9, Figure 10 and Figure 11.



The difference between the predicted data and the observed data and the correlation coefficient are used as criteria of the quality of the predicted data. The correlation coefficients of the observed and predicted data of average wind speed and average wave height are calculated separately, as shown in Table 7.



In Table 7, the data of the wind speed and wave height when ΔHs=0 are observed data; r is the correlation coefficients of the observed and predicted data; d is the absolute error of prediction data and observation data of the wave height, expressed as in Equation (52):


d=∑i=1100|(Hs)predictive value−(Hs)observed value|



(53)







Taking the average error of the wave height prediction data as a standard to measure the advantages and disadvantages of different state grouping methods, the average error, corresponding to Hs = 0.1 m, 0.2 m, 0.3 m, 0.4 m, is shown in Figure 12.



From Figure 12, when ΔHs=0.1 m, the average error of wave height prediction data and observation data reached the minimum, which means the state grouping method of ΔHs=0.1 m is superior to the other three groups. As a consequence, this state grouping method is used as a grouping criterion for the state in the following.




6.1.2. Duration Prediction of Wind Speed and Wave Height


Markov models are established for each of the four seasons. The occurrence probability of the accessible state H and the inaccessible state H˜ in different seasons is shown in Figure 13.



The duration of each state under different seasons is shown in Table 8. One duration is the step size of the Markov model, which is 0.5 h.



Take the inaccessible state H˜ in January 2015 as an example, the observed and predicted values of the probability distribution and the cumulative distribution of the state duration are presented in Figure 14, which shows the accuracy of the Markov chain model.



According to Figure 13 and Table 8, the occurrence probability of accessibility in summer is larger than in any other seasons, and the average duration is the longest, indicating that the wind speed and wave height in summer are more suitable for sea. On the contrary, the occurrence probability of the inaccessible state in winter is the largest, indicating that the wind speed and wave height are not suitable, and the bad weather will last for a long time.




6.1.3. Maintenance Waiting Time Estimate


Taking the maintenance waiting time in January 2015 as an example, the relationship between the maintenance waiting time and the state of the reachable state is shown in Figure 13. One duration is set to be 0.5 h. It can be seen that the waiting time for maintenance increases with the duration of the accessible state.



As seen in Figure 15, at the initial moment, there is a large difference between the predicted value and the observed value when ΔHs=0.1 m. As the duration increases, the observations gradually approach the predicted value, and finally, only a small gap is observed. When ΔHs=0.4 m, the predicted value is far from the observed value at the initial moment; as the duration increases, the gap decreases, but in the end, it still maintains a large gap.





6.2. Simulation Analysis of the Opportunistic Maintenance Strategy


In this paper, a 3 MW wind turbine in an offshore wind farm in China is used as an example to optimize the opportunistic maintenance strategy for the critical components of the unit, including the gearbox, the main bearing, and the generator. According to the analysis of the statistical data of failure record of the unit, the failure time of the component follows the Weibull distribution, and the specific parameters are shown in Table 9 below, where 1, 2, 3, and 4 represent the blade, gearbox, main bearing, and generator, respectively; α and β are the shape parameters and scale parameters of the components, respectively; unit downtime loss Ce = 720 yuan/h; and the ship chartering fee CN = 150,000 yuan/day.



When the traditional age-preventive maintenance strategy is adopted, the preventive maintenance age of the critical components of the unit is optimized to minimize the average cost rate. The results after optimization are shown in Table 10.



When using a multi-component opportunistic maintenance strategy, the opportunistic maintenance age, and preventive maintenance age of the components are optimized to minimize the average cost rate. The results are shown in Table 11.



From the comparison of the results in Table 10 and Table 11, it can be seen that the maintenance cost of the wind turbine using the opportunistic maintenance strategy is 10% lower than that of the preventive maintenance strategy.



Although the proposed model gains competitiveness in terms of the unit maintenance cost, its limitations are as follows:




	(1)

	
The research on the maintenance cost was aimed at the key components of a single wind turbine rather than multiple wind turbines.




	(2)

	
Influential factors, such as the availability of vessels, the adequacy of the spare parts, and the meteorological conditions, were linked to maintenance waiting time. In this paper, wind speed and wave height were considered in the determination of maintenance waiting time, assuming vessels and spare parts were available.











