
energies

Article

Sensor Data Compression Using Bounded Error
Piecewise Linear Approximation with
Resolution Reduction

Jeng-Wei Lin 1, Shih-wei Liao 2 and Fang-Yie Leu 3,*
1 Department of Information Management, Tunghai University, Taichung 40704, Taiwan
2 Department of Computer Science and Information Engineering, National Taiwan University,

Taipei 10617, Taiwan
3 Department of Computer Science, Tunghai University, Taichung 40704, Taiwan
* Correspondence: leufy@thu.edu.tw; Tel.: +886-4-23590121 (ext. 33815)

Received: 27 April 2019; Accepted: 17 June 2019; Published: 30 June 2019
����������
�������

Abstract: Smart production as one of the key issues for the world to advance toward Industry 4.0
has been a research focus in recent years. In a smart factory, hundreds or even thousands of sensors
and smart devices are often deployed to enhance product quality. Generally, sensor data provides
abundant information for artificial intelligence (AI) engines to make decisions for these smart devices
to collect more data or activate some required activities. However, this also consumes a lot of energy to
transmit the sensor data via networks and store them in data centers. Data compression is a common
approach to reduce the sensor data size so as to lower transmission energies. Literature indicates that
many Bounded-Error Piecewise Linear Approximation (BEPLA) methods have been proposed to
achieve this. Given an error bound, they make efforts on how to approximate to the original sensor
data with fewer line segments. In this paper, we furthermore consider resolution reduction, which
sets a new restriction on the position of line segment endpoints. Swing-RR (Resolution Reduction)
is then proposed. It has O(1) complexity in both space and time per data record. In other words,
Swing-RR is suitable for compressing sensor data, particularly when the volume of the data is huge.
Our experimental results on real world datasets show that the size of compressed data is significantly
reduced. The energy consumed follows. When using minimal resolution, Swing-RR has achieved
the best compression ratios for all tested datasets. Consequently, fewer bits are transmitted through
networks and less disk space is required to store the data in data centers, thus consuming less data
transmission and storage power.

Keywords: Internet of Things; big data; data compression; bounded-error approximation; piecewise
linear; resolution reduction

1. Introduction

Recently, Industry 4.0 has been commonly referred to as the fourth industrial revolution. It mainly
focuses on manufacturing automation which is enabled by Internet of Things (IoT), big data, cloud
computing, and artificial intelligence (AI) to enhance schedules and processes of production lines,
aiming to reduce production costs, improve product quality, and shorten production time. Smart
production is one of the key issues for the world to advance toward Industry 4.0. Automatic production
optimization is also one of the methods to improve production throughputs and to quickly and flexibly
respond to customer-oriented market. In a smart factory, hundreds or even thousands of sensors
and smart devices are often deployed, e.g., for production line monitoring or product inspection. By
analyzing collected sensor data, smart engines can make proper decisions, e.g., to stop the production
line immediately when a severe anomaly is detected, to avoid producing defective products. As a

Energies 2019, 12, 2523; doi:10.3390/en12132523 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en12132523
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/13/2523?type=check_update&version=3

Energies 2019, 12, 2523 2 of 20

result, these smart devices can adjust their actions dynamically and function effectively and efficiently
to make this factory usually stay in its normal production stage. Many manufacturing issues have been
explored in Industry 4.0 in recent years. For example, preventive maintenance [1] of equipment is to
ensure that it is free from failure between one maintenance session and the next planned maintenance
session. To achieve this, the equipment’s worn components are repaired or replaced in advance, even
they are still workable now. It is shown that it could greatly enhance the resilience of the system
by replacing a partial functional component with a fully functional one [2]. States of the system are
continuously monitored to make sure that the system works normally. Condition data are analyzed to
decide the right time for performing maintenance on the right components. However, the big data
generated by sensors also consumes a lot of energy, including the corresponding data transmission
from the sensors to data centers, and data storage in the data centers. Shehabi et al. in [3] reported
that data centers in the U.S. consumed an estimated of 70 billion kW h in 2014. It was about 1.8% of
total U.S. electricity consumption in that year and expectedly increases 4% from 2014 to 2020. Energy
consumption in networking occupies a significant percentage of total energy consumption in cloud
computing [4]. The increase of data volume and length aggravates the data storage and transmission
burdens [5]. The best practices for saving power in data centers include reduction of storage disk space,
and network port power consumption [3].

Basically, data compression is a common approach to reduce data size. For example, in a smart grid
scenario, smart meter readings are first compressed in a distributed approach, and then classified and
stored at a remote data center [5]. In general, compression ratios of lossless compression approaches are
not high. Most of them follow Huffman coding [6–10]. On the other hand, there is no guarantee between
the original data and compressed data by using lossy compression methods. Schemes learnt from image
compression based on vector quantization, discrete cosine transform (DCT), wavelet transform (WT),
and so on are adopted [11–15]. Three types of correlations hidden in the data—including temporal
correlation, spatial correlation, and data correlation—are investigated for data compression. In [16],
data correlation according to information theory are leveraged so that data occurred more frequently
are encoded by shorter codes. Since sensor data are usually similar within a short period of time,
many methods deal with temporal correlation [17–21]. Spatial correlation are explored when multiple
sensors are located closely and the sensor data are very similar expectedly [19–25]. In [26], the three
types of correlations are investigated, and errors between the original sensor data and compressed
data are bounded to support data aggregation.

Data sensed periodically by sensors are essential time series, e.g., temperature, humidity, speed,
direction, volumetric flow, pressure, concentration, etc. Bounded-error approximation to the original
sensor data can retain a certain level of quality of the compressed data [27–34]. Literature indicates that
many Bounded-Error Piecewise Linear Approximation (BEPLA) methods have been proposed—e.g.,
Swing filter [31], Slide filter [31], Cont-PLA [27], and mixed-PLA [34]—all of which focused on how to
approximate to the original data with fewer line segments.

In this paper, we further consider resolution reduction when creating BEPLA. On selecting
endpoint for BEPLA, resolution reduction sets a new restriction so that fewer bits are allowed to encode
the endpoints of line segments. A variant method with Swing filter [31], named Swing-RR, is proposed.
Swing-RR has optimal O(1) time and space complexities in processing data records. Using real world
datasets, our experiment results show that although Swing-RR uses more line segments than those
state-of-the-art methods, the size of sensor data are significantly reduced by resolution reduction,
implying that the mean square errors between the original data and compressed data are also smaller.
Of course, energy consumed for delivering and saving compressed data will be significantly lowered.

1.1. Bounded-Error Piecewise Linear Approximation (BEPLA)

Here, we first simply describe BEPLA and then define the problems to be solved in this paper.

Energies 2019, 12, 2523 3 of 20

1.1.1. Definition 1: Bounded-Error Approximation (BEA)

For a time series y(t) = (y1, y2, y3, . . . , yn), an approximation y’(t) = (y1′ , y2′ , y3′ , . . . , yn’) to y(t) is
bounded-error by a preassigned error bound ε when |yi − yi’| ≤ ε for all i = 1, 2, . . . , n. In this paper, yi’
is the approximated data point of data point yi.

In literature, many criteria have been utilized to assess the quality of an approximation against
that of original time series. A criterion called p-norm of the errors between them, denoted by lp-error,
is shown in Equation (1), which measures the distance between them. Commonly used lp-error are
l1-error, l2-error, and l∞-error, which are shown in Equations (2)–(4), respectively. These distances are
frequently employed in time series analyses. l1-error and l2-error are also called Manhattan distance
and Euclidean distance, respectively. Since the whole series are taken into consideration, they are
rarely used in online scenarios, in which every portion of the approximation has to be generated as
soon as available. These two lp-error are considered as an average distance globally, rather than an
instant distance locally. For an approximation that has a small l1-error and/or l2-error, there is no trivial
bound on the error between any particular data point and its approximated data point.

lp − error =
p

√∑n

i=1

∣∣∣yi − y′i
∣∣∣p (1)

l1 − error =
1

√∑n

i=1

∣∣∣yi − y′i
∣∣∣1 = ∑n

i=1

∣∣∣yi − y′i
∣∣∣ (2)

l2 − error =

√∑n

i=1

∣∣∣yi − y′i
∣∣∣2 (3)

l∞ − error =
∞

√∑n

i=1

∣∣∣yi − y′i
∣∣∣∞ = maxi

(∣∣∣yi − y′i
∣∣∣) (4)

Unlike l1-error and l2-error, l∞-error measures the largest error between any data point and its
approximated. When l∞-error is bounded, loose bounds of l1-error and l2-error for any portion of the
approximation can be easily derived. Also, for any line segment si with the length of m, l1-error and
l2-error between si and y(t) are bounded by mε and

√
mε, respectively.

