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Abstract: Understanding the rheological behavior of cement slurries is important in cement and
petroleum industries. In this paper, we study the fully developed flow of a cement slurry inside a
wellbore. The slurry is modeled as a non-linear fluid, where a constitutive relation for the viscous
stress tensor based on a modified form of the second grade (Rivlin–Ericksen) fluid is used;we also
propose a diffusion flux vector for the concentration of particles. The one-dimensional forms of the
governing equations and the boundary conditions are made dimensionless and solved numerically.
A parametric study is performed to present the effect of various dimensionless numbers on the
velocity and the volume fraction profiles.
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1. Introduction

Portland cement is widely used as a construction material in civil engineering applications due to
the widespread availability of its constituent materials [1]. It is produced from the grinding of clinker,
which is produced by the calcination of limestone and other raw materials in a rotary kiln. The different
phases in cement are: Alite (C3S), belite (C2S), aluminate phase (C3A), ferrite phase (C3AF), alkali
sulfate, free lime, and gypsum [2,3]. Cement slurries are reactive systems, continuously changing their
chemical and physical characteristics [4]. After the cement is mixed with water, a series of exothermal
chemical reactions occur resulting in an increase in the strength and hardening [5]. The most reactive
phases with water are C3S and C3A, the content of which affect the strength of cement developed at
early stages. Water to cement ratio, which is defined as the ratio of the weight of water to the weight of
cement, also plays an important role in the strength development and flow behavior of cement slurry.

According to a recent study by the United States Geological Survey (USGS), U.S. cement and
clinker production is about 80 million metric tons per year. The production of cementitious materials
consumes a significant amount of energy (20–40% total energy cost) [6,7]. Cement production also
contributes to 4% of the global industrial carbon dioxide (CO2) emissions [8]. Therefore, it is important
for the cement industry to seek energy efficient technologies and improve the performance of cement
productions for sustainability purpose. Physical testing is widely applied to study the cement behavior.
This requires time, energy, and material resources. In the past few decades, the cement research
community has sought advanced computational modeling for cement hydration processes, flow
and mechanical properties in order to eliminate the substantial cost for physical testing of cement.
Bentz [9] developed a three-dimensional computational model for the cement microstructure and
cement hydration process. Haekck et al. [10] studied the physical and the chemical properties of cement
such as the heat of hydration, the elastic modulus, and the pore concentrations using the software
Virtual Cement and Concrete Testing Laboratory (VCCTL). Bullard et al. described the details of this
software [11,12]. Watts et al. [13] and Tao et al. [14] validated the software optimization framework to
characterize and evaluate different computational models for cement.
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In petroleum-related applications, cement slurries are pumped down the wellbore and up the
annular space between the casing and the geological formations surrounding the wellbore to provide
zonal isolation in oil, gas, and water wells [15]. It is a great challenge for petroleum industry to prevent
gas entry into the cement and achieve the annular cement seal for a long term [16]. Researchers have
investigated the possible mechanisms for fluid migration during cementing by using experimental
and computational models, although the exact failure mechanism of this problem is very complicated.
Monitoring the conditions of cement slurry in realtime is a critical issue where wireless sensor
network-based monitoring system can be used [17]. Cement must remain as a fluid long enough
while it is being pumped to the anticipated location; it should also have sound compressive-strength
within a specific time after placement. Gel strength is related to the resisting shear stress before the
cement can flow, and is considered to be one of the major factors for hydrostatic pressure loss and gas
migration [18]. Chenevert and Jin [19] suggested that the rheological properties of the cement affect
the static gel strength. Stiles [20] indicated that the rheological properties of the cement slurry are
related to the annular fluid displacement. Brandt et al. [21] investigated a deep-water operation for
drilling fluid and well cementing, and suggested that the slurry properties at low temperatures and
high pressures should be taken into consideration. During the cementing, when the slurry is pumped
into the oilwell, it flows to the bottom of the wellbore through the casing and begins to develop more
strength from sedimentation. To develop computational models for cement slurry, many researchers
assume that the cement slurry is a suspension with non-Newtonian characteristics [22]. Foroushan et
al. [23] modeled the instability of the interface and the mixing of cement slurry and drilling mud during
cementing operation in oil and gas wells in three dimensions by using commercial Computational Fluid
Dynamics (CFD) software, and compared the results with experiments. Skadsem et al. [24] studied the
flow of a non-Newtonian fluid in an inclined wellbore with concentric and eccentric configurations
numerically and experimentally, using a finite element approach in OpenFOAM. Liu et al. [25] modeled
the multi-phase pipe flow and considered the hydration effect of cemented paste backfill slurry by
applying a CFD model. Murphy et al. [26] simulated the shear flow of two Bingham-type plastic
cement slurries containing Portland cement and fly ash particles by applying the fast lubrication
dynamics and discrete element model with LAMMPS.

