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Abstract: This paper presents a novel data-driven approach, based on sensor network analysis in
Photovoltaic (PV) power plants, to unveil hidden precursors in failure modes. The method is based on
the analysis of signals from PV plant monitoring, and advocates the use of graph modeling techniques
to reconstruct and investigate the connectivity among PV field sensors, as is customary for Complex
Network Analysis (CNA) approaches. Five month operation data are used in the present study.
The results showed that the proposed methodology is able to discover specific hidden dynamics,
also referred to as emerging properties in a Complexity Science perspective, which are not visible
in the observation of individual sensor signal but are closely linked to the relationships occurring
at the system level. The application of exploratory data analysis techniques on those properties
demonstrated, for the specific plant under scrutiny, potential for early fault detection.
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1. Introduction

The cumulative global photovoltaic (PV) capacity has been growing exponentially around the
world over recent years. In the decade 2005-2015, the solar PV generation capacity in the EU has
increased from 1.9 GW to 95.4 GW [1]. Notwithstanding this, the Europe PV market’s conditions are
still substantially dependent on regional energy policies and public subsidies for renewable energies.
As per the Italian market, in June 2013 the Italian public company GSE (Gestore dei Servizi Energetici)
officially announced the discontinuation of the last Feed-in-Tariff incentive after its cap of 6700 million
euro was reached [2]. The end of such subsidies has led to new attention being focused on PV plant
performance management, lifetime and availability, with a view to reduce operating and maintenance
costs [3].

Faults in PV plant components (i.e., modules, converters, connection lines), in addition to
downtime correlated penalties, could result in an acceleration of system aging and as a consequence
in a reduction of power plant reliability [4]. Typically, faults severity depends on various factors.
These factors include the time to detect, time to repair or substitute, COE, and occurrence over time,
and all of these factors can have a significant impact on profitability [5]. For these reasons, over the
last decade Fault Detection and Diagnosis (FDD) in PV systems has been established as a critical
field of research [6]. To mention but a few areas, research has addressed key topics like real-time
monitoring, partial shading effects analysis, estimation of natural degradation rate over time and
residual life for solar panels [7]. In the FDD arena, a number of studies have proposed data-driven
fault detection algorithms based on statistical processing of performance parameters (e.g., power loss
factor analysis studies, I-V output characteristics [8-11]) or an exponentially weighted moving average
control chart [12]. In addition, model-based techniques, implementing dynamic fault trees [13] or
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combining PV system performance simulation (voltage ratio, performance ratio, &c) and Fuzzy and
neuro-Fuzzy logic classification systems [14,15], have also been studied as methods to detect fault
occurrence [16]. The open literature already offers several review papers on this field, illustrating the
state-of-the-art and opportunities [4,17-19].

With the advent of Internet of Things, technologies for smart monitoring have found widespread
applications, including in PV systems, thereby enabling decision-making processes [20]. However,
monitoring systems typically employ several distributed sensors and the collection of raw data
opening the field to a number of specific challenges is still unresolved, which is in part due to the
different communication standards, heterogeneous structure and the huge volume of data [21,22].
As reported in a number of big data studies [23,24], traditional data analysis in statistics, management
and visualization fails with sensor network data streams. High-dimensionality and heterogeneity
encourage data mining and artificial intelligence solutions, such as feature extraction, classification,
clustering and sampling [25-30]. Furthermore, multi-sensor data fusion techniques have been
introduced to provide a robust description of an environment or process of interest by combining
observations from a number of different sources [31].

In this context, complex network science emerged as an active field, cross-fertilized by natural,
social and computer science, exploiting the general idea that artificial systems like biological ones
(metabolic network, worldwide web, distribution network, etc.) are complex systems, composed of
a large number of interacting parts (components or entities) with an articulated self-organization.
The complexity of the systems, then, resides in interaction and loops among its entities [32]. Looking
for example at industrial systems, constitutive elements are governed by well-defined physical laws
and are included in a pre-determined process scheme. However, surrounding environments and
business laws (determining the operations) influence this by-definition deterministic structure. Moving
to the component level, multi-physics processes are nonlinear, as is the component matching. In a
general view, these systems can evolve surfacing complex structures characterized by diversity, as well
as multiple interactions within and between layers. These characteristics can make industrial systems
a complex engineering system [33,34].