1.1.2. Definition 2: Piecewise Linear Approximation (PLA)

PLA as a classic representation method is often used to describe two-dimensional data series,
((x1, y1), (x2, y2), . . . , (xn, yn)). A PLA to a data series consists of k (k ≤ n) continuous non-overlapping
line segments (s1, s2, . . . , sk), in which si (1 ≤ i ≤ k) approximating to a portion of the original data is
represented by two endpoints, i.e., (si.start.x, si.start.y) and (si.stop.x, si.stop.y). The length of si in
x-axis is expressed as si.length = si.stop.x − si.start.x + 1.

PLA has many applications [35]. For example, in piecewise linear regression, the original data
are divided into several segments, each of which is fitted by using linear regression. Note that linear
regression tries to find the best line to approximate to the original data series, meanwhile minimizing
l2-error. As mentioned above, when using PLA, there is no bound between any particular data point
and its approximated data point.

When ((x1, y1), (x2, y2), . . . , (xn, yn)) is a time series sensed periodically, i.e., xi is the time tick i (1,
2, . . . , n), the series is represented as (y1, y2, . . . , yn) for short in this paper.

1.1.3. Definition 3: Bounded-Error Piecewise Linear Approximation (BEPLA)

Given time series y(t) = (y1, y2, . . . , yn) and preassigned error bound ε, BEPLA y’(t) = (s1, s2, . . . ,
sk), k ≤ n, is a PLA to y(t) and the l∞-error between y(t) and y’(t) is bounded by ε.

In recent years, BEPLA for sensor data have attracted researchers’ eyes once again [29–31,34].
As shown in Figure 1, given time series y(t) and preassigned maximal error ε, we can set upper bound
H(t) and lower bound G(t) for y’(t), as listed in Equations (5) and (6), respectively.

Energies 2019, 12, 2523 4 of 20

H(t) = y(t) + ε (5)

G(t) = y(t) − ε (6)

Although the two εs in both Equations (5) and (6) are the same, they may be different in
different applications.

Energies 2019, 12, 2523 4 of 20

H(t) = y(t) + ε (5)

G(t) = y(t) – ε (6)

Although the two εs in both Equations (5) and (6) are the same, they may be different in different
applications.

Figure 1. Given a bounded error ε for a time series y(t), upper bound H(t) = y(t) + ε, and lower bound
G(t) = y(t) − ε, are defined.

In fact, BEPLA y’(t) = (s1, s2, …, sk) is a PLA to y(t) and the l∞-error between y(t) and y’(t) is
bounded by ε if and only if all points in all line segments are between G(t) and H(t). For any line
segment si, the length of which is m, it is easy to prove that l1-error and l2-error between si and y(t) are
bounded by mε and √𝑚𝜀, respectively. As shown in Figure 2, there are two types of BEPLA, joint and
disjoint. In joint BEPLA, consecutive line segments share an endpoint, i.e., si+1.start is actually si.stop
(1 ≤ i < k), as shown in Figure 2a. In addition to the start point of the first line segment (i.e., s1.start),
for each line segment, the stop point is recorded. Specifically, y’(t) is recorded as (s1.start.y, (s1.length,
s1.stop.y), (s2.length, s2.stop.y), …, (sk.length, sk.stop.y)). Note that s1.start.x = 1, and si.stop.x = si+1.start.x
= si.start.x + si.length.x − 1 for all is, 1 ≤ i < k. When the value of y is stored in p bits and the length of a
line segment is stored in q bits, y’(t) is recorded in p + (p + q) × k bits. Thus, compression ratio for joint
BEPLA can be calculated by using Equation (7).

Compression Ratiojoint = ௣(௞ ା ଵ) ା ௤௞

ଷଶ௡
 = ௣ ା (௣ ା ௤)௞

ଷଶ௡
 (7)

where n is the number of elements in the original time series y(t), and 32 is the number of bits used
to represent yi in y(t), for all is. In disjoint BEPLA, a line segment si+1 does not have to start from the
stop point of si (1 ≤ i < k). In practice, si+1 starts from the next time tick after the stop point of si, i.e.,
si+1.start.x = si.stop.x + 1 for all is, 1 ≤ i < k, as shown in Figure 2b. Since there are no shared endpoints
between consecutive line segments, both start and stop points of a line segment need to be recorded.
Specifically, y’(t) is recorded as ((s1.start.y, s1.length, s1.stop.y), (s2.start.y, s2.length, s2.stop.y), …,
(sk.start.y, sk.length, sk.stop.y)). Note that s1.start.x = 1, and si.stop.x = si.start.x + si.length.x − 1 for all is,
1 ≤ i ≤ k. Thus, y’(t) is recorded in (2 × p + q) × k bits. Compression ratio for disjoint BEPLA is calculated
by using Equation (8).

Compression Ratiodisjoint = (ଶ௣ ା ௤)௞

ଷଶ௡
 (8)

In fact, there are k − 1 hidden line segments whose length is 1 time tick, as the dashed line
segment shown in Figure 2b. They are (si.stop.y, 1, si+1.start.y) for all is, 1 ≤ i < k, and embedded in the
representation of y’(t). In other words, there are actually 2 × k − 1 line segments. These hidden line
segments are not explicitly recorded since they can be derived from the representation of disjoint
BEPLA.

Figure 1. Given a bounded error ε for a time series y(t), upper bound H(t) = y(t) + ε, and lower bound
G(t) = y(t) − ε, are defined.

In fact, BEPLA y’(t) = (s1, s2, . . . , sk) is a PLA to y(t) and the l∞-error between y(t) and y’(t) is
bounded by ε if and only if all points in all line segments are between G(t) and H(t). For any line
segment si, the length of which is m, it is easy to prove that l1-error and l2-error between si and y(t) are
bounded by mε and

√
mε, respectively. As shown in Figure 2, there are two types of BEPLA, joint and

disjoint. In joint BEPLA, consecutive line segments share an endpoint, i.e., si+1.start is actually si.stop
(1 ≤ i < k), as shown in Figure 2a. In addition to the start point of the first line segment (i.e., s1.start),
for each line segment, the stop point is recorded. Specifically, y’(t) is recorded as (s1.start.y, (s1.length,
s1.stop.y), (s2.length, s2.stop.y), . . . , (sk.length, sk.stop.y)). Note that s1.start.x = 1, and si.stop.x =

si+1.start.x = si.start.x + si.length.x − 1 for all is, 1 ≤ i < k. When the value of y is stored in p bits and the
length of a line segment is stored in q bits, y’(t) is recorded in p + (p + q)k bits. Thus, compression ratio
for joint BEPLA can be calculated by using Equation (7).

CompressionRatio joint =
p(k + 1) + qk

32n
=

p + (p + q)k
32n

(7)

where n is the number of elements in the original time series y(t), and 32 is the number of bits used
to represent yi in y(t), for all is. In disjoint BEPLA, a line segment si+1 does not have to start from
the stop point of si (1 ≤ i < k). In practice, si+1 starts from the next time tick after the stop point of
si, i.e., si+1.start.x = si.stop.x + 1 for all is, 1 ≤ i < k, as shown in Figure 2b. Since there are no shared
endpoints between consecutive line segments, both start and stop points of a line segment need to be
recorded. Specifically, y’(t) is recorded as ((s1.start.y, s1.length, s1.stop.y), (s2.start.y, s2.length, s2.stop.y),
. . . , (sk.start.y, sk.length, sk.stop.y)). Note that s1.start.x = 1, and si.stop.x = si.start.x + si.length.x − 1
for all is, 1 ≤ i ≤ k. Thus, y’(t) is recorded in (2p + q)k bits. Compression ratio for disjoint BEPLA is
calculated by using Equation (8).

CompressionRatiodisjoint =
(2p + q)k

32n
(8)

In fact, there are k − 1 hidden line segments whose length is 1 time tick, as the dashed line
segment shown in Figure 2b. They are (si.stop.y, 1, si+1.start.y) for all is, 1 ≤ i < k, and embedded in
the representation of y’(t). In other words, there are actually 2k − 1 line segments. These hidden line
segments are not explicitly recorded since they can be derived from the representation of disjoint BEPLA.