In this paper, the flow of a cement slurry between two flat plates at different tilt angles is studied.
It is assumed that the viscosity of the cement depends on the shear rate and the volume fraction of
the particles. A convection–diffusion equation is used to study the effect of the particle concentration.
Section 2 presents the governing equations. In Section 3, we describe the constitutive relations for the
viscous stress and the diffusive particle flux vector. Section 4 defines the geometry of the problem
and provides the dimensionless forms of the equations and the boundary conditions. In Section 5,
numerical results are presented, and a parametric study is performed for different dimensionless
numbers. Section 6 provides some concluding remarks.

2. Governing Equations

In this paper, cement slurry is assumed to behave as a non-homogenous nonlinear suspension.
If the electromagnetic and the thermochemical effects are ignored, then the governing equations of
motion are the conservations of mass, linear momentum, angular momentum, and the equation for the
flux of concentration [27].

2.1. Conservation of Mass

∂ρ

∂t
+ div(ρv) = 0, (1)

where ∂/∂t is the partial derivative with respect to time, div is the divergence operator, v is the velocity
vector, and ρ is the density of the slurry. For an isochoric motion div(v) = 0.
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2.2. Conservation of Linear Momentum

ρ
dv
dt

= divT + ρb, (2)

where b is the body force vector, T is the Cauchy stress tensor, and d/dt is the total time derivative
given by d(.)/dt = ∂(.)/∂t + [grad(.)]v.

2.3. Conservation of Angular Momentum

The conservation of angular momentum indicates that in the absence of couple stresses the stress
tensor is symmetric, that is

T = TT. (3)

2.4. Convection–Diffusion Equation

In flows of suspensions, a convection–diffusion equation [28] is often used for the particle
concentration φ,

∂φ

∂t
+ div(φv) = −divN, (4)

where ∂φ
∂t is the rate of accumulation of particles, div(φv) is the term representing particle migration

and movement due to the flow, and divN is the diffusive particle flux. The function φ, called the
volume fraction (related to concentration), has the property 0 ≤ φ(x, t) ≤ φmax < 1. In reality, φ is either
one or zero at any position and time, depending upon whether one is pointing to a particle or to the
void space (fluid) at that location. The density of the cement slurry, in general, can be related to the
density of water and the cement particles, via the following relation: ρ = (1−φ)ρ f 0 +φρs0, where φ is
the volume fraction (concentration) of the cement particles, ρ f 0 and ρs0 are the pure density of water
and the cement particles in the reference configuration (before mixing), respectively. The assumption
that the particle and the fluid densities are the same, is a special case of the above equation. In this
paper, we use ρ as the bulk density of the cement slurry.

Looking at Equations (1)–(4), we can see that we need constitutive relations for T and N. We will
discuss these in the next section.

3. Constitutive Relations

A cement slurry, in general, behaves as a (nonlinear) fluid. Once cement particles are mixed
with water, after a series of hydration reactions, the slurry begins to develop solidlike behavior [29].
Cement-based materials could stand under their own weight without flowing and develop strength
and stiffness during setting [30]. The flow behavior of slurry plays an important role on the cement
quality [31]. Understanding the rheological behavior of a cement slurry is important in industry for easy
pumping and filling the annulus without excessive separation of water and cement [15,30]. Rheological
measurements for cement-based materials are well established [32]. The Bingham viscoplastic fluid
model is widely used to describe the yield stress of cement slurries. The yield stress is often related to
particle concentration, shear rate history, time, and temperature. The static yield stress (also known
as the static gel strength) affects the pumping of the cement. Moon and Wang [33] suggested that
during the gelation process, the cement shows non-Newtonian behavior. In general, nonlinear fluids
exhibit characteristics such as yield stress, viscoelasticity, normal stress effects, shear-rate dependent
viscosity, etc. Constitutive relations can be obtained or derived in different ways, for example, by using:
(a) Techniques in continuum mechanics, (b) models based on physical and experimental observations,
(c) numerical simulations, (d) statistical mechanics approaches, and (e) ad-hoc approaches. Next, we
briefly discuss the constitutive modeling of the stress tensor and the diffusive flux, using a continuum
mechanics approach.
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3.1. Stress Tensor

Many cement-based materials exhibit a yield stress. The Bingham viscoplastic model is widely
used to describe the behavior of cement [30]. It has also been noticed that in many situations, the
Herschel–Bulkley model predicts the sedimentation tendencies more accurately than the Bingham
model [31]. In general, a constitutive relation for a cement slurry should have a yield stress component
as well as a viscous stress part. Thus, the stress tensor can be written as:

T = Ty + Tv, (5)

where Ty is the yield stress (which in theory can be measured and can depend on parameters, such as
the solid volume fraction [34]) and Tv is the viscous stress, where the viscosity is assumed to depend
on the shear rate, the particle concentration, and possibly on temperature and chemical composition.
In addition, if viscosity and other rheological parameters depend on time, we can consider the
thixotropic nature of cement by introducing a structural parameter (see [35,36]). For the remainder of
this paper, we will only focus on the viscous stress tensor Tv. We plan to study the effect of the yield
stress (see [37]) in future. One of the simplest models which can show the shear-rate dependency of
the viscosity, is the power-law model or the generalized Newtonian fluid (GNF) model [38]

Tv = −pI + µ0
(
trA1

2
)m

A1, (6)

where p is the pressure, I is the identity tensor, µ0 is the coefficient of viscosity, m is the power-law
exponent, a measure of non-linearity of the fluid, related to the shear-thinning (m < 0) or shear-thickening
(m > 0) effects of the fluid, tr is the trace operator, and A1 is related to the velocity gradient. For
additional information about other power-law models such as Carreau-type fluid, we refer the reader
to [38,39].