7. Conclusions


Before concluding, one additional point needs to be discussed. Because the operating environment of offshore wind turbines is complex, wind is a crucial factor that should be considered in optimal maintenance decisions. Moreover, the randomness of wind impacts on the power generated by wind turbines, which contributes to unsatisfactory energy costs. In this paper, the influence that fluctuations in wind speed had on the costs of offshore wind farming was considered in the determination of maintenance waiting time. From the perspective of reducing the entire-life costs of an offshore wind farm, we paid attention to how much maintenance costs will be reduced with the introduction of the opportunistic maintenance strategy. Actually, in this sense, how the wind fluctuation will act on the unit cost is not the research priority in this study. Indeed, the influence of wind fluctuation and grid impact on the unit is worth intensively study in further research.



In this paper, we attempted to analyze the characteristics of operation data of offshore wind turbines and investigated reliability analysis methods for offshore wind turbines based on limited fault data. Considering the influence of weather factors, such as wind speed and wave height, we studied maintenance waiting time prediction methods for offshore wind turbines. Combining failure maintenance and preventive maintenance, we proposed an opportunity-based offshore wind turbine maintenance strategy. The main study results are as follows:




	(1)

	
The construction of a Weibull equation for offshore wind turbines was based on a small amount of sample fault data. Different to [8], based on the construction of a two-parameter Weibull equation, a three-parameter Weibull equation was proposed. The results show that the maintenance costs can be reduced by 8% with the adoption of a three-parameter Weibull model, and the fitting curve and failure rate short-term prediction of the three-parameter Weibull distribution is superior to the two-parameter Weibull distribution where there are limited fault data;




	(2)

	
A maintenance waiting time prediction method was introduced for offshore wind turbines. The Markov chain method and dynamic time window were used to describe wind speed and wave height, and a maintenance waiting time prediction model was established. Different to [9], the impacts on maintenance waiting time arising from wind speed and wave height were considered in this paper. The results show that the deviation of the predicted value of the wave height obtained by grouping interval with ∆Hs = 0.1 m was the smallest, which was close to the true value;




	(3)

	
Combining failure maintenance and preventive maintenance, an opportunistic maintenance strategy was presented for offshore wind turbines. The minimum expected maintenance cost was regarded as an objective function to optimize the opportunistic maintenance time and preventive maintenance time. Compared with [10], the opportunistic maintenance strategy reduces maintenance duration and decreases the maintenance waiting time and downtime, thereby reducing maintenance costs. The results show that the maintenance cost was reduced by 10% under the opportunistic maintenance strategy for offshore wind turbine maintenance, which verified the effectiveness and superiority of the opportunistic maintenance strategy for offshore wind turbine maintenance.
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Figure 1. Correlation coefficient method. 






Figure 1. Correlation coefficient method.
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Figure 2. Failure-rate curves of Weibull distributions. (a) Comparison of failure rate for three- and two-parameter Weibull distributions. (b) Partial enlarged drawing of maximum likelihood estimation and least-squares estimation. 
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Figure 3. Preventive maintenance strategy based on age. 
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Figure 4. The cost rate of blade maintenance based on two- and three-parameter Weibull: the left-hand side (a) shows the blade maintenance cost rate of the two-parameter Weibull, and the right-hand side (b) shows the three-parameter Weibull. 
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Figure 5. The cost rate of gearbox maintenance based on two- and three-parameter Weibull: the left-hand side (a) shows the gearbox maintenance cost rate of the two-parameter Weibull, and the right-hand side (b) shows the three-parameter Weibull. 
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Figure 6. The cost rate of generator maintenance based on two- and three-parameter Weibull, the left figure (a) shows the generator maintenance cost rate of the two-parameter Weibull, and the right figure (b) shows the three-parameter Weibull. 
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Figure 7. Opportunistic maintenance strategy. 
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Figure 8. The comparison of predicted and observed values of wave height, wave height prediction curve with ∆Hs = 0.1 m. 
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Figure 9. The comparison of predicted and observed values of wave height, wave height prediction curve with ∆Hs = 0.2 m. 
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Figure 10. The comparison of predicted and observed values of wave height, wave height prediction curve with ∆Hs = 0.3 m. 
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Figure 11. The comparison of predicted and observed values of wave height, wave height prediction curve with ∆Hs = 0.4 m. 
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Figure 12. The average error of the wave height prediction data with ∆Hs = 0.1 m, 0.2 m, 0.3 m, 0.4 m. 
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Figure 13. The probability of each state occurring in different seasons. 
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Figure 14. The duration prediction of state H˜. 
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Figure 15. Maintenance waiting time and duration diagram. 
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Table 1. Failure times.
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	Sequence
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13