Many BEPLA algorithms have been so far proposed [27–34], trying to extend the line segments
as long as possible and thus minimizing the number of line segments. In 2009, Elmeleegy et al. [31]

Energies 2019, 12, 2523 5 of 20

reinvented Swing filter and Slide filter for joint and disjoint BEPLA, respectively. Swing filter is the
simplest, but not optimal in terms of number of line segments. Its complexities on a data point in
both time and space are O(1). In fact, Swing filter was presented by Gritzali and Papakonstantinou in
1983 [33]. An optimal joint BEPLA algorithm, referred to Cont-PLA in this paper, was introduced by
Hakimi and Schmeichel in 1991 [27,28]. Slide filter is optimal in minimizing number of line segments.
Actually, an optimal disjoint BEPLA algorithm was proposed by O’Rourke in 1991 [32]. Xie et al. [29]
in 2014 improved the running time efficiency of Slide filter. Zhao et al. [30] in 2016 improved the
efficiency of Swing filter based on [29]. Using convex hull and similar techniques, the amortized time
complexity of both Cont-PLA and Slide filter on a data point are also O(1).Energies 2019, 12, 2523 5 of 20

(a) (b)

Figure 2. BEPLA. In (a), joint BEPLA, two joint line segments that share an endpoint are used to
approximate to y(t) shown in Figure 1. In (b), disjoint BEPLA, two disjoint line segments that do not
share endpoints are used to approximate to y(t). In fact, between them, there is a hidden line segment
(dashed), the length of which is one time tick.

Many BEPLA algorithms have been so far proposed [27–34], trying to extend the line segments
as long as possible and thus minimizing the number of line segments. In 2009, Elmeleegy et al. [31]
reinvented Swing filter and Slide filter for joint and disjoint BEPLA, respectively. Swing filter is the
simplest, but not optimal in terms of number of line segments. Its complexities on a data point in both
time and space are O(1). In fact, Swing filter was presented by Gritzali and Papakonstantinou in 1983
[33]. An optimal joint BEPLA algorithm, referred to Cont-PLA in this paper, was introduced by
Hakimi and Schmeichel in 1991 [27,28]. Slide filter is optimal in minimizing number of line segments.
Actually, an optimal disjoint BEPLA algorithm was proposed by O’Rourke in 1991 [32]. Xie et al. [29]
in 2014 improved the running time efficiency of Slide filter. Zhao et al. [30] in 2016 improved the
efficiency of Swing filter based on [29]. Using convex hull and similar techniques, the amortized time
complexity of both Cont-PLA and Slide filter on a data point are also O(1).

For data compression consideration, each line segment consumes p + q bits in joint BEPLA while
2 × p + q bits in disjoint BEPLA. Since disjoint BEPLA algorithms have higher freedom in selecting the
start points of line segments, they usually use fewer line segments. As shown in [29], in terms of bits
representing the resultant BEPLA, Cont-PLA, and Slide filter mutually outperformed each other on
different datasets, and both achieved 15–25% superiority over swing filer in all datasets. In 2015, Luo
et al. [34] introduced Mixed-PLA that uses both joint and disjoint line segments. The authors
employed dynamic programming technique and showed that Mixed-PLA were roughly 15% better
than Cont-PLA and Slide filter in terms of bits representing the resultant BEPLA.

1.2. BEPLA with Resolution Reduction

Here, we define the problems that BEPLA with resolution reduction may face.
As described above, the only requirement of a proper BEPLA is that all line segments must be

between G(t) and H(t). In fact, even the x-coordinates of line segment endpoints are not restricted to
be aligned with the time ticks, as a result, the x- and y-coordinates of line segment endpoints are real
numbers, and stored as float point numbers, which are typically 32 bits long. If we set some restriction
on position of line segment endpoints, we can use less number of bits to encode x- and y-coordinates
of them.

In this paper, resolution reduction is further taken into consideration. In practice, error bounds
(ε) typically range from 0.5% to 5% of the whole range of possible sensor data [29,31,34]. We note that
before data compression, it can apply an extreme filter [36] to remove the influence of unfavorable
data points. Therefore, 2 × ε is from 1% to 10%. If r bits are used to approximate to the data, the whole
range of possible sensor data is then divided into 2r blocks, and the center of each block is coded
accordingly, named coded data point in this paper. When the block size (1/2r) is smaller than 2 × ε,
there must be at least ⌊ε × 2r+1⌋ coded data points between G(t) and H(t) at any particular time. Table
1 shows the minimal resolution (in bits), calculated by using Equation (9), for typical error bounds.

Minimal Resolution (ε) = ⌈−log2(ε) − 1⌉ (9)

Figure 2. BEPLA. In (a), joint BEPLA, two joint line segments that share an endpoint are used to
approximate to y(t) shown in Figure 1. In (b), disjoint BEPLA, two disjoint line segments that do not
share endpoints are used to approximate to y(t). In fact, between them, there is a hidden line segment
(dashed), the length of which is one time tick.

For data compression consideration, each line segment consumes p + q bits in joint BEPLA while
2p + q bits in disjoint BEPLA. Since disjoint BEPLA algorithms have higher freedom in selecting the
start points of line segments, they usually use fewer line segments. As shown in [29], in terms of bits
representing the resultant BEPLA, Cont-PLA, and Slide filter mutually outperformed each other on
different datasets, and both achieved 15–25% superiority over swing filer in all datasets. In 2015,
Luo et al. [34] introduced Mixed-PLA that uses both joint and disjoint line segments. The authors
employed dynamic programming technique and showed that Mixed-PLA were roughly 15% better
than Cont-PLA and Slide filter in terms of bits representing the resultant BEPLA.

1.2. BEPLA with Resolution Reduction

Here, we define the problems that BEPLA with resolution reduction may face.
As described above, the only requirement of a proper BEPLA is that all line segments must be

between G(t) and H(t). In fact, even the x-coordinates of line segment endpoints are not restricted to
be aligned with the time ticks, as a result, the x- and y-coordinates of line segment endpoints are real
numbers, and stored as float point numbers, which are typically 32 bits long. If we set some restriction on
position of line segment endpoints, we can use less number of bits to encode x- and y-coordinates of them.

In this paper, resolution reduction is further taken into consideration. In practice, error bounds (ε)
typically range from 0.5% to 5% of the whole range of possible sensor data [29,31,34]. We note that
before data compression, it can apply an extreme filter [36] to remove the influence of unfavorable data
points. Therefore, 2ε is from 1% to 10%. If r bits are used to approximate to the data, the whole range
of possible sensor data is then divided into 2r blocks, and the center of each block is coded accordingly,
named coded data point in this paper. When the block size (1/2r) is smaller than 2ε, there must be at
least bε2r+1

c coded data points between G(t) and H(t) at any particular time. Table 1 shows the minimal
resolution (in bits), calculated by using Equation (9), for typical error bounds.

Minimal Resolution (ε) = d−log2(ε) −1e (9)

Energies 2019, 12, 2523 6 of 20

in which d·e is ceiling function. In other words, when r is larger than or equal to the minimal resolution
for the preassigned error bound ε, for any particular data point y, there must be at least one coded data
point y* such that the distance between y* and y is bounded by ε.

Table 1. Minimal resolution (in bits) for error bounds.

Error Bound (%) 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5

Minimal Resolution (Bits) 9 8 8 7 7 6 5 5 4 4

When resolution reduction is adopted by BEPLA algorithms, the endpoints of line segments must
be all coded data points, as shown in Figure 3, where coded data points are depicted as black circles.
We must note that in this configuration, it does not mean the approximated data points, except the
start point and stop point, on a line segment are coded data points.

Apparently, adoption of resolution reduction by BEPLA puts a new restriction on endpoint
selection for line segments. As shown in Figure 3a,b, the first line segments in both joint and disjoint
BEPLA stop after three data points are examined. However, in Figure 2a,b, the first line segments in
both joint and disjoint BEPLA stop after six data points are examined and their lengths in time are both
five time ticks, implying that the adoption of resolution reduction might shorten the line segments
used to approximate to the original time series, thus generating more line segments. Referring to
Equations (7) and (8), even when the number of line segments (k) increases, we can reduce the size
of BEPLA by using fewer bits (p and q bits) to represent the approximated data point and the length
of a line segment. For example, when the error bound is set to 0.5% and minimal resolution is used,
the y-coordinate of a line segment endpoint is stored in 7 bits rather than 32 bits. The reduction is
significant for both Equations (7) and (8) and usually can compensate for the increase of k, i.e., the
length of a BEPLA.

Energies 2019, 12, 2523 6 of 20

in which ⌈.⌉ is ceiling function. In other words, when r is larger than or equal to the minimal resolution
for the preassigned error bound ε, for any particular data point y, there must be at least one coded
data point y* such that the distance between y* and y is bounded by ε.

Table 1. Minimal resolution (in bits) for error bounds.