It has been observed that the viscosity of a cement slurry increases with increasing concentration
of the solid particles [40]. Researchers have studied the relation between the shear viscosity and the
concentration extensively and have proposed various empirical models. The Einstein expression was
first applied for the relation between viscosity and particle concentration for dilute suspensions [41]:
µ = µ0(1 + 2.5φ), whereµ is the viscosity of suspension, µ0 is the viscosity of pure liquid (the base fluid),
and φ is the volume fraction of the particles. Other studies [42,43] have shown that the relationship
between viscosity and volume fraction can be expressed more accurately as µ/µ0 = (1− 1.35φ)−2.5.
These relationships are unable to predict the behavior of a suspension at high particle concentration,
and more complicated models are required [24]. Krieger and Dougherty’s model is widely applied for
nonflocculated suspensions such as cement slurries [40,44–49]:

µ/µ0 =

(
1−

φ

φm

)−β
, (7)

where β is a fitting experimental parameter and is usually assumed to be between 1.5–2 for cement [48,49].
φm is the maximum solid concentration packing, which is about 0.65 for suspension with spherical
particles [40].

Although most experimental studies related to cement slurry focus on the measurement of
viscosity and yield stress, it is not known whether cement slurry, similar to dense granular materials
and some suspensions/polymers, would exhibit normal stress effects related to phenomena such as
‘die-swell’ and ‘rod-climbing’ (see [50,51]). One of the simplest models that can capture the normal
stress effects is the second grade fluid, or the Rivlin–Ericksen fluid of grade two [52,53]. Based on the
brief discussion above, in this paper, we will focus our attention on the modeling of the viscous stress,
by assuming that the slurry behaves as a modified second grade (Rivlin–Ericksen) fluid model, where,

Tv = −pI + µe f f (φ, A1)A1 + α1A2 + α2A1
2. (8)
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The kinematical tensors A1 and A2 are defined through

A1 = gradv + (gradv)T, (9)

A2 =
dA1

dt
+ A1(gradv) + (gradv)TA1, (10)

where α1 and α2 are the normal stress coefficients and µe f f is the effective viscosity, which is dependent
on the volume fraction and the shear rate. Equation (8) is a possible generalization of the second grade
fluid model (for a detailed discussion of this see [54,55]). Using the Clausius–Duhem inequality, Dunn
and Fosdick [56] showed:

µ ≥ 0,
α1 ≥ 0,

α1 + α2 = 0.
(11)

For further details on this and other relevant issues in fluids of differential type, we refer the
reader to the review article by Massoudi and Vaidya [57]. Furthermore, the effective viscosity is given
by the equation:

µe f f (φ, A1) = µ∗(φ)
[
1 + αtrA1

2
]m

. (12)

where Krieger and Dougherty’s correlation for µ∗(φ) is used in this paper:

µ∗(φ) = µ0

(
1−

φ

φm

)−β
, (13)

where β is the experimental parameter, assumed to be 1.82 in our paper [58], and φm is the maximum
volume fraction of particles. This will be an input to the problem, i.e., we will solve the equations for
different values of φm. By substituting Equations (12) and (13) into (8), we have the equation for the
viscous stress tensor:

Tv = −pI + µ0

(
1−

φ

φm

)−β[
1 + αtrA1

2
]m

A1 + α1A2 + α2A1
2. (14)

Equation (14) is used in our analysis. It is noticed that this model has 6 material parameters,
namely: µ0, β, α, m, α1, and α2.

3.2. Particle Fluxes

The particle transport fluxes could be affected by various mechanisms such as particles collision,
body force, Brownian motion, etc. [58]. For a description of additional flux terms, we refer the reader
to the recent paper by Li et al. [59]. In this paper, the particle transport flux is assumed as:

N = −a2φKc∇
( .
γφ

)
− a2φ2 .