In this paper CNA has been used to model the sensor network of a 1 MW PV field, advocating
a complex system engineering point of view [35,36]. A data fusion criterion has been developed
processing the signals from the sensor equipment with a view to detect fault precursors. The sensors
include PV field AC and DC electrical parameters, temperature, and solar irradiance measurements.

The paper, first, illustrates the methodology for data processing with a consideration of connectivity
analysis to create the digital twin of the sensor network in the form of a functional graph. The result of
these analyses is a correlation matrix that defines the graph structure in terms of the weight of the edges
connecting the nodes (element/sensor signal) at a given instant from all the pairs of pre-processed
sensor time series. By applying the data processing within a fixed time window, sliding over the
monitoring interval, the result is a fully-connected weighted dynamic graph. Then, dynamic graph
analysis is used to explore the sensor network in order to unveil hidden correlations among signal time
series. The results are discussed by using exploratory data analysis to combine the most significant
topological graph metrics in the identification of operational patterns of the PV plant.

2. Methodology

The field sensors are modeled using graph theory as a complex network, where the nodes are
represented by the signals from sensors and the edge are evaluated with non-linear statistical correlation
functions applied to the time series pairs. Specifically, the data flow is structured according to the
following steps:

a. data collection and pre-processing,
b.  connectivity analysis and graph modeling,
c. pattern recognition.
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At the initial stage (a), heterogeneous data acquired by the sensors are synchronized and cleaned
by removing outliers. Then for stage (b), a fully-connected graph is created in which each monitored
variable represents a node and all the nodes are connected to each other with directed edges. The output
of this phase is a complete weighted graph model (also called functional graph) of the sensor network.
After, some typical complex network measurements are applied to extrapolate synthetic properties
from the functional graphs. Finally (c), these measurements were used as input for exploratory network
analysis, with the aim of grouping the data as a function of multiple topological graph metrics.

The implementation of the proposed methodology has been done using Python version 3.5 [37].
In particular, a Python code has been created using Scikit-learn and NetworkX packages, respectively [38,39].

2.1. Complex Network Analysis

The CNA has its origins in graph theory and is used to describe the properties of complex systems
through the mathematical study of networks. The key ingredient in the CNA is the study of the
correlation among uni-variate signals recorded from different sources, as is customary for biological
network analysis. For this purpose, the mutual information (MI) has been widely used [40-42].

In this paper we propose a novel approach based on the study of correlations between signals of
m heterogeneous sensors within a fixed window of n samples. In particular, given two signals yy, ; and
Yn,j, taken from the i-th and j-th component of the feature matrix Yn m, where (n) is spanning over time
steps, the mutual information MI quantifies the level of uncertainty in yy, ; removed by the conditional
knowledge of yy ;. This measure essentially tells us how much extra information one gets from one
signal by knowing the outcomes of the other one [43-45]. Once for each sample, a correlation matrix
is obtained computing the MI in the m-dimensional feature space, while sliding the window from
the beginning of the data set up to the entire monitoring interval. As a consequence, the evolution
of correlation matrix is represented in the form of a functional graph consisting of a set of m nodes
associated by k weighted edges representing the connecting force between the pairs of nodes.

The result of this phase is therefore a dynamic graph that contains all the information about the
evolution of spatial and temporal relationships between all the entities monitored and allows the
definition of parameters quantifying the characteristics of the systems [46].

In the context of CNA, the network measurements represent the most used tools for the
extrapolation of synthetic information through the analysis of network topology. These measurements
can be evaluated over the entire network (e.g., Shortest Path length, Diameter, Global Efficiency,
Modularity, &c) or they can locally refer to nodes (e.g., Centrality Measures). This type of metric has
been applied in several social networking studies to address the problem of identifying and ranking
those people who exert an unequal amount of influence on the decision-making of others (also called
influencers or opinion leaders) and to study the diffusion information within the network [47-49].

In the present approach, both the network measurements relating to the whole network (global
scale) and those specific to individual nodes (local scale) were considered. Specifically, the study uses
Shortest Path Length [50], Diameter and Radius of the graph [51], among the different global-scale
measurements, Eccentricity and Weighted Degree Centrality of the nodes [39,52-54], among the
local-scale measurements.