Error Bound (%) 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5
Minimal Resolution (Bits) 9 8 8 7 7 6 5 5 4 4

When resolution reduction is adopted by BEPLA algorithms, the endpoints of line segments
must be all coded data points, as shown in Figure 3, where coded data points are depicted as black
circles. We must note that in this configuration, it does not mean the approximated data points, except
the start point and stop point, on a line segment are coded data points.

Apparently, adoption of resolution reduction by BEPLA puts a new restriction on endpoint
selection for line segments. As shown in Figure 3a,b, the first line segments in both joint and disjoint
BEPLA stop after three data points are examined. However, in Figure 2a,b, the first line segments in
both joint and disjoint BEPLA stop after six data points are examined and their lengths in time are
both five time ticks, implying that the adoption of resolution reduction might shorten the line
segments used to approximate to the original time series, thus generating more line segments.
Referring to Equations (7) and (8), even when the number of line segments (k) increases, we can
reduce the size of BEPLA by using fewer bits (p and q bits) to represent the approximated data point
and the length of a line segment. For example, when the error bound is set to 0.5% and minimal
resolution is used, the y-coordinate of a line segment endpoint is stored in 7 bits rather than 32 bits.
The reduction is significant for both Equations (7) and (8) and usually can compensate for the increase
of k, i.e., the length of a BEPLA.

(a) (b)

Figure 3. BEPLA with resolution reduction. (a) Joint BEPLA. (b) Disjoint BEPLA. Coded data points
are depicted as black circles.

In this paper, the simplest method, Swing filter [31], is extended to take resolution reduction into
consideration. To the best of the authors’ knowledge, Swing-RR is the first BEPLA algorithm that
adopts resolution reduction.

Swing-RR generates disjoint BEPLA rather than joint BEPLA. Its time and space complexities
are both O(1), the same as those of Swing filter. Hence, Swing-RR can be applied to be used by sensor
networks, edge computing, and scenarios in which computing power and energy are limited. For
real-time event detection and processing, i.e., line segments must be generated before a preassigned
number of data points is sensed, the length of line segments can be bounded by a maximal delay in
Swing-RR.

Real world datasets, the UCR time series classification archive [37], are used to investigate the
performance of Swing-RR. Experiment results show that Swing-RR significantly outperforms Swing
filter. The bits used to represent BEPLA generated by Swing-RR are only 20–35% of those produced
by Swing filter for typical error bounds. Swing-RR generates more line segments than Swing filter.
The lengths of its line segments in time are shorter, thus better fitting the original data. The mean
square errors of BEPLA generated by Swing-RR is smaller than those produced by Swing filter.

Figure 3. BEPLA with resolution reduction. (a) Joint BEPLA. (b) Disjoint BEPLA. Coded data points
are depicted as black circles.

In this paper, the simplest method, Swing filter [31], is extended to take resolution reduction into
consideration. To the best of the authors’ knowledge, Swing-RR is the first BEPLA algorithm that
adopts resolution reduction.

Swing-RR generates disjoint BEPLA rather than joint BEPLA. Its time and space complexities are both
O(1), the same as those of Swing filter. Hence, Swing-RR can be applied to be used by sensor networks,
edge computing, and scenarios in which computing power and energy are limited. For real-time event
detection and processing, i.e., line segments must be generated before a preassigned number of data
points is sensed, the length of line segments can be bounded by a maximal delay in Swing-RR.

Real world datasets, the UCR time series classification archive [37], are used to investigate the
performance of Swing-RR. Experiment results show that Swing-RR significantly outperforms Swing
filter. The bits used to represent BEPLA generated by Swing-RR are only 20–35% of those produced by
Swing filter for typical error bounds. Swing-RR generates more line segments than Swing filter. The
lengths of its line segments in time are shorter, thus better fitting the original data. The mean square
errors of BEPLA generated by Swing-RR is smaller than those produced by Swing filter.

Energies 2019, 12, 2523 7 of 20

2. Method

This section describes how to generate a BEPLA by Swing-RR.
Algorithm 1 shows the pseudocode of Swing-RR (). Given error bound ε, maximal delay delay,

and resolution r bits in length, whenever a new data point d is sensed, d is processed by Swing-RR(d)
and line segments are generated on the fly.

Similar to Swing filter, Swing-RR maintains a data structure for holding possible line segments.
As shown in Figure 4, two auxiliary lines s→us and s→ls are maintained. The possible line segments
for the current processing window must lie within s→us and s→ls. Both auxiliary lines start from the
start point s of the current processing window.

Algorithm 1: Swing-RR(d), given error bound ε, maximal delay delay, and resolution r bits in length

1: segment.length++ // segment.length is initialized to −1 fora new window
2: if (segment.length == 0) then // the first data point in this window
3: segment.start s = picking up a coded data point between d + ε and d − ε;
4: else if (segment.length == 1) then // the second data point in this window
5: us = d + ε; ls = d − ε;
6: check_range ();
7: else if ((d + ε is below s→ls) or (d − ε is above s→us)
8: {close this window; generate a line segment; initialize a new window;}
9: else
10: if (d + ε is below s→us) us = d + ε; // s→us swing down
11: if (d − ε is above s→ls) ls = d − ε; // s→ls swing up
12: check_range ();
13: end if
14:
15: Function check_range ()
16: u = the point at d.t extended from s→us;
17: l = the point at d.t extended from s→ls;
18: u− = the largest coded data point smaller than or equal to u;
19: l+ = the smallest coded data point larger than or equal to l;
20: if (l+ ≤ u−) then // there exists at least one coded data point
21: segment.stop = (l+ + u−)/2;
22: if (segment.length ≥ delay) // Swing-RR is forced to output a line segment
23: {close this window; generate a line segment; initialize a new window;}
24: end if
25: else // there exist no coded data points
26: {close this window; generate a line segment; initialize a new window;}
27: end if

When a window is initialized, a coded data point in the bounded range of the first sensed data
point is chosen, probably randomly (please refer to lines 2 and 3 of Algorithm 1 and Figure 4a). In this
experiment, a coded data point nearest to the original data is chosen.

When the second data point d in this window is processed, two support points, us = d + ε and ls =

d − ε, are initialized accordingly (please refer to lines 4~6 of Algorithm 1 and Figure 4b). The upper
support point us bounds the maximal slope of possible line segments, i.e., s→us. The lower support
point ls bounds the minimal slope of possible line segments, i.e., s→ls.

Similar to Swing filter, whenever a new data point d is sensed, the two support points, us and ls,
are maintained according to the positions of d + ε and d − ε. s→us may swing down, and s→ls may
swing up (please refer to lines 7~11).

If d + εis below s→ls and thus s→us will swing down too much, a line segment is then generated.
Also, if d − εis above s→us and thus s→ls will swing up too much, a line segment is generated (please
refer to lines 7~8). Otherwise, us and ls are maintained to update the range of possible line segments
(please refer to lines 10 and 11). If d − εis above s→ls, s→ls swings up by updating ls = d − ε, as shown in
Figure 4a,b. If d + εis below s→us, s→us swings down by updating us = d + ε, as shown in Figure 4c,d.

Energies 2019, 12, 2523 8 of 20

When resolution reduction is adopted, please see function check_range(), Swing-RR further checks
to see whether there are coded data points between l and u, which are extended from s→ls and s→us,
respectively. Specifically, Swing-RR calculates l+ and u− where l+ is the smallest coded data point
larger than or equal to l, and u− is the largest coded data point smaller than or equal to u, as shown
in Figure 4b–d. We note that s, l+, and u− must be coded data points, while us, ls, u, and l are not
restricted to be coded data points. When l+ is smaller than or equal to u−, there must be at least one
data point between l and u. A coded data point between l+ and u− is chosen as the stop point of a line
segment candidate for this window. Swing-RR adopts the middle coded data point between l+, and u−

(please refer to line 21). On the other hand, when l+ is larger than u−, there is no coded data point
between l and u, as shown in Figure 4d. Swing-RR generates a line segment, and initializes a new
window (please refer to line 26 and Figure 4e).

When the length of a line segment candidate is equal to delay, Swing-RR generates the line segment
candidate and initializes a new window (please refer to lines 22–24).

Adoption of resolution reduction puts a restriction on endpoint selection for BEPLA. As shown
in Figure 4d, when there are no coded data points between l and u, Swing-RR has to close the
current window and generates a line segment, while Swing filter can further process new data points.
Obviously, the higher the resolution, the more the coded data points between d − ε and d + ε. When the
resolution r increases, there might be more coded data points between l and u. As shown in Figure 4f,
when r is increased by one, there is only one coded data point between l and u. Swing-RR does not
have to close the window.