γKµ∇
(
lnµe f f

)
−D∇φ, (15)

where the terms on the right hand side are the transport flux contributions due to particles collisions,
spatially varying viscosity, and the Brownian diffusive flux, respectively. In the above equation, a is the
characteristic particle length—for example, the particle radius—and

.
γ is the local shear rate,

.
γ =

(
2Ai jAi j

)1/2
. (16)

where Kc and Kµ are empirical coefficients, and D is the diffusion coefficient (diffusivity). It is assumed
that D has two contributions, one related to the shear rate and the other to concentration. Thus,

D = D
( .
γ,φ

)
= D1

( .
γ
)
D2(φ). (17)
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For D1
( .
γ
)
, Bridges and Rajagopal’s assumption is used [60]:

D1
( .
γ
)
= η‖A2

1‖, (18)

where η is a constant. For D2(φ), the ideas of Garboczi and Benz [61] who studied the dependence of
cement diffusivity on pore structure are used. During the hydration process, the capillary pore space
is gradually filled by water. The main product of the cement hydration is calcium silicate hydrate
(C-S-H). Figure 1 shows the schematic of the capillary pores ϕ. The hydration products have larger
volumes than the cement reactants, which explains why the cement particles in the viscous suspension
develop strength from the hydration process. Two different phases contribute to the diffusivity, namely,
the capillary pore space and the C-S-H gel phase. After the capillary pores close off, the smaller C-S-H
gel micropores start to dominate the transport. Capillary pore space is filled with water, thus, the
volume fraction of the cement particles is φ = 1−ϕ. The minimum capillary porosity is about 18%
(known as the percolation threshold); therefore, the maximum volume fraction of cement particles is
φm = 1− 0.18 = 0.72.
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By considering the effects of both the capillary porosity and the C-S-H contribution on cement
diffusivity, the authors proposed a relation between diffusivity and capillary pore space. After adjusting
the volume fraction φ of cement particles with the capillary porosity ϕ, their equation becomes:

D2(φ) = D0
[
K1 + K2(1−φ)

2 + K3(φm −φ)
2H(φm −φ)

]
, (19)

where D0 is the diffusivity parameter; K1, K2, and K3 are fitting coefficients with suggested values
0.001, 0.07, and 1.8; and H is the Heaviside function H(x) = 1 for x > 0, H(x) = 0 for x ≤ 0.

If we consider a steady-state condition and substitute Equation (15) into (4) with div(φv) = 0, we
have [59]:

div N = 0. (20)

At solid boundaries, no particles can penetrate the walls, which indicates that the particle flux
should be zero at the walls [63]

0 = N|wall. (21)

By integrating Equation (20), considering the boundary condition (21), we notice that for this flow
field, the total flux equals zero everywhere in the flow, that is:

0 = N. (22)

In summary, the following equation is used for the diffusive flux N :

N = −a2φKc∇
( .
γφ

)
− a2φ2 .

γKµ∇
[
ln

(
µ0

(
1− φ

φm

)−β[
1 + αtrA1

2
]m

)]
−ηA1

2D0
[
K1 + K2(1−φ)

2 + K3(φm −φ)
2H(φm −φ)

]2
∇φ.

(23)



Energies 2019, 12, 2604 7 of 25

Equations (14) and (23) form the basic constitutive relations used in this paper.

4. Flow between Two Plates

To test the models proposed in the previous section, we will solve a simple problem with relevant
industrial application. As most drilling operations are done either in a vertical or a horizontal
arrangement (shown in Figure 2a), we consider a tilted channel, as shown in Figure 2b where θ is
measured from the horizontal direction. The motion is assumed to be steady and fully developed.
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The velocity and the volume fraction fields are assumed to be of the form:{
φ = φ(y)

v = v(y)ex
. (24)
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Using Equation (24), the conservation of mass (Equation (1)) is automatically satisfied. By substituting
Equation (8) into Equation (2), the equations of linear momentum in component form become:

∂
∂x

−p + α2

(
dv
dy

)2+ ∂
∂y

µ0

(
1−

φ

φm

)−β1 + 2α
(

dv
dy

)2m
dv
dy

+ ρg sinθ = 0 (25a)

∂
∂y

−p + (2α1 + α2)

(
dv
dy

)2− ρg cosθ = 0 (25b)

∂p
∂z

= 0 (25c)

Let us define a modified pressure p̂ (see [64])

p̂ = p− (2α1 + α2)

(
dv
dy

)2

. (26)

Then, the Equations (25) are simplified to

−
∂p̂
∂x

+
∂
∂y

µ0

(
1−

φ

φm

)−β1 + 2α
(

dv
dy

)2m
dv
dy

+ ρg sinθ = 0 (27a)

−
∂p̂
∂y
− ρg cosθ = 0 (27b)

∂p̂
∂z

= 0 (27c)

Equations in (27) provide the basic equations for the solution of volume fraction, velocity field,
and pressure distribution in the x, y, and z-directions. In this paper, Equation (27a) is used to solve
for the velocity, which is coupled to the volume fraction equation. We specify the pressure gradient
in the x-direction. In a sense, we do not use Equation (27b) to solve for pressure, which will be
affected by the normal stress coefficients. In more complicated flow situations and geometries, all
three components of the momentum equation, along with the convection–diffusion equation, should
be solved simultaneously. To obtain the expanded form of the convection–diffusion equation, we
substitute Equations (12) and (15) into (22):

a2Kc

(
φ2 d

dy

∣∣∣∣ dv
dy

∣∣∣∣+ φ
∣∣∣∣ dv
dy

∣∣∣∣ dφ
dy

)
+ a2φ2Kµ

∂
∂y

{
µ0

(
1− φ

φm

)−β[
1+2α

(
dv
dy

)]m
}

µ0

(
1− φ

φm

)−β[
1+2α

(
dv
dy

)]m

∣∣∣∣ dv
dy

∣∣∣∣+ 2η

·D0
[
K1 + K2(1−φ)

2 + K3(φm −φ)
2H(φm −φ)

] dφ
dy

(
dv
dy

)2
= 0.