2.2. Exploratory Data Analysis

Promoted by Tukey [55], exploratory data analysis (EDA) represents a powerful tool to maximize
insight into the underlying structure of a complex dataset. It facilitates the understanding of the
distribution of samples and simplifies the data analysis, pointing out to special observations (outliers),
clusters of similar observations, groups of related variables, and crossed relationships between specific
observations and variables [56,57]. All this information in turn, can be very informative for further
data modeling and it is of paramount importance to improve data knowledge. For these purposes,
it encompasses a wide range of statistics and graphical tools (e.g., histogram, box plot, Pareto chart,
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principal component analysis, etc.) which have been commonly used for decades in various research
fields such as archeology, biology, anthropology, medicine, chemometrics, &c [58-60].

In this paper, EDA is used to investigate the results of the complex network analysis and compare
them with the sensor signals Y, m. In particular, the 3D scatterplot has been used for visual pattern
recognition. This tool is based on a features representation in a multivariable space, allowing us to
identify the dependencies between different network measurements in order to discriminate specific
operational PV plant clusters.

3. Case Study

The data were collected from a PV plant with a power of 1 MWp. The solar field is connected
to two inverters, each with three conversion blocks. Both inverters are grid-tied, feeding a medium
voltage power distribution network. They are equipped with fully independent monitoring systems
and incorporate a solar power controller to regulate the Maximum Power Point Tracking (MPPT).

Measurements were recorded every 5 min and included AC and DC electrical parameters,
AC power output, ambient temperature and solar irradiance. The monitoring system is shown in
Figure 1. In particular, solar radiation on the plane of the modules and ambient temperature have been
measured by a pyranometer and a PT-100 RTD sensor respectively, both installed on a sensor box near
the panels. Both inverters are equipped with resistive potential divider voltage sensors for DC and AC
parameters measurement for each conversion block. Shunt resistors have been used to measure 12
string currents as a representative sample of the plant.

Energy Meter +“—

kwh Active Power

DC Voltage
AC Voltage—Phase 1,2, 3

DC/AC DC/AC
inverter —I —| inverter
500 kW 500 kw

p
“ Solar Irradiance
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String Current |~@ (4

Figure 1. Schematic block circuit diagram of the PV system with sensors and measuring points.

The measurements were collected in the period from May 20th to September 15th 2017. The 47
monitored variables which define the m-dimensional feature matrix Y, m are listed in Table 1.

Table 1. Monitored PV plant variables.

Yn,1-16 Variable Yn,17-47 Variable
1 DC Total Output Power [kW] 17 DC Voltage Inv. 1—block C [V]
2 AC Total Active Output Power [kW] 18,19,20  AC Voltage-phase 1, 2, 3 Inv. 1—block C [V]
3 Total PV Plant Energy Produced [kWh] 21 Active Output Power Inv. 2—block A [kW]
4 Ambient Air Temperature [°C] 22 DC Voltage Inv. 2—block A [V]
5 Solar Irradiance [W/m?] 23,24,25  AC Voltage-phase 1, 2, 3 Inv. 2—block A [V]
6 Active Output Power Inv. 1—block A [kW] 26 Active Output Power Inv. 2—block B [kW]
7 DC Voltage Inv. 1—block A [V] 27 DC Voltage Inv. 2—block B [V]
8,9,10 AC Voltage-phase 1, 2, 3 Inv. 1—block A [V]  28,29,30  AC Voltage-phase 1,2,3 Inv. 2—block B [V]
11 Active Output Power Inv. 1—block B [kW] 31 Active Output Power Inv. 2—block C [kW]
12 DC Voltage Inv. 1—block B [V] 32 DC Voltage Inv. 2—block C [V]

13,14,15  AC Voltage-phase 1, 2, 3 Inv. 1—block B [V] 33,3435 AC Voltage-phase 1, 2, 3 Inv. 2—block C [V]
16 Active Output Power Inv. 1—block C [kW] 36-47 String currents [A]
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Table 2 provides the specification of the sensors used in the monitoring system. As far as the
dataset is concerned, the 47 monitored variables Y, m are used for the connectivity analysis with a
sliding window set to 216 data (about 18 h) per variable, along the available 5-months records.