Energies 2019, 12, 2523 8 of 20

(please refer to lines 10 and 11). If d − ε is above s→ls, s→ls swings up by updating ls = d − ε, as shown
in Figure 4a,b. If d + ε is below s→us, s→us swings down by updating us = d + ε, as shown in Figure
4c,d.

When resolution reduction is adopted, please see function check_range(), Swing-RR further
checks to see whether there are coded data points between l and u, which are extended from s→ls and
s→us, respectively. Specifically, Swing-RR calculates l+ and u− where l+ is the smallest coded data point
larger than or equal to l, and u− is the largest coded data point smaller than or equal to u, as shown in
Figure 4b–d. We note that s, l+, and u− must be coded data points, while us, ls, u, and l are not restricted
to be coded data points. When l+ is smaller than or equal to u−, there must be at least one data point
between l and u. A coded data point between l+ and u− is chosen as the stop point of a line segment
candidate for this window. Swing-RR adopts the middle coded data point between l+, and u− (please
refer to line 21). On the other hand, when l+ is larger than u−, there is no coded data point between l
and u, as shown in Figure 4d. Swing-RR generates a line segment, and initializes a new window
(please refer to line 26 and Figure 4e).

When the length of a line segment candidate is equal to delay, Swing-RR generates the line
segment candidate and initializes a new window (please refer to lines 22–24).

Adoption of resolution reduction puts a restriction on endpoint selection for BEPLA. As shown
in Figure 4d, when there are no coded data points between l and u, Swing-RR has to close the current
window and generates a line segment, while Swing filter can further process new data points.
Obviously, the higher the resolution, the more the coded data points between d − ε and d + ε. When
the resolution r increases, there might be more coded data points between l and u. As shown in Figure
4f, when r is increased by one, there is only one coded data point between l and u. Swing-RR does
not have to close the window.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Swing-RR. (a) Process first and second data points. (b) Process third data point. (c) Process
fourth data point. (d) Process fifth data point. (e) Generate a line segment. (f) Increase the resolution.
Figure 4. Swing-RR. (a) Process first and second data points. (b) Process third data point. (c) Process
fourth data point. (d) Process fifth data point. (e) Generate a line segment. (f) Increase the resolution.

Energies 2019, 12, 2523 9 of 20

3. Experiment

In this section, we investigate the performance of Swing-RR. An archive which consists of several
real-world datasets [37] is used. As that in [34], eight datasets are chosen: Cricket_X, Cricket_Y,
Cricket_Z, FaceFour, Lighting2, Lighting7, MoteStrain, and wafer. Table 2 listed related information of
these datasets. All data points are stored in IEEE 754 single precision floating point format [38], i.e.,
32 bits are used to store a data point.

Note that x-coordinates of line segment endpoints in BEPLA produced by Swing filter and
Swing-RR are aligned with time ticks. As a result, the lengths of line segments are all the same in the
following experiment.

Table 2. Dataset description 1.

Dataset Length Minimal Maximal

Cricket_X 117,000 −4.766200 11.494000
Cricket_Y 117,000 −9.774500 6.838500
Cricket_Z 117,000 −4.758300 11.924000
FaceFour 30,800 −4.687600 5.908100
Lignting2 38,220 −1.396000 23.131000
Lignting7 22,330 −1.781200 17.413000

MoteStrain 105,168 −8.409300 2.468400
wafer 152,000 −3.054000 11.787000

1 The precision of data points is six digits after the decimal point.

3.1. Experimental Setup

In addition to typical error bounds ranging from 0.5% to 5% of the whole range of possible data
points, in this experiment, we also examine scenarios of a small error bound, ranging between 0.1%
and 0.4%. Note that in this case, a higher resolution is needed to ensure the existence of some coded
data points, the values of which are between the upper and lower bounds. As well, when the error
bound is small, the space for BEPLA follows. Consequently, the expected lengths of line segments of
BEPLA are also short, thus further shortening the maximal delay so that fewer bits are required to
record the lengths of these line segments. Table 3 shows the resolution and maximal delays (in time
ticks) employed in this experiment.

Table 3. Scenario examined in the experiment.

Error Bound (ε) Resolution Maximal Delay

0.1% 9, 10, 11 15, 31, 63, 127
0.2% 8, 9, 10 15, 31, 63, 127
0.3% 8, 9, 10 15, 31, 63, 127
0.4% 7, 8, 9, 10 63, 127, 255, 511
0.5% 7, 8, 9, 10 63, 127, 255, 511
1% 6, 7, 8, 9 63, 127, 255, 511
2% 5, 6, 7, 8 63, 127, 255, 511
3% 5, 6, 7, 8 63, 127, 255, 511
4% 4, 5, 6, 7 63, 127, 255, 511
5% 4, 5, 6, 7 63, 127, 255, 511

Maximal delays are set usually based on the applications of sensor networks. The more in real
time requirements, the smaller the maximal delays. However, the lengths of line segments are more
restricted by the given error bound. When the maximal delays are too short, long line segments, if they
exist, are forced to be cut. When the maximal delays are longer than the lengths of most line segments,
bit usage in recording the lengths of line segments is inefficient.

Energies 2019, 12, 2523 10 of 20

Given an error bound ε, for all datasets, Swing-RR utilizes different resolutions, particularly from
the minimal resolution (please refer to Equation (9) and Table 1) to higher. When minimal resolution is
employed, there is at least one coded data point, the value of which is between y − ε to y + ε for a data
point y. When one more bit is used for the resolution, the number of coded data points will be doubled.

We compare the performance of Swing-RR and Swing filter [31]. Three criteria are investigated,
including compression ratio, lengths of line segments and their distribution, and mean square error
(MSE). MSE is calculated by Equation (10).

MSE =

√∑n
i = 1

∣∣∣yi − y′i
∣∣∣2

n
(10)

Previous methods focused on how to approximate to the original data by using fewer line segments.
With resolution reduction, we further examine the compression ratios for different resolutions and
maximal delays. Investigation on the lengths of line segments and their distribution helps us understand
the tradeoff regarding the selection of maximal delays. BEPLA generated by Swing-RR and Swing filter
are all bounded by ε. MSE related with l2-error provides additional information about these BEPLA.
In general, a BEPLA with a smaller MSE fits better to the original data than those with larger MSEs do.

3.2. Compression Ratio

Figure 5 shows the performance comparison between Swing-RR and Swing filter given different
sizes of BEPLA, where maximal delays and resolutions are discriminated by different point types
and colors, respectively. Specifically, we calculate the ratio of the size (in bits) of the two BEPLAs
generated by Swing-RR and Swing filter. For all eight datasets, Swing-RR uses fewer bits significantly
than Swing filter does. For typical error bounds ranging from 0.5% to 5%, when comparing with the
number of bits needed by Swing filter to represent its BEPLA, only 20–35% of bits are consumed by
Swing-RR. Even for a much smaller error bound, e.g., 0.1–0.4%, Swing-RR needs only 30–45% of bits
required by Swing filter.

The upper bound H(t) and lower bound G(t) of ε restrict the space of BEPLA. As shown in
Figures 6 and 7, when the error bound is enlarged, the bits used to represent BEPLA generated by both
Swing-RR and Swing filter are further reduced as expected. Since the figures for all datasets are very
similar, only a part of them is shown.

For the eight datasets employed, Swing-RR using the minimal resolution (please refer to Equation
(9) and Table 1) always generates the best compression ratios. As shown in Figure 5a–h, when the
error bound is set to 4% or 5%, Swing-RR with minimal resolution (4 bits) has the most significant bit
reduction. Compared to the number of bits needed by Swing filter to represent its BEPLA, only about
20% of bits (colored in orange) are consumed by Swing-RR. When the error bound is set to 2% or 3%,
Swing-RR with minimal resolution (5 bits) has the most significant bit reduction again, only about 25%
(colored in green) of bits are required, compared to that needed by Swing filter. For other error bounds,
similar results are conducted.

In most scenarios, given an error bound, the locations of points are strongly related to their colors
(which represent the resolution), as shown in Figure 5a–h. In fact, the differences on numbers of line
segments of BEPLA generated by Swing-RR with different resolutions and maximal delays are small,
compared to the total number of line segments. We will show this in the following. Also, please refer
to Equations (7) and (8), because the change of k (i.e., the number of line segments) is small, p (i.e., bits
for resolution), and q (i.e., bits for maximal delay) play more important roles in affecting the size of
compressed data.

Energies 2019, 12, 2523 11 of 20
Energies 2019, 12, 2523 11 of 20

(a)

(b)

(c)

Figure 5. Cont.

Energies 2019, 12, 2523 12 of 20
Energies 2019, 12, 2523 12 of 20

(d)

(e)

(f)

Figure 5. Cont.