(28)

Before solving Equations (27a) and (28), we nondimensionalize the equations by introducing the
dimensionless length y and velocity v as:

y =
y
H

; v =
v
V

, (29)

where H is the distance between the two plates and V is a reference velocity. The dimensionless forms
for Equations (27a) and (28) become

∂

∂y


(
1−

φ

φm

)−β1 + R0

(
dv
dy

)2m
dv
dy

 = R1 −R2 sinθ, (30)
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Kc
Kµ

(
φ2 d

dy

∣∣∣∣ dv
dy

∣∣∣∣+ φ
∣∣∣∣ dv
dy

∣∣∣∣ dφ
dy

)
+ mφ2

∣∣∣∣ dv
dy

∣∣∣∣[1 + R0

(
dv
dy

)2
]−1

·2R0
dv
dy

d2v
dy2

+
β
φm
φ2

(
1− φ

φm

)−1 dφ
dy

∣∣∣∣ dv
dy

∣∣∣∣
+

[
R3 + R4(1−φ)

2 + R5(φm −φ)
2H(φm −φ)

] dφ
dy

(
dv
dy

)2
= 0,

(31)

where the following dimensionless numbers are obtained:

R0 = 2αV2

H2 ; R1 =
∂p̂
∂x

H2

µ0V ; R2 =
ρ f gH2

µ0V ,

R3 =
2ηD0VK1

a2KµH ; R4 =
2ηD0VK2

a2KµH ; R5 =
2ηD0VK3

a2KµH .
(32)

The physical meanings of these dimensionless numbers are: R0 is related to the coefficient of
the shear rate, related to the magnitude of shear-thinning/shear-thickening effect, R1 is a measure of
the importance of the force due to the pressure gradient and the viscous effects, R2 is related to the
gravity, and R3, R4, and R5 are parameters related to the coefficients in the diffusion equation related
to the volume concentration D2(φ). In addition to these six dimensionless numbers, we also have
parameters such as φm, which can be varied independently (see Table 1). Equations (30) and (31) are
to be solved numerically, subject to appropriate physical boundary conditions. We will perform a
limited parametric study to look at the effects of these dimensionless parameters on the flow and
concentration profiles.

Table 1. Values of the dimensionless numbers and other parameters.

Parameters Range of Values

φm 0.45, 0.5, 0.55, 0.6, 0.65

Kc/Kµ 0, 0.02, 0.04, 0.06, 0.08

θ 0◦, 30◦, 45◦, 60◦, 90◦

m −0.3, −0.1, 0, 0.1, 0.3, 0.7

R0 0.01, 0.1, 1, 10

R1 0, −1.5, −2.5, −3.5

R2 0, 0.5, 1, 1.5

R3 0.01, 0.1, 1

R4 0.01, 0.1, 1

R5 0.01, 0.1, 1

We also notice that we need two boundary conditions for v and one condition for φ. A no-slip
boundary condition for velocity at the two plates is assumed. These are:

v(y = −1) = 0; v(y = 1) = 0. (33)

For the volume fraction, we specify an average quantity φavg given in terms of an integral taken
across the cross section of the flow (see [65]) namely:∫ 1

−1
φdy = φavg. (34)

Note that whenever a second grade fluid or any higher grade fluid models is used, the order of the
differential equations (the linear momentum equation) is raised, and additional boundary conditions
are needed [66,67]; although in this problem, we are not concerned with this issue since we are not
solving Equation (27b).
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5. Numerical Results and Discussion

The dimensionless nonlinear ordinary differential Equations (30) and (31) with the boundary
conditions (33) and (34) are solved using the MATLAB solver bvp4c for boundary value problem.
The step size is set as default value in the solver. The tolerance for the maximum residue is set as 0.001.
The shooting method is applied to implement φavg in the integral form. Table 1 shows the designated
values of dimensionless numbers and parameters used in this case study.

In this section, we do a basic parametric study by varying these dimensionless numbers and
paramters to seetheir effects on the velocity and the concentration profiles.