Table 2. Main characteristics of the different sensors involved.

Sensor Type Measurement Range Temperature Range
Solar radiation sensor Pyranometer 0 to 4000 W/m? —20to + 50 °C
Temperature sensor RTD (PT-100) —50 to + 300 °C —50 to + 300 °C
Current sensors Shunt resistor 15A —40to +125°C
Voltage sensors Resistive potential divider 3to 500V (DC) —40 to + 85 °C

4. Results

Figure 2 provides the evolution of the solar irradiance and the active power of the inverter 1
(block A) gathered from the measurement system during the period of investigation.
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Figure 2. Solar irradiance and active power of the inverter 1 (block A) during the period of investigation.

The interest on inverter 1 is motivated by the observation of the signals revealing the occurrence of
a fault in the period between 31st August and 15th September. In particular, a breakdown of switching
devices occurred, which caused the failure of the block A of inverter 1 inductor. In this case the internal
protection of the inverter automatically reacted by turning off the block involved in the fault. It is
worth noting that the protection reacts within the sampling interval.
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Detailing on a three-day period at the end of August, the trends of the active power on the 3 blocks
(from A to C) of the two inverters with the irradiation are shown in Figure 3 (inverter 2) and Figure 4
(inverter 1) respectively. The plots refer to 30th August (Figures 3a and 4a), 31st August (Figures 3b
and 4b) and September 1st (Figures 3c and 4c).
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Figure 3. Analysis of sensor signals of the Inverter 2 on 30st August (a), on 31th August (b) and on 1st

September (c)—Solar Irradiance over the Active Power of the inverter blocks.

In Figures 3a and 4a, August 30th plots reveals the typical operation of PV plant in sunny condition,
where the solar irradiance reaches the peak value of about 950 W/m? at mid-day and the active powers
of all the inverters blocks follow its trend.

Looking at the monitored data on 31st August (Figures 3b and 4b), it is possible to infer that the
PV plant operates under cloudy weather conditions with variations of solar irradiance. In particular,
while the inverter 2 (Figure 3b) appears to work in standard conditions, following the solar radiation
trend, inverter 1 (Figure 4b) starting from 13:30 features the collapse of active power on block A,
which then extends to 1st September (see Figure 4c) and gives evidence of fault occurrence.
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To give more hints on this fault event, Figure 5 compares the signals Y, 7_g and Yy, 34 gathered from
inverter 1 block A (Figure 5a) and the corresponding CNA metrics. Specifically, Figure 5b illustrates
the behavior of degree centralities of solar irradiance, DC voltage, AC voltage and string currents.
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Figure 4. Analysis of sensor signals of the Inverter 1 on 30st August (a), on 31th August (b) and on 1st
September (c)—Solar Irradiance over the Active Power of the inverter blocks.

As confirmed by sensor signals (Figure 5a), at 13:30 the fault has an immediate effect on the
string currents, while the voltages zeroed around 16:30. When looking at complex network topology
measurements (Figure 5b), the fault occurrence correlates with the departure of the degree centrality of
solar irradiance from those of voltage-current signals which remain correlated.
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Figure 5. Analysis of (a) sensor signals from block A of the inverter 1 compared with (b) sensor network
CNA metrics on 31st August.

In order to understand the dynamic of the PV field operation, EDA is applied to raw data from
the plant monitoring system as well as to the modeled sensor network topology variables. Figure 6,
first, shows the results of the three-dimensional scatterplot of sensor signals as a function of time and
solar irradiance, focusing on: the active power (Figure 6a), DC voltage (Figure 6b) and AC voltage
(Figure 6¢) of the inverter 1 block A. Notably, the plots refer to the sampling period from 20th May to
15th September. Data have been colored according to an agglomerative clustering.

Irrespective of the EDA variables, the analysis of the scatter plots in Figure 6a—c identify three
patterns. Specifically:

e A to B (from 00:00 of 20 May to 16:00 of 31 August), includes the sub-set of operating conditions
of the inverter block with AC and DC voltages, and active power following the trend of actual
solar irradiance.

e A’ to B’ (from 00:00 of 20 May to 16:00 of 31 August), includes the sub-set representative of
night conditions.

e  CtoD (from 16:00 of 31 August to 18:00 of 15 September), then, represents the power system shutdown
phase after the fault event following which AC and DC voltages, and active power zeroed.