	Failure time (h)
	4560
	4568
	4660
	4756
	4879
	4899
	4904
	4967
	4988
	4990
	4995
	4996
	4998



	Sequence
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26



	Failure time (h)
	4999
	5034
	5096
	5137
	5138
	5278
	5289
	5367
	5467
	5567
	5678
	5778
	5879



	Sequence
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39



	Failure time (h)
	5889
	5900
	6067
	6078
	6178
	6278
	6378
	6478
	6578
	6678
	6789
	6879
	6888



	Sequence
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52



	Failure time (h)
	6978
	6988
	6990
	7089
	7115
	7245
	7345
	7356
	7456
	7468
	7568
	7569
	7709



	Sequence
	53
	54
	55
	56
	
	
	
	
	
	
	
	
	



	Failure time (h)
	7809
	7889
	7900
	7908
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Table 2. Parameters estimated.
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Method

	
Weibull Distribution Parameters

	
Failure-Rate Functions




	
α

	
β

	
γ






	
Least-squares estimation

	
4.9979 × 103

	
18.012

	
-

	
4.7388 × 10−66t17.023




	
Maximum-likelihood estimation

	
4.9941 × 103

	
17.963

	
-

	
7.2376 × 10−66t16.976




	
Correlation coefficient method

	
4.298 × 102

	
1.487

	
4462

	
1.8379 × 10−4 (t − 4457)0.484




	
Probability-weighted moment

	
4.069 × 102

	
1.383

	
4472

	
3.2298 × 10−4 (t − 4486)0.393




	
Bilinear regression method

	
3.859 × 102

	
1.144

	
4513

	
1.4007 × 10−3 (t − 4543)0.124
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Table 3. Short period prediction on failure rates.






Table 3. Short period prediction on failure rates.





	
Failure Rate

	
Two-Parameter

	
Three-Parameter




	
Least-Squares Estimation

	
Maximum-Likelihood Estimation

	
Correlation Coefficient Method

	
Probability-Weighted Moment Method






	
λ(5378)

	
0.0129

	
0.0131

	
0.0050

	
0.0047




	
λ(8760)

	
51.7726

	
51.1463

	
0.0105

	
0.0086
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Table 4. Weibull distribution parameters for major components of wind turbines.






Table 4. Weibull distribution parameters for major components of wind turbines.





	Component
	α/Day
	β





	Blade
	3000
	2



	Gearbox
	2400
	3



	Generator
	3300
	3
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Table 5. Maintenance costs for the major components of wind turbines.






Table 5. Maintenance costs for the major components of wind turbines.





	
Component

	
Cic/¥

	
Cip/¥

	
CN/¥






	
Blade

	
112,000

	
28,000

	
35,000




	
Gearbox

	
152,000

	
38,000




	
Generator

	
100,000

	
25,000
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Table 6. Optimal maintenance time and maintenance cost of unit components.






Table 6. Optimal maintenance time and maintenance cost of unit components.





	
Component

	
Two-Parameter

	
Three-Parameter




	
Tp(i)/Day

	
Ci(Tp(i))

	
Tp(i)/Day

	
Ci(Tp(i))






	
Blade

	
2770

	
51.7344

	
2490

	
49.8622




	
Gearbox

	
1664

	
68.4917

	
1505

	
63.5657




	
Generator

	
2470

	
38.2659

	
2284

	
31.0392
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Table 7. Comparison of observation and prediction data.






Table 7. Comparison of observation and prediction data.





	ΔHs(m)
	V(m/s)
	Hs(m)
	d(m)
	r





	0
	9.9300
	4.5618
	0
	1.0000



	0.1
	9.2756
	3.9360
	16.0764
	0.8742



	0.2
	9.7762
	4.1960
	17.7252
	0.8235



	0.3
	8.1154
	3.6840
	18.6377
	0.8712



	0.4
	8.7624
	3.5240
	19.3732
	0.8525
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Table 8. The duration of each state under each season.