5.1. Effect of φm

Recall that φm is the maximum volume fraction of the cement particles, which is usually about
0.5–0.6 [40]. Figure 3 shows the effect of φm on the velocity distribution and the volume fraction. Five
values between 0.45 and 0.65 are selected for the parametric study. The velocity shows a parabolic
distribution, and the particles tend to concentrate at the center mainly due to the effects of the first term
in the particle flux Equation (15). As φm increases, the velocity tends to increase, and more particles
tend to concentrate at the center. From Figure 4, we can see that both the velocity and the volume
fraction distributions become more nonuniform for larger values of φm, indicating a higher packing. In
a qualitative way, Phillips et al. and Wu et al. obtained similar results for the velocity profiles (see
Figure 10 in [68]) and the concentration profiles (see Figure 6 in [68]).
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Figure 4. Distribution of the velocity for (a) φm = 0.45; (b) φm= 0.50; (c) φm= 0.55; (d) φm= 0.60;
(e) φm= 0.65; and the cement volume concentration for (f) φm= 0.45; (g) φm= 0.50; (h) φm= 0.55;
(i) φm= 0.60; (j) φm= 0.65.
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5.2. Effect of Kc
Kµ

Figure 5 shows the effect of Kc
Kµ . This ratio is an indication of the effect of particles collision to the

spatial variation of the viscosity. As Kc
Kµ increases, the velocity at the centerline increases a bit and the

volume fraction distribution becomes more nonuniform, as shown in Figure 6. When Kc
Kµ is zero, the

distribution of the volume fraction is nearly uniform. Larger values of Kc
Kµ indicate that the particles

migrate towards the centerline. In a qualitative way, Wu et al. [68] obtained similar results for the effect
of Kc

Kµ (see Figures 17 and 18 in [68]).
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Figure 6. Distribution of the velocity for (a) Kc
Kµ = 0; (b) Kc

Kµ = 0.02; (c) Kc
Kµ = 0.04; (d) Kc

Kµ = 0.06; (e) Kc
Kµ = 0.08;

and the cement volume concentration for (f) Kc
Kµ = 0; (g) Kc

Kµ = 0.02; (h) Kc
Kµ = 0.04; (i) Kc

Kµ = 0.06; (j) Kc
Kµ = 0.08.
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5.3. Effect of θ

Figure 7 shows the effect of the inclination angle θ. For horizontal flow, θ = 0◦, and when the two
plates are in vertical arrangment θ = 90◦. As θ increases, the value of the gravitational force in the
x-direction increases. Larger values for θ result in faster flows and nonuniform velocity and volume
fraction distributions, as shown in Figure 8. In other words, when the plates are inclined at a sharper
angle from the horizontal direction, the particles tend to move faster and have lower concentration at
the plates.
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Figure 8. Distribution of the velocity for (a) θ = 0◦; (b) θ = 30◦; (c) θ = 45◦; (d) θ = 60◦; (e) θ = 90◦; and
the cement volume concentration for (f) θ = 0◦; (g) θ = 30◦; (h) θ = 45◦; (i) θ = 60◦; (j) θ = 90◦.
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5.3.1. Effect of m

When m = 0, the slurry behaves as Newtonian fluid (when the viscosity does not depend
on the volume fraction); when m < 0, the slurry is shear-thinning; and when m > 0, the slurry is
shear-thickening. Cement slurry shows shear-thinning behavior if there are no dispersing agents while
it exhibits shear-thickening behavior with the addition of dispersing acrylic polyelectrolyte [69]. Thus,
we select both positive and negative values of m to study the rheological behavior of cement slurry.
Figure 9 shows the effect of m on the velocity and volume fraction profiles. From the above figure, we
can see that if the fluid changes from a shear-thinning fluid to a shear-thickening one (m changing
from negative to positive), the velocity at the centerline decreases and the distribution of velocity
becomes more linear. Similar trends could be found in Figure 2 in [68]. Larger values of m indicate
more nonuniform distribution of the particles. In a qualitative way, a similar trend is observed by other
researchers (see Figure 3 in [68] and Figure 2a,b in [70]).
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5.4. Effect of R0

Figure 10 shows that as R0 increases, the shear-thickening behavior becomes weaker (m = 1), while
the magnitude of the velocity decreases and more particles tend to concentrate near the centerline and
the distribution of volume fraction becomes more nonuniform, as shown in Figure 11.Energies 2019, 12, 2604 17 of 27 
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Figure 10. Effect of R0 on (a) the velocity; and (b) the volume fraction profiles, with β = 1.82, φavg = 0.3,
R1 = −2.5, R2 = 0.1, R3 = 0.01, R4 = 0.07, R5 = 1.8, Kc

Kµ = 0.05, φm = 0.65, m = 1, θ = 45o.
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Figure 11. Distribution of the velocity for (a) R0 = 0.01; (b) R0 = 0.1; (c) R0 = 1; (d) R0 = 10; and the 

cement volume concentration for (e) R0 = 0.01; (f) R0 = 0.1; (g) R0 = 1; (h) R0 = 10. 

Figure 10 shows that as R0  increases, the shear-thickening behavior becomes weaker (m = 

1),while the magnitude of the velocity decreases and more particles tend to concentrate near the 

centerline and the distribution of volume fraction becomes more nonuniform, as shown in Figure 11.  

5.6. Effect of R1 

  

(a) (b) 

Figure 11. Distribution of the velocity for (a) R0 = 0.01; (b) R0 = 0.1; (c) R0 = 1; (d) R0 = 10; and the
cement volume concentration for (e) R0 = 0.01; (f) R0 = 0.1; (g) R0 = 1; (h) R0 = 10.