In terms of raw data clustering, it is possible to resolve only the two behaviors which determine
the operations before and after the fault event.

Figure 7 illustrates the results of EDA applied to network topology measurements. The scatter
plots are created to investigate the correlation in time between a global graph measure (e.g., the graph
diameter) and a local node related variable (e.g., sensor signal degree of centrality). In particular,
the sensor network graph diameter is plotted against active power degree centrality (Figure 7a),
AC voltage degree centrality (Figure 7b), and DC voltage degree centrality (Figure 7c).
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Figure 6. Exploratory data analysis applied to sensor signals from block A of the inverter 1. Trends

of (a) active power, (b) DC voltage and (c) AC voltage (x-axis), against solar irradiance (y-axis) and
time (z-axis).
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As a first general comment, Figure 7 gives the evidence of a wealth of information emerging from
the application of CNA methods. All the scatter plots demonstrate how the combination of global-local
network topology measures determine the emergence of the dynamics in the PV plant operations,
opening the possibility for a different performance indexing. In detail, all the plots distinguish three
patterns possibly linked to the operations of the inverter block:

e A to B (from 00:00 of 20 May to 06:30 of 31 August), typical of the standard operation, features a
degree centrality in the range 3 to 2, which is nearly proportional to the diameter of the network
which experience a variation in the range 3 to 1.5.

e Cto D (from 16:30 of 31 August to 18:00 of 15 September), represents the fault phase with the
inverter shutdown. This cluster is characterized by low values of degree centrality (i.e., below 1)
and low values of the network diameter (1.5 to 0.2).

e B to C (from 06:30 to 16:30 of 31 August), finally includes the sub-set of operations that transition
the inverter to fault. This cluster contains the series of points connecting the previous groups.
While the network diameter ranges between 2.5 and 1.5, the degree of centralities gradually
decreases from 2 to about 1 for inverter 1 block A voltages and active power. This circumstance
permits us to infer that this cluster, possibly, isolates the evolution of inverter operating conditions
from the precursor (6:30) to the automatic block shutdown (13:30) including also the preliminary
phase of fault evolution with non-zero AC/DC voltages (16:30). As such, it demonstrates the
possibility of identifying at 7 h long pre-fault event which anticipates the evolution of inverter
operating conditions on 31 August.

In this case, the results of the agglomerative clustering coincide with those emerging from the
scatterplots and confirm the existence of a pre-fault behavior following a nearly proportional decrease
in global/local graph topology measures.

5. Conclusions

This paper proposes a sensor fusion approach based on the use of graph modeling techniques to
investigate the connectivity among several key parameters of the PV plant.

The results show that the study of the properties of the graphs through the application of Complex
Network Analysis techniques is able to reveal a wealth of hidden information.

As reported in Korn et al. [61] the global behavior of the system is more than the sum of its
parts, so these properties can be thought of as behavior deriving from the interaction between the
components that can’t be identified through their simple functional decomposition.

In particular, the visual analysis of the single topological metrics of the functional graph focused
on the inverter block where the fault occurs (see Figure 4), reveals an evident variation in terms of
correlation between the monitored variables, mainly associated with an anomalous deviation of the
degree centrality of the solar irradiance with respect to the centrality of the key block parameters in the
fault conditions.

However, by combining the multiple information deriving from the different network
measurements (i.e., Degree Centrality and Network Diameter) with EDA techniques, it is possible to
clearly distinguish not only the standard operation from the fault conditions, but also to isolate specific
pre-fault conditions with an advance time with respect to the event of about 7 h. It is important to note
that these conditions only emerge after applying CNA and are not observable with EDA techniques
based on simple sensor signals. This latter type of analysis, in fact, is only able to discriminate standard
operating conditions from fault conditions.

Thus, the results of this study show interesting potential in the evaluation of useful Key
Performance Indicators and Control Charts based on topographic metrics of graphs for early fault
detection in the PV plant.
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