Energies 2019, 12, 2523 13 of 20
Energies 2019, 12, 2523 13 of 20

(g)

(h)

Figure 5. Performance comparison between Swing-RR and Swing filter in the size of BEPLA. (a)
Cricket_X; (b) Cricket_Y; (c) Cricket_Z; (d) FaceFour; (e) Lignting2; (f) Lighting7; (g) MoteStrain; (h)
wafer.

On the other hand, given an error bound, the resolution plays an important role in reducing size
of compressed data than the maximal delay does. In Figure 5a–h, the points of different point types
(which represent the maximal delay) but in a same color (which shows the resolution) are very close.

Figure 6 shows the sizes of the BEPLA generated by Swing filter and Swing-RR and their energy
consumption, given different resolutions to the Cricket_X dataset. Scenarios on maximal delays of 63
and 127 are shown. Here energy consumption EC is defined as

EC = N × U_E (11)

where N is the number of bit actually transmitted, and U_E is the energy consumed for delivering a
bit, a typical value of which is 2.5 PJ/bit (i.e., pico joule per bit) [39]. As described above, Swing-RR
outperforms Swing filter significantly. Swing-RR with the minimal resolution achieves a much better
compression than Swing filter does. Since IoT data are transmitted all year long, maybe continuously
or intermittently, from a long term viewpoint, the accumulatively saved energy should be huge.

Figure 5. Performance comparison between Swing-RR and Swing filter in the size of BEPLA.
(a) Cricket_X; (b) Cricket_Y; (c) Cricket_Z; (d) FaceFour; (e) Lignting2; (f) Lighting7; (g) MoteStrain;
(h) wafer.

On the other hand, given an error bound, the resolution plays an important role in reducing size
of compressed data than the maximal delay does. In Figure 5a–h, the points of different point types
(which represent the maximal delay) but in a same color (which shows the resolution) are very close.

Figure 6 shows the sizes of the BEPLA generated by Swing filter and Swing-RR and their energy
consumption, given different resolutions to the Cricket_X dataset. Scenarios on maximal delays of 63
and 127 are shown. Here energy consumption EC is defined as

EC = N * U_E (11)

where N is the number of bit actually transmitted, and U_E is the energy consumed for delivering a
bit, a typical value of which is 2.5 PJ/bit (i.e., pico joule per bit) [39]. As described above, Swing-RR
outperforms Swing filter significantly. Swing-RR with the minimal resolution achieves a much better
compression than Swing filter does. Since IoT data are transmitted all year long, maybe continuously

Energies 2019, 12, 2523 14 of 20

or intermittently, from a long term viewpoint, the accumulatively saved energy should be huge. Note
that Figure 6a and Figure 6b are very similar.

Figure 7 shows the size of the BEPLA generated by Swing filter and Swing-RR and their energy
consumption, given different maximal delays to the wafer dataset. For a typical error bound, i.e., from
0.5% to 5%, and resolutions, i.e., 7 and 8 bits, Swing-RR with a maximal delay of 127 or 255 compresses
the wafer dataset better than Swing-RR with a maximal delay of 63 or 511 does. When the maximal
delay is too short, as mentioned before, long line segments will be cut. When the maximal delay is
longer than the lengths of most line segments, some bits allocated to record the length will not be used,
thus bit efficiency is reduced.

As described above, Slide filter and Cont-PLA mutually outperform each other given different
datasets, while Mixed-PLA outperforms Swing-filter, Slide filter, and Cont-PLA on the eight real world
datasets [29,34]. The size of BEPLA generated by Mixed-PLA is about 50–60% of that produced by
Swing filter. These methods focus on how to minimize the number of line segments. Furthermore,
when using minimal resolution, Swing-RR requires only 20–25% of bits. Of course, the accumulatively
saved energy is also huge.

1

(a)

(b)

Figure 6

(a)

Figure 6. Size of compressed data and data delivery energy consumption of Swing filter and Swing-RR
where the latter is shown given different resolutions. (a) Cricket_X (delay = 63); (b) Cricket_ X
(delay = 127)

Energies 2019, 12, 2523 15 of 20

1

(a)

(b)

Figure 6

(a)

2

(b)

Figure 7

(a) (b)

(c) (d)

Figure 8b

Figure 7. Size of compressed data and data delivery energy consumption of Swing-RR on different
maximal delays given Wafer. (a) Wafer (resolution = 7 bits); (b) Wafer (resolution = 8 bits).

3.3. Number of Segments and Their Length

Figure 8a,b show the numbers of line segments required to represent BEPLA generated by
Swing-RR on the Lighting7 dataset given different maximal delays and resolutions. For an error bound,
as mentioned above, the differences of numbers of line segments generated on different maximal
delays are small, compared to the total number of line segments. On the other hand, the bit reduction
caused by using fewer bits to represent the length of line segments is trivial. This is also true for
different resolutions.

In fact, the distribution of numbers of line segments and their lengths follows power law [40].
Most line segments are short. Only a small portion is long. As shown in Figure 8c, given the Lighting7
dataset, when error bound is 1%, the numbers of short line segments produced by Swing filter and
Swing-RR on different maximal delays (63, 127, 255) are not far away. The peaks in length 63 for both
schemes show that some line segments are longer than 63. So long line segments are cut at this length.
As shown in Figure 8a, when the error bound is 1%, roughly 2,500 line segments in the BEPLA are
generated by Swing-RR on different maximal delays. Among them, as shown in Figure 8c, there are
about 1000, the length of which is 1, and about 500, the length of which is 2. More than one half of line
segments are very short. In fact, less than 100 line segments are longer than 63. As a result, it might

Energies 2019, 12, 2523 16 of 20

be worth to specify a smaller maximal delay and thus represent the lengths of line segments with
fewer bits.

Further, the length of an IP header is about 32 bytes (between 20 and 60 bytes), meaning that
256 bits are ordinarily accompanied with the delivered data of a line segment. The energy consumed
for transmitting an IP header, denoted by EIH, is defined as

EIH = 256 * 2.5 PJ * M (12)

where M is the number of line segments generated. As shown in Figure 8, we can see that the total
numbers of line segments produced by Swing filter are higher than those yielded by Swing-RR. For
example, in Figure 8b, when error bounded is 1, the numbers generated by Swing-RR are about 2500,
whereas those produced by Swing filter are about 4500. The difference between the two consumed
energies is 259 * 2.5 * (4500 − 2500) PJ. The phenomenon also occurs in Figure 8d, i.e., accumulated
number of line segments. In Figure 8, we do not show the corresponding energy since it is trivial. Only
M is shown. We can obtain the consumed energy by multiplying M with 256 * 2.5 PJ.

2

(b)

Figure 7

(a) (b)

(c) (d)

Figure 8b

Figure 8. Number of line segments and their distribution according to segment length. (a) Lighting7
(resolution = 7 bits). (b) Lighting7 (delay = 127). (c) Lighting7 (ε = 1%, resolution = 7 bits). (d) Lighting7
(ε = 1%, resolution = 7 bits).

3.4. Mean Square Error

Figure 9 shows the MSE between the original data and BEPLA generated by Swing filter and
Swing-RR, given the FaceFour dataset. Swing filter yields joint BEPLA, in which the start point of a
line segment is the stop point of its immediate previous line segment. To extend the line segments as
long as possible and thus minimize the number of line segments, the line segments generated by Swing

Energies 2019, 12, 2523 17 of 20

filter usually reach the upper H(t) or lower bound G(t). On the other hand, the available approximated
data points for Swing-RR are seldom close to H(t) or G(t). When Swing-RR is employed, the start
point of each line segment in disjoint BEPLA is the coded data point nearest to the original data point.
Furthermore, most line segments are very short. In fact, there are more than one half of line segments,
the lengths of which are 1 or 2 time ticks. For these short line segments, it is expected that the stop
points are also individually close to their own original data. As a result, BEPLA produced by Swing-RR
has smaller MSE than that yielded by Swing filter.

When resolution increases, many more coded data points will be there between the upper and
lower bounds. The MSE between the original data and BEPLA generated by Swing-RR with a smaller
resolution is further reduced, as shown in Figure 9a,b.

Energies 2019, 12, 2523 17 of 20

approximated data points for Swing-RR are seldom close to H(t) or G(t). When Swing-RR is
employed, the start point of each line segment in disjoint BEPLA is the coded data point nearest to
the original data point. Furthermore, most line segments are very short. In fact, there are more than
one half of line segments, the lengths of which are 1 or 2 time ticks. For these short line segments, it
is expected that the stop points are also individually close to their own original data. As a result,
BEPLA produced by Swing-RR has smaller MSE than that yielded by Swing filter.