Table 8. The duration of each state under each season.





	
State

	
Persistence




	
Spring

	
Summer

	
Autumn

	
Winter






	
H

	
0.624

	
0.786

	
0.570

	
0.455




	
H˜

	
0.376

	
0.214

	
0.430

	
0.545
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Table 9. Weibull distribution parameters and maintenance costs of critical components.






Table 9. Weibull distribution parameters and maintenance costs of critical components.





	Component Number
	αi/Day
	βi
	γi/Day
	C1i/Yuan
	C2i/Yuan





	1
	2529
	2.8
	465
	672,000
	168,000



	2
	2228
	2.5
	136
	912,000
	228,000



	3
	4036
	2.5
	91
	360,000
	90,000



	4
	3154
	2.2
	36
	600,000
	150,000
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Table 10. Optimization results of age maintenance strategy.






Table 10. Optimization results of age maintenance strategy.





	
Component

	
Preventive Maintenance Age Tp/Day

	
Minimum Cost Rate/¥ Day−2

	
Total Minimum Cost Rate/¥ Day−1






	
Blade

	
1816

	
184.8898

	
782.6744




	
Gearbox

	
1423

	
300.5747




	
Main bearing

	
2822

	
108.3843




	
Generator

	
2284

	
188.8256
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Table 11. Optimization results of the opportunistic maintenance strategy.






Table 11. Optimization results of the opportunistic maintenance strategy.





	
Component

	
Opportunistic Maintenance Age To/Day

	
Preventive Maintenance Age Tp/Day

	
Total Minimum Cost Rate/¥ Day−1






	
Blade

	
721

	
2709

	
702.5834




	
Gearbox

	
639

	
1812




	
Main bearing

	
1001

	
3000




	
Generator

	
897

	
2430












© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file26.jpg
03
08
07

03

02

01

4 6 8 0 12
Persistence [n]

Observed data of PDF
Observed data of CDF
A Simulation data of PDF
* Simulation data of COF

4 ® 18 2





media/file8.jpg
M W T e W W W
vt

(a)

(b)





media/file27.png
0.9

Frobahility
o o o 2 92 o
La E= m o =] (wn]

o
(]

0.1

L.

10 12
Fersistence [h]

* * * * * * *

Observed data of PDF

-------- Observed data of COF
A Simulation data of PDF
+  Simulation data of COF

14 16 18 20





media/file13.png
S —
| I
| I
7:) (7) Tp(l)
Corrective
Corrective maintenance or Preventive
maintenance Opportunity maintenance
maintenance






media/file12.jpg
#mt

I

|
b —
I 1
i |

70 7,0

Corrective
e Corrective maintenance or Preventive
maintenance |+ Opportunity | . maintenance
maintenance






media/file18.jpg
‘Wave height [m]

Cbzerved data
Sinulation data

1 20 30 40

E
Time (]

R

100





media/file9.png
o [=y] [a ] [uy] - —1
[ e [ 3] oo = b0 e
1

[ny]
(]

The cost rate of gearhox/ ¥

B8.g

The cost rate of gearhox/ ¥

]
1550

1600

1650

| | ] | ] ] | ]

: B2 ' |
1700 1750 1800 1850 1900 1950 2000 000 1200 1400 1BO0 1800 2000 2200 2400 2600 2800 3000

Operation time/d Operation time/d

(a) (b)





media/file14.jpg
Wave height [m]

12

Observed data
Simulation data

0

20

o

EJ
Time [h]

E]

70

ERE]

100





media/file20.jpg
Wave height [m]

12

Observed data
—— Simulation data

0

E]

E]

0

EJ
Time (h]

70

ERED

100





media/file23.png
0.5

0.4

0.3

0.2

0.1

0.2r

019

018

|

P

(o]
wifoe abetaay

016

015

AHs





media/file5.png
corrective
maintenance

#
Tp
preventive
maintenance






media/file15.png
Yyave height [m]

Chserved data
Simulation data

Doy aw'“‘f\’} e,

]
10 20 3d 40 Al B0 s0 all =
Time [h]

1an





media/file19.png
Wav e height [m]