5.5. Effect of R1

Recall that R1 is related to the effect of pressure gradient in the x-direction. Figure 12 shows that
when R1 becomes more negative, the flow becomes faster and more particles are concentrated at the
center. When R1 = 0, indicating no pressure gradient, a constant volume fraction profile is noticed.
For larger (absolute) values of R1 more nonuniform velocity as well as nonuniform volume fraction
profiles are noticed, shown in Figure 13. Larger values for the pressure gradient indicate smaller values
for the volume fraction at the plate and larger values for the volume fraction at the center. Similar trends
for the effect of pressure gradient can also be found in [70] (Figure 4a,b) and [71] (Figures 2 and 3).



Energies 2019, 12, 2604 18 of 25

Energies 2019, 12, 2604 18 of 27 

 

  
(c) (g) 

  
(d) (h) 

Figure 11. Distribution of the velocity for (a) R0 = 0.01; (b) R0 = 0.1; (c) R0 = 1; (d) R0 = 10; and the 

cement volume concentration for (e) R0 = 0.01; (f) R0 = 0.1; (g) R0 = 1; (h) R0 = 10. 

Figure 10 shows that as R0  increases, the shear-thickening behavior becomes weaker (m = 

1),while the magnitude of the velocity decreases and more particles tend to concentrate near the 

centerline and the distribution of volume fraction becomes more nonuniform, as shown in Figure 11.  

5.6. Effect of R1 

  

(a) (b) 

Figure 12. Effect of R1 on (a) the velocity; and (b) the volume fraction profiles, with β = 1.82, φavg = 0.3,
R0 = 0.1, R2 = 0.1, R3 = 0.01, R4 = 0.07, R5 = 1.8, Kc

Kµ = 0.05, φm = 0.65, m = 1, θ = 45◦.

Energies 2019, 12, 2604 19 of 27 

 

Figure 12. Effect of 𝑅1 on (a) the velocity; and (b) the volume fraction profiles, with 𝛽 = 1.82, 𝜙𝑎𝑣𝑔 = 

0.3, 𝑅0 = 0.1, 𝑅2 = 0.1, 𝑅3 = 0.01, 𝑅4 = 0.07, 𝑅5 = 1.8, 
𝐾𝑐

𝐾𝜇
= 0.05, 𝜙𝑚 = 0.65, 𝑚 = 1, 𝜃 = 45°.  

  

(a) (e) 

  
(b) (f) 

  
(c) (g) 

Figure 13. Cont.



Energies 2019, 12, 2604 19 of 25

Energies 2019, 12, 2604 20 of 27 

 

  
(d) (h) 

Figure 13. Distribution of the velocity for (a) R1 = 0; (b) R1 = −1.5; (c) R1 = −2.5; (d) R1 = −3.5; and 

the cement volume concentration for (e) R1 = 0; (f) R1 = −1.5; (g) R1 = −2.5; (h) R1 = −3.5. 

Recall that R1 is related to the effect of pressure gradient in the x-direction. Figure 12 shows that 

when R1 becomes more negative, the flow becomes faster and more particles are concentrated at the 

center. When R1 = 0, indicating no pressure gradient, a constant volume fraction profile is noticed. 

For larger  (absolute) values of R1 more nonuniform velocity as well as nonuniform volume fraction 

profiles are noticed, shown in Figure 13. Larger values for the pressure gradient indicate smaller 

values for the volume fraction at the plate and larger values for the volume fraction at the center. 

Similar trends for the effect of pressure gradient can also be found in [70] (Figure 4a,b) and [71] 

(Figures 2 and 3). 

5.7. Effect of R2 

  
(a) (b) 

Figure 14. Effect of 𝑅1 on (a) the velocity; and (b) the volume fraction profiles, with 𝛽 = 1.82, 𝜙𝑎𝑣𝑔 = 

0.3, 𝑅0 = 0.1, 𝑅1 = −2.5, 𝑅3 = 0.01, 𝑅4 = 0.07, 𝑅5 = 1.8, 
𝐾𝑐

𝐾𝜇
= 0.05, 𝜙𝑚 = 0.65, 𝑚 = 1, 𝜃 = 45°.  

Recall that R2 is related to the effect of the gravity term (related to the weight of the particles). 

As shown in Figure 14, with an increase in R2, the slurry has a higher centerline velocity and more 

particles tend to concentrate at the centerline. Both distributions of the velocity and the volume 

fraction become more non-uniform when R2 increases. In a qualitative way, Miao and Massoudi [70] 

show similar trends for the effect of R2 (see Figure 6a,b in their paper). 

Figure 13. Distribution of the velocity for (a) R1 = 0; (b) R1 = −1.5; (c) R1 = −2.5; (d) R1 = −3.5; and the
cement volume concentration for (e) R1 = 0; (f) R1 = −1.5; (g) R1 = −2.5; (h) R1 = −3.5.