When resolution increases, many more coded data points will be there between the upper and
lower bounds. The MSE between the original data and BEPLA generated by Swing-RR with a smaller
resolution is further reduced, as shown in Figure 9a,b.

(a) (b)

Figure 9. MSE of BEPLA generated by Swing-RR and Swing filter. (a) FaceFour (delay = 127). (b)
MoteStrain (delay = 127).

4. Conclusions

In Industry 4.0, sensors play a very important role in manufacturing automation. However, the
big data generated by these sensors consumes a lot of energy, for transmitting data from sensors to
data center, and data storage in the data centers. The best practices to improve data center power
saving include reduction of storage disk space, and network port power consumption. Data
compression is a common approach to reduce the amount of big data transmitted via networks.
BEPLA retains a certain level of quality of the original sensor data for later analysis. Previous methods
focused on how to extend the line segments as long as possible, thus minimizing the number of line
segments in BEPLA. However, the length of a line segment, or the length that a line segment can
extend, largely depends on the given error bound and data variation.

In this paper, Swing-RR is presented to produce disjoint BEPLA with Resolution Reduction for
sensor data compression. To the best of authors’ knowledge, it is the first attempt to take Resolution
Reduction into consideration for BEPLA. The real-world datasets [37] are used to evaluate the
performance and energy consumption of Swing-RR. Our experimental results show that Swing-RR
outperforms Swing filter. For typical error bounds, i.e., 0.5–5%, Swing-RR with minimal resolution
achieves much better compression ratios. Swing-RR uses 7 (for 0.5%) to 4 (for 5%) bits, rather than 32
bits, to store the approximated data point. Refer to Equations (7) and (8), since p decreases
significantly, the size reduction of BEPLA is obvious. Compared to the number of bits needed by
Swing filter to represent its BEPLA, Swing-RR uses only 20–25% of bits, while state-of-the-art
methods utilize 50–60% of bits. As a result, fewer bits are transmitted in the network and less disk
space are required to store the sensor data in the data center. Generally, the power consumption is
largely reduced. As well, the MSE of BEPLA generated by Swing-RR is smaller than that produced
by Swing filter.

The resolution plays a more important role than the maximal delay. In this study, for all datasets,
Swing-RR using the minimal resolution always yields better compression ratios than using a higher
resolution does. Most line segments are short. Only a small portion is long. Thus, it is worth using
fewer bits to encode the lengths of segments.

Figure 9. MSE of BEPLA generated by Swing-RR and Swing filter. (a) FaceFour (delay = 127).
(b) MoteStrain (delay = 127).

4. Conclusions

In Industry 4.0, sensors play a very important role in manufacturing automation. However, the
big data generated by these sensors consumes a lot of energy, for transmitting data from sensors to data
center, and data storage in the data centers. The best practices to improve data center power saving
include reduction of storage disk space, and network port power consumption. Data compression
is a common approach to reduce the amount of big data transmitted via networks. BEPLA retains
a certain level of quality of the original sensor data for later analysis. Previous methods focused on
how to extend the line segments as long as possible, thus minimizing the number of line segments in
BEPLA. However, the length of a line segment, or the length that a line segment can extend, largely
depends on the given error bound and data variation.

In this paper, Swing-RR is presented to produce disjoint BEPLA with Resolution Reduction
for sensor data compression. To the best of authors’ knowledge, it is the first attempt to take
Resolution Reduction into consideration for BEPLA. The real-world datasets [37] are used to evaluate
the performance and energy consumption of Swing-RR. Our experimental results show that Swing-RR
outperforms Swing filter. For typical error bounds, i.e., 0.5–5%, Swing-RR with minimal resolution
achieves much better compression ratios. Swing-RR uses 7 (for 0.5%) to 4 (for 5%) bits, rather than
32 bits, to store the approximated data point. Refer to Equations (7) and (8), since p decreases
significantly, the size reduction of BEPLA is obvious. Compared to the number of bits needed by Swing
filter to represent its BEPLA, Swing-RR uses only 20–25% of bits, while state-of-the-art methods utilize
50–60% of bits. As a result, fewer bits are transmitted in the network and less disk space are required to
store the sensor data in the data center. Generally, the power consumption is largely reduced. As well,
the MSE of BEPLA generated by Swing-RR is smaller than that produced by Swing filter.

The resolution plays a more important role than the maximal delay. In this study, for all datasets,
Swing-RR using the minimal resolution always yields better compression ratios than using a higher

Energies 2019, 12, 2523 18 of 20

resolution does. Most line segments are short. Only a small portion is long. Thus, it is worth using
fewer bits to encode the lengths of segments.

The time and space complexities of Swing-RR are both O(1). This makes Swing-RR suitable for
sensors with limited resources and energy.

In this paper, only temporal correlation in sensor data is leveraged. Data and spatial
correlations [26] are currently under investigation. As well, we are going to explore more complex
data structures, e.g., convex hull used in previous methods [31,34].

Also, we assume that the collected data are precise. In reality, there can be some bias in data
collection. For example, the environments monitored by sensors are under attack [41], and the sensed
data are contaminated. Depending on the roles, edge nodes can preprocess the data before the data
are sent to their data centers. They can do nothing and send the raw data. Or, they can remove the
outliers, predict the missing data, and measure the robustness of the network. The authors will further
study these issues in the future.

Author Contributions: J.-W.L. provides ideas, writes the paper and performs those experiments. S.-w.L. verifies
the experimental results and suggests how to tune the parameters of these experiments. F.-Y.L. reorganizes paper
structure, polishes English description and performs energy-consumption experiments.

Funding: This research was supported in part by National Science Council, Taiwan, under grant
MOST 107-2221-E-029-011-.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, S.; Zuo, M.J. Linear and nonlinear preventive maintenance models. IEEE Trans. Reliab. 2010, 59, 242–249.
[CrossRef]

2. Shang, Y. Vulnerability of networks: Fractional percolation on random graphs. Phys. Rev. E 2014, 89, 012813.
[CrossRef] [PubMed]

3. Shehabi, A.; Smith, S.; Sartor, D.; Brown, R.; Herrlin, M.; Koomey, J.; Masanet, E.; Horner, N.; Azevedo, I.;
Lintner, W. United States Data Center Energy Usage Report; LBNL-1005775; Lawrence Berkeley National
Laboratory: Berkeley, CA, USA, 2016.

4. Baliga, J.; Ayre, R.W.A.; Hinton, K.; Tucker, R.S. Green cloud computing: Balancing energy in processing,
storage, and transport. Proc. IEEE 2011, 99, 149–167. [CrossRef]

5. Huang, X.; Hu, T.; Ye, C.; Xu, G.; Wang, X.; Chen, L. Electric load data compression and classification based
on deep stacked auto-encoders. Energies 2019, 12, 653. [CrossRef]

6. Kawahara, M.; Chiu, Y.J.; Berger, T. High-speed software implementation of Huffman coding. In Proceedings
of the 98th Data Compression Conference, Snowbird, UT, USA, 30 March–1 April 1998; p. 553.

7. Marcelloni, F.; Vecchio, M. A simple algorithm for data compression in wireless sensor networks.
IEEE Commun. Lett. 2008, 12, 411–413. [CrossRef]

8. Javed, M.Y.; Nadeem, A. Data compression through adaptive Huffman coding schemes. In Proceedings of
the IEEE TENCON 2000, Kuala Lumpur, Malaysia, 24–27 September 2000; pp. 187–190.

9. Tharini, C.; Ranjan, P.V. Design of modified adaptive Huffman data compression algorithm for wireless
sensor network. J. Comput. Sci. 2009, 5, 466–470. [CrossRef]

10. Lin, C.C.; Chuang, C.C.; Chiang, C.W.; Chang, R.I. A novel data compression method using improved
JPEG-LS in wireless sensor networks. In Proceedings of the 12th International Conference on Advanced
Communication Technology, Phoenix Park, Korea, 7–10 February 2010; pp. 346–351.

11. Higgins, G.; Mc Ginley, B.; Glavin, M.; Jones, E. Low power compression of EEG signals using JPEG2000.
In Proceedings of the 4th International Conference on Pervasive Computing Technologies for Healthcare,
Munich, Germany, 22–25 March 2010.

