Supplementary materials

Tailoring Ni and Sr₂Mg_{0.25}Ni_{0.75}MoO₆₋₈ cermet compositions for designing the fuel electrodes of solid oxide electrochemical cells

L.S. Skutina^{a,b,*}, A.A. Vylkov^{a,b}, D.K. Kuznetsov^b, D.A. Medvedev^{a,b,*}, V.Ya. Shur^b

^a Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, 620137 Yekaterinburg, Russia

^b Ural Federal University, 620002 Yekaterinburg, Russia

*E-mails: <u>lubov.skutina@yandex.ru</u> (Lubov Skutina), <u>dmitrymedv@mail.ru</u> (Dmitry Medvedev)

Figure S1. Comparison of the XRD data of the 50Sr₂Mg_{0.25}Ni_{0.75}MoO_{6- δ} + 50NiO (lower pattern) and 50Sr₂Mg_{0.25}Ni_{0.75}MoO_{6- δ} + 50Ni (upper pattern) composites: general view (a) and detailing of the most intensive reflection (b).

Figure S2. Comparison of the relative dimension changes of the sintered 50Sr₂Mg_{0.25}Ni_{0.75}MoO_{6- δ} + 50NiO composite in air and the reduced 50Sr₂Mg_{0.25}Ni_{0.75}MoO_{6- δ} + 50Ni composite in H₂ + Ar atmosphere. The data were obtained under cooling mode.

Figure S3. Images of the surface morphology for the as-sintered $(1-x)Sr_2Mg_{0.25}Ni_{0.75}MoO_{6-\delta} + xNiO$ ceramic materials at high magnification: x = 15 (a), x = 30 (b), x = 70 (c) and x = 85 (d).

Material	σ@800 °C, S cm ⁻¹	Conditions	Reference
Sr ₂ MgMoO ₆	0.46	In 100 ppm H ₂ S/H ₂	[S1]
BaSrMgMoO ₆	5.32	environment	
Ba2MgMoO6	3.92		
Sr ₂ MgMoO ₆	0.8	5%H ₂ /Ar	[S2]
Sr ₂ MgMoO ₆	0.3	5%H ₂ /Ar	[S3]
Sr ₂ MgMoO ₆	8.6	5%H ₂ /Ar	[S4]

Table S1. Total conductivity of Mg-based molybdate materials with a double perovskite structure at 800 °C in reducing atmospheres.

References

[S1] Howell, T.; Kuhnell, C.; Reitz, T. A₂MgMoO₆ (A = Sr, Ba) for use as sulfur tolerant anodes. *J. Power Sources* **2013**, 231, 279–284.

[S2] Marrero-López, D.;Peña-Martínez, J.; Ruiz-Morales, J.C.; Gabás, M.; Núñez, P.; Aranda, M.A.G.; Ramos-Barrado, J.R. Redox behaviour, chemical compatibility and electrochemical performance of Sr₂MgMoO_{6-δ} as SOFC anode. *Solid State Ionics* **2010**, *180*, 1672–1682.

[S3] Marrero-Lopez, D.; Pena-Martinez, J.; Ruiz-Morales, J.C.; Perez-Coll, D.; Aranda, M.A.G.; Nunez, P. Synthesis, phase stability and electrical conductivity of Sr₂MgMoO₆₋₆ anode. *Mater. Res. Bull.* **2008**, *43*, 2441–2450.

[S4] Kong, L.; Liu, B.; Zhao, J.; Gu, Y.; Zhang, Y. Synthesis of nano-crystalline Sr₂MgMoO_{6-b} anode material by a sol–gel thermolysis method. *J. Power Sources* **2009**, *188*, 114–117.