5.6. Effect of R2

Recall that R2 is related to the effect of the gravity term (related to the weight of the particles).
As shown in Figure 14, with an increase in R2, the slurry has a higher centerline velocity and more
particles tend to concentrate at the centerline. Both distributions of the velocity and the volume fraction
become more non-uniform when R2 increases. In a qualitative way, Miao and Massoudi [70] show
similar trends for the effect of R2 (see Figure 6a,b in their paper).
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5.7. Effects of R3, R4, and R5

The three dimensionless numbers, R3, R4, and R5 reflect the dependence of cement diffusivity
on the volume fraction directly, as can be seen from Equation (31). They also influence the velocity
profiles indirectly, as seen from Equation (30). We selected three values 0.01, 0.1, and 1 for R3, R4, and
R5, respectively. From Figure 15, we can see that R3, R4, and R5 have similar effects on the velocity
and the volume fraction profiles. As the values of these parameters are increased, the velocity at the
centerline does not change much and fewer particles tend to concentrate at the center. The volume
fraction distribution becomes more uniform for larger values of R3, R4, and R5.

Finally, we should mention that due to the kinematical assumptions made (see Equation (24)),
many of the coupling effects and the nonlinear effects in the momentum equations have disappeared.
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In three dimensional unsteady flows, we anticipate more interesting results due to these effects, such as
the contributions from the normal stress effects, or additional flux terms, etc.
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Figure 15. (a) Effect of R3 on the velocity and the volume fraction profiles, withβ = 1.82,φavg = 0.3, R0 = 0.1,
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6. Conclusions

The space between the well casing and the geological formation surrounding the wellbore must
be filled with cement slurry before the cement hardens. Poor understanding of rheological properties
will cause the failure of the zonal isolation and can cause problems related to gas and fluid migration.
Disasters, financial loss, and other serious consequences may occur from unsuccessful cementing
design. Rheological behavior of cement slurry is important in the petroleum industry. In this paper,
we have modeled the cement slurry as a non-Newtonian fluid (a generalized second grade fluid),
where the viscosity depends on the shear rate and the particle concentration. To consider the particle
transport, we use a concentration flux equation, where the coefficients of diffusivity and other fluxes
depend on the shear rate and viscosity. The governing equations and the boundary conditions for flow
between two plates are nondimensionalized and solved numerically. We performed a parametric study
for different dimensionless numbers and the results indicate that the velocity and the volume fraction
profiles are affected by the shear rate dependent viscosity and the parameters in the concentration
flux equation. We also notice that the maximum packing φm, concentration flux parameters Kc

Kµ ,
the angle of inclination θ, pressure and gravity terms affect the velocity and particle distributions
significantly. For example, we can see that the velocity and the volume fraction distributions become
more nonuniform for larger values of φm, which indicates a higher packing. In a qualitative way,
Phillips et al. and Wu et al. obtained similar results for the velocity profiles (see Figure 10 in [68]) and
concentration profiles (see Figure 6 in [68]). We also notice that larger values for the pressure gradient
indicate smaller values for the volume fraction at the plate but bigger values for the volume fraction
at the center. Similar trends for the effect of pressure gradient can also be found in [70] (Figure 4a,b)
and [71] (Figures 2 and 3). For future studies, we will look at unsteady flows. Two-dimensional
and three-dimensional geometries of the oil well annulus will also be studied with more advanced
numerical software. More effects such as yield stress, heat transfer, and cement hydration parameters
will also be considered. We should mention that in general, cement is a multi-component material, and
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methods of multiphase flows and mixture theories, which are more complicated can also be used to
study cement slurry (for details see for example the recent papers by [72,73]).
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Nomenclature

Symbol Explanation
ρ Density
g Acceleration due to gravity
H Characteristic length
V Reference velocity
a Particle radius
θ Inclination angle
t Time
D Diffusion coefficient
D0 Cement diffusivity parameter
D1 Shear-rate-dependent diffusion coefficient
D2 Volume fraction-dependent diffusion coefficient
η Constant in volume fraction-dependent diffusion coefficient
K1, K2K3 Cement diffusivity fitting coefficients
H(.) Heaviside function
Kc, Kµ Empirical coefficients for transport flux
.
γ Local shear rate
φ Volume fraction of particles
ϕ Capillary pore in cement
µ Viscosity
µ0 Coefficient of viscosity
µe f f Effective viscosity
µ∗(φ) Concentration-dependent viscosity
β Experimental (fitting) parameter for viscosity
φm Maximum solid concentration
φavg Average value for the volume fraction
p Pressure
p̂ Modified pressure
α1, α2 Normal stress coefficients
α, m Material parameters
R0, R1, R2, R3, R4, R5 Dimensionless numbers
v Velocity vector
b Body force vector
N Particle transport flux
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Nc Flux contribution due to particles collision
Nµ Flux contribution due to variation in viscosity
Nb Brownian diffusive flux
T Cauchy stress tensor
Ty Yield stress tensor
Tv Viscous stress tensor
I Identity tensor
L Gradient of the velocity vector
An n-th order Rivlin–Ericksen tensor
∇ Gradient symbol
div Divergence operator
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