12. Bendifallah, A.; Benzid, R.; Boulemden, M. Improved ECG compression method using discrete cosine
transform. Electron. Lett. 2011, 47, 1–2. [CrossRef]

13. Chen, J.; Ma, J.; Zhang, Y.; Shi, X. A wavelet-based ECG compression algorithm using Golomb codes.
In Proceedings of the 2006 IEEE International Conference on Communications, Circuits, and Systems, Guilin,
China, 25–28 June 2006; pp. 130–133.

http://dx.doi.org/10.1109/TR.2010.2041972
http://dx.doi.org/10.1103/PhysRevE.89.012813
http://www.ncbi.nlm.nih.gov/pubmed/24580287
http://dx.doi.org/10.1109/JPROC.2010.2060451
http://dx.doi.org/10.3390/en12040653
http://dx.doi.org/10.1109/LCOMM.2008.080300
http://dx.doi.org/10.3844/jcssp.2009.466.470
http://dx.doi.org/10.1049/el.2010.3191

Energies 2019, 12, 2523 19 of 20

14. Fang, J.; Li, H. Hyperplane-based vector quantization for distributed estimation in wireless sensor networks.
IEEE Trans. Inf. Theory 2009, 55, 5682–5699. [CrossRef]

15. Wang, Y.C.; Hsieh, Y.Y.; Tseng, Y.C. Multiresolution spatial and temporal coding in a wireless sensor network
for long-term monitoring applications. IEEE Trans. Comput. 2009, 58, 827–838. [CrossRef]

16. Makarenko, A.; Whyte, H.D. Decentralized data fusion and control in active sensor networks. In Proceedings
of the 7th International Conference on Information Fusion, Stockholm, Sweden, 28 June–1 July 2004;
pp. 479–486.

17. Yuan, W.; Krishnamurthy, S.V.; Tripathi, S.K. Synchronization of multiple levels of data fusion in wireless
sensor networks. In Proceedings of the IEEE Global Telecommunications Conference, Riverside, CA, USA,
1 December 2003; pp. 221–225.

18. Sharaf, M.A.; Beaver, J.; Labrinidis, A.; Chrysanthis, P.K. TiNA: A scheme for temporal coherency-aware
in-network aggregation. In Proceedings of the 3rd ACM International Workshop on Data Engineering for
Wireless and Mobile Access, Pittsburgh, PA, USA, 19 September 2003; pp. 69–76.

19. Yoon, S.; Shahabi, C. The clustered aggregation (CAG) technique leveraging spatial and temporal correlations
in wireless sensor networks. ACM Trans. Sens. Netw. 2007, 3, 3. [CrossRef]

20. Goel, S.; Imielinski, T. Prediction-based monitoring in sensor network: Taking lessons from MPEG. Comput.
Commun. Rev. 2001, 31, 82–98. [CrossRef]

21. Choi, K.; Kim, M.H.; Chae, K.J.; Park, J.J.; Joo, S.S. An efficient data fusion and assurance mechanism using
temporal and spatial correlations for home automation networks. IEEE Trans. Consum. Electron. 2009, 55,
1330–1336. [CrossRef]

22. Luo, H.; Luo, J.; Liu, Y.; Das, S.K. Adaptive data fusion for energy efficient routing in wireless sensor
networks. IEEE Trans. Comput. 2006, 55, 1286–1299.

23. Kumar, R.; Wolenetz, M.; Agarwalla, B.; Shin, J.; Hutto, P.; Paul, A.; Ramachandran, U. DFuse: A framework
for distributed data fusion. In Proceedings of the 1st ACM International Conference on Embedded Networked
Sensor Systems, Los Angeles, CA, USA, 5 November 2003; pp. 114–125.

24. Jin, G.Y.; Park, M.S. CAC: Context adaptive clustering for efficient data aggregation in wireless sensor
networks. Lect. Notes Comput. Sci. 2006, 3976, 1132–1137.

25. Lee, S.; Yoo, J.; Chung, T. Distance-based energy efficient clustering for wireless sensor networks.
In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL,
USA, 16–18 November 2004; pp. 567–568.

26. Chang, R.I.; Li, M.H.; Chuang, P.; Lin, J.W. Bounded error data compression and aggregation in wireless
sensor networks. In Smart Sensors Networks, Communication Technologies and Intelligent Applications; A Volume
in Intelligent Data-Centric Systems; Xhafa, F., Leu, F.Y., Hung, L.L., Eds.; Elsevier: London, UK, 2017;
pp. 143–157.

27. Hakimi, S.L.; Schmeichel, E.F. Fitting polygonal functions to a set of points in the plane. CVGIP Graph.
Models Image Proc. 1991, 53, 132–136. [CrossRef]

28. Imai, H.; Iri, M. An optimal algorithm for approximating a piecewise linear function. J. Inf. Proc. 1986, 9,
159–162.

29. Xie, Q.; Pang, C.; Zhou, X.; Zhang, X.; Deng, K. Maximum error-bounded piecewise linear representation for
online stream approximation. VLDB J. 2014, 23, 915–937. [CrossRef]

30. Zhao, H.; Dong, Z.; Li, T.; Wang, X.; Pang, C. Segmenting time series with connected lines under maximum
error bound. Inf. Sci. 2016, 345, 1–8. [CrossRef]

31. Elmeleegy, H.; Elmagarmid, A.K.; Cecchet, E.; Aref, W.G.; Zwaenepoel, W. Online piece-wise linear
approximation of numerical streams with precision guarantees. Proc. VLDB Endow. 2009, 2, 145–156.
[CrossRef]

32. O’Rourke, J. An on-line algorithm for fitting straight lines between data ranges. Commun. ACM 1981, 24,
574–578. [CrossRef]

33. Gritzali, F.; Papakonstantinou, G. A fast piecewise linear approximation algorithm. Signal Proc. 1983, 5,
221–227. [CrossRef]

34. Luo, G.; Yi, K.; Cheng, S.W.; Li, Z.; Fan, W.; He, C.; Mu, Y. Piecewise linear approximation of streaming time
series data with max-error guarantees. In Proceedings of the 2015 IEEE 31st International Conference on
Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 173–184.

http://dx.doi.org/10.1109/TIT.2009.2032856
http://dx.doi.org/10.1109/TC.2009.20
http://dx.doi.org/10.1145/1210669.1210672
http://dx.doi.org/10.1145/1037107.1037117
http://dx.doi.org/10.1109/TCE.2009.5277996
http://dx.doi.org/10.1016/1049-9652(91)90056-P
http://dx.doi.org/10.1007/s00778-014-0355-0
http://dx.doi.org/10.1016/j.ins.2015.09.017
http://dx.doi.org/10.14778/1687627.1687645
http://dx.doi.org/10.1145/358746.358758
http://dx.doi.org/10.1016/0165-1684(83)90070-1

Energies 2019, 12, 2523 20 of 20

35. Malash, G.F.; El-Khaiary, M.I. Piecewise linear regression: A statistical method for the analysis of experimental
adsorption data by the intraparticle-diffusion models. Chem. Eng. J. 2010, 163, 256–263. [CrossRef]

36. Shang, Y. Resilient multiscale coordination control against adversarial nodes. Energies 2018, 11, 1844.
[CrossRef]

37. Chen, Y.; Keogh, E.; Hu, B.; Begum, N.; Bagnall, A.; Mueen, A.; Batista, G. The UCR Time Series Classification
Archive 2015. Available online: http://www.cs.ucr.edu/~{}eamonn/time_series_data/ (accessed on 7 July 2018).

38. IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. Available online: IEEEStandard754-
2008.https://ieeexplore.ieee.org/document/4610935 (accessed on 7 July 2018).

39. Walke, W.W.; Hidaka, Y. Next-Generation Interconnect Research at Fujitsu Laboratories. Fujitsu Sci. Technol.
J. 2012, 48, 218–222.

40. Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data. SIAM Rev. 2009, 51,
661–703. [CrossRef]

41. Shang, Y. Subgraph robustness of complex networks under attacks. IEEE Trans. Syst. Man Cybern. Syst. 2019,
49, 821–832. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cej.2010.07.059
http://dx.doi.org/10.3390/en11071844
http://www.cs.ucr.edu/~{}eamonn/time_series_data/
IEEE Standard 754-2008. https://ieeexplore.ieee.org/document/4610935
IEEE Standard 754-2008. https://ieeexplore.ieee.org/document/4610935
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1109/TSMC.2017.2733545
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Bounded-Error Piecewise Linear Approximation (BEPLA)
	Definition 1: Bounded-Error Approximation (BEA)
	Definition 2: Piecewise Linear Approximation (PLA)
	Definition 3: Bounded-Error Piecewise Linear Approximation (BEPLA)

	BEPLA with Resolution Reduction

	Method
	Experiment
	Experimental Setup
	Compression Ratio
	Number of Segments and Their Length
	Mean Square Error

	Conclusions
	References

