# A Synchronous Sampling Based Harmonic Analysis Strategy for Marine Current Turbine Monitoring System under Strong Interference Conditions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Description

#### 2.1. Multiplication Fault of MCT

#### 2.2. The Effect of Strong Interference

## 3. Proposed Harmonic Analysis Strategy

#### 3.1. Instantanous Frequency Caculation by Zero-Crossing Estimation

#### 3.2. Interference Filtering by EMD Filter Banks

#### 3.3. Characteristic Frequency Selection by Pearson Correlation Coefficient

#### 3.4. Harmonic Analysis Strategy for Fault Detection

- (1)
- Measuring the current signal from MCT.
- (2)
- Zero-crossing estimation is used to calculate the instantaneous frequency by Equation (12). Then, a unified characteristic frequency is obtained by reconstructing the time series, and the LS method is used to eliminate the trend component. By combining historical data, the estimated instantaneous frequency is used to identify the work conditions of MCTs.
- (3)
- To solve the problem that the frequency and amplitude of the operating parameters are partially or completely covered by interference, an EMD filter bank is used to remove interference in the frequency band.
- (4)
- The IMF selected by Pearson correlation coefficient is analyzed by spectrum analysis, which provides fault feature frequency.

## 4. Simulation Results and Analysis

## 5. Experimental Results and Analysis

#### 5.1. MCT Experiment and Analysis

#### 5.2. Fault Detection and Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Besnard, F.; Bertling, L. An Approach for Condition-Based Maintenance Optimization Applied to Wind Turbine Blades. IEEE Trans. Sustain. Energy
**2010**, 1, 77–83. [Google Scholar] [CrossRef] - Zhang, M.; Wang, T.; Tang, T.; Benbouzid, M.; Diallo, D. An imbalance fault detection method based on data normalization and EMD for marine current turbines. ISA Trans.
**2017**, 68, 302–312. [Google Scholar] [CrossRef] - Márquez, F.P.G.; Tobias, A.M.; Pérez, J.M.P.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energy
**2012**, 4, 169–178. [Google Scholar] [CrossRef] - Feng, Z.; Chen, X.; Zuo, M.J. Induction Motor Stator Current AM-FM Model and Demodulation Analysis for Planetary Gearbox Fault Diagnosis. IEEE Trans. Ind. Inform.
**2018**, 15, 2386–2394. [Google Scholar] [CrossRef] - Tellili, A.; ElGhoul, A.; Abdelkrim, M.N. Additive fault tolerant control of nonlinear singularly perturbed systems against actuator fault. J. Electr. Eng.
**2017**, 68, 68–73. [Google Scholar] [CrossRef] [Green Version] - Tan, C.P.; Edwards, C. Multiplicative fault reconstruction using sliding mode observers. In Proceedings of the 2004 5th Asian Control Conference, Melbourne, Australia, 20–23 July 2004; Volume 2, pp. 957–962. [Google Scholar]
- Yu, T.; Wang, X.; Shami, A. Recursive Principal Component Analysis-Based Data Outlier Detection and Sensor Data Aggregation in IoT Systems. IEEE Internet Things J.
**2017**, 4, 2207–2216. [Google Scholar] [CrossRef] - Elghali, S.E.B.; Benbouzid, M.E.H.; Charpentier, J.F. Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 3–5 May 2007; Volume 2, pp. 1407–1412. [Google Scholar]
- Satpathi, K.; Yeap, Y.M.; Ukil, A.; Geddada, N. Short-Time Fourier Transform Based Transient Analysis of VSC Interfaced Point-to-Point DC System. IEEE Trans. Ind. Electron.
**2018**, 65, 4080–4091. [Google Scholar] [CrossRef] - Zhang, L.; Lang, Z.-Q. Wavelet Energy Transmissibility Function and Its Application to Wind Turbine Bearing Condition Monitoring. IEEE Trans. Sustain. Energy
**2018**, 9, 1833–1843. [Google Scholar] [CrossRef] [Green Version] - Koganezawa, S. Frequency analysis of disturbance torque exerted on a carriage arm in hard disk drives using Hilbert-Huang Transform. IEEE Trans. Magn.
**2018**, 99, 1–6. [Google Scholar] [CrossRef] - Jian-Zhong, W.U.; Yi, T. STFT-based crack detection on wind turbine blades. Chin. J. Constr. Mach.
**2014**, 12, 180–183. [Google Scholar] - Chai, N.; Yang, M.; Ni, Q.; Xu, D. Gear fault diagnosis based on dual parameter optimized resonance-based sparse signal decomposition of motor current. IEEE Trans. Ind. Appl.
**2018**, 54, 3782–3792. [Google Scholar] [CrossRef] - Brenner, M.J. Non-Stationary Dynamics Data Analysis with Wavelet-Svd Filtering. Mech. Syst. Signal Process.
**2001**, 17, 765–786. [Google Scholar] [CrossRef] - Zhang, M.; Wang, T.; Tang, T.; Benbouzid, M.; Diallo, D. Imbalance fault detection of marine current turbine under condition of wave and turbulence. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 6353–6358. [Google Scholar]
- Zhang, M.; Wang, T.; Tang, T.; Wang, Y. Blade Imbalance Fault Detection Method for Direct-Driven Marine Current Turbine with Permanent Magnet Synchronous Generator. Trans. China Electrotech. Soc.
**2018**, 33, 38–47. [Google Scholar] - Samantaray, L.; Dash, M.; Panda, R. A Review on Time-frequency, Time-scale and Scale-frequency Domain Signal Analysis. IETE J. Res.
**2005**, 51, 287–293. [Google Scholar] [CrossRef] - Lust, E.E.; Luznik, L.; Flack, K.A.; Walker, J.M.; Van Benthem, M.C. The influence of surface gravity waves on marine current turbine performance. Int. J. Mar. Energy
**2013**, 3, 27–40. [Google Scholar] [CrossRef] - Thomson, J.; Polagye, B.; Durgesh, V.; Richmond, M.C. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA. IEEE J. Ocean. Eng.
**2012**, 37, 363–374. [Google Scholar] [CrossRef] - Keenan, G.; Sparling, C.; Williams, H.; Fortune, F.; Davison, A. SeaGen Environmental Monitoring Programme: Final Report; Royal Haskoning Enhancing Society: Amersfoort, The Netherlands, 2011. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, M.; Wang, T.; Tang, T.; Liu, Z.; Claramunt, C.
A Synchronous Sampling Based Harmonic Analysis Strategy for Marine Current Turbine Monitoring System under Strong Interference Conditions. *Energies* **2019**, *12*, 2117.
https://doi.org/10.3390/en12112117

**AMA Style**

Zhang M, Wang T, Tang T, Liu Z, Claramunt C.
A Synchronous Sampling Based Harmonic Analysis Strategy for Marine Current Turbine Monitoring System under Strong Interference Conditions. *Energies*. 2019; 12(11):2117.
https://doi.org/10.3390/en12112117

**Chicago/Turabian Style**

Zhang, Milu, Tianzhen Wang, Tianhao Tang, Zhuo Liu, and Christophe Claramunt.
2019. "A Synchronous Sampling Based Harmonic Analysis Strategy for Marine Current Turbine Monitoring System under Strong Interference Conditions" *Energies* 12, no. 11: 2117.
https://doi.org/10.3390/en12112117