— Chserved data
mitralation data

\Y

>0 il Fa o0 1aa

Time [h]





media/file28.jpg
5

W
g
23
H
HEY
2
b3
—— Observed data
—+— Simulation data of 0.1m
2 —+— Simulation data of 0.4m
T 2 3 4 5 5 7 g R}

Persistence of availabilty state [h]





media/file2.jpg
——— Probabity wmghed moment mahod
——Binearsegresson muhed

Do o wm w0 om0 wm G w0 mm S0
Time o)

®

o A
T

®





nav.xhtml


  energies-12-02650


  
    		
      energies-12-02650
    


  




  





media/file11.png
s )
oo o] w
oo [u] [

[h)
=]
[mp)

The cost rate of generator/ ¥
The cost rate of generator/ ¥

L
oo
-

| | | ] | | | | | J 3 | |
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 2000 2100 2200 2300 2400 2500 2600 2700 2600 2800 3000
Operation time/d Operation time/d

8.2

] | | ] | | ] |

(a) (b)





media/file6.jpg
il i
1= e
| i
i Hy
rerhesiiss o —

it

(a)





media/file24.jpg
08
I Observed dats of sailbilty state

[ Simulation data of availability state
Observed data of unavailabilty state
I Sirnulation data of unavailability state

07

Season





media/file29.png
Maintenance waiting time [h]

45

j ] ] ]
Eal
30+ / /
Pl
Observed data
=t Simulation data of 0.1m
. =+ Simulation data of 0.4m
ED | | | | |
1 2 3 4 5 B 7 8 g 10

Persistence of availability state [h]





media/file1.png
Arrange the data in ascending
order, and denoted as ¢;

| x=Inet, y=tnfinc1/c1-F))]
> 7

v

Find the linear correlation
coefficient between X and ¥, and
denoted as (k)

+

Ij =I1' -0.07 *k

'

‘ Output r(k) ‘

End





media/file10.jpg
v @ @ w0 0 5 0 % B0 W
it

()





media/file7.png
The cost rate of blade/ ¥

515
2000

!
2200

!
2400

| 1 1 | 1
2600 2800 3000 3200 3400
Operatian time/d

(a)

!
3600

!
3600

|
4000

The cost rate of blade/ ¥

45
1000

| | | | | | | |
1500 2000 2500 3000 3500 4000 4500 5000
Operation time/d

(b)





media/file16.jpg
Gheerved daa
Sminion s
10
_s
5
g
3
=
3
2

1o 20 30 40 _ s e 70 80 0 100
Time (]






media/file3.png
Failure Hate (1/h)

0.015

0.01

0.005

Least-square estimatian

Maximum likelihood estimation
Correlation coefficient method
Frobability weighted moment method
Bilinear-regression method

J

Failure Rate (1/h)

o

0

Q0
0

o
an

o
-]

oo
ay)

co
tr

Q0
i

oo
)

] ] ] ] ] ] ] ] ]
AROC 4700 A300 AS00 S00 5100 5200 5300 5400
Time (hour)

i
4500

(a)

107

Maximum likelihood estimation

- E Least-zquare estimate

5220 52230 5240 5250 5260 5270 5280
Time (hour)

(b)





media/file22.jpg
02

019

wpous sbeiony

03 04 05
sHm

02

01





media/file17.png
Wyave height [m]

]
’ \\*\ U

WA \H "

Chserwved data
mittnalation data

10

20

a0

40

=0
Time [h]

]l

Fa

&l

G

|
1an





media/file4.jpg
Rt

preventive
maintenance






media/file25.png
FProbahility

0.8y

o =
i fay!

=
E

03l

02l

07l

Spring

Summer

I Cbscreed data of availability state
[ ]Simulation data of availability state
-Dhsewed data of unavailability state
-Simulatinn data of unavailability state

Auturmn Winter

Season





media/file0.jpg
Start

Arrange the data in ascending
order, and denoted as 7,

i

X=In(t), Y=In[In(1/(1-F(t)))]
k=1

!

Find the linear correlation
t>0k=k+1 coefficient between_Yand ¥, and
denoted as r(k)

i

=t;-0.01*k

+

Output (k)






media/file21.png
Wave height [m]

‘N

Dhserved data
Simulation data

]
10 20 430 A0 S0
Time [h]

. i ‘ |
! ! ! |
b0 £ gl =0

|
100





