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Abstract: The main concern is to explore an electro-magneto hydrodynamic (EMHD) squeezing flow
of (Ag− Fe3O4/H2O) hybrid nanofluid between stretchable parallel Riga plates. The benefits of the
use of hybrid nanofluids, and the parameters associated to it, have been analyzed mathematically.
This particular problem has a lot of importance in several branches of engineering and industry. Heat
and mass transfer along with nonlinear thermal radiation and chemical reaction effects have also
been incorporated while carrying out the study. An appropriate selection of dimensionless variables
have enabled us to develop a mathematical model for the present flow situation. The resulting
mathematical method have been solved by a numerical scheme named as the method of moment.
The accuracy of the scheme has been ensured by comparing the present result to some already
existing results of the same problem, but for a limited case. To back our results further we have also
obtained the solution by anther recipe known as the Runge-Kutta-Fehlberg method combined with
the shooting technique. The error analysis in a tabulated form have also been presented to validate
the acquired results. Furthermore, with the graphical assistance, the variation in the behavior of
the velocity, temperature and concentration profile have been inspected under the action of various
ingrained parameters. The expressions for skin friction coefficient, local Nusselt number and local
Sherwood number, in case of (Ag− Fe3O4/H2O) hybrid nanofluid, have been derived and the
influence of various parameters have also been discussed.

Keywords: (Ag− Fe3O4/H2O) hybrid nanofluid; nonlinear thermal radiation; heat transfer;
chemical reaction; mass transfer; method of moment; numerical results

1. Introduction

An unprecedented and staggering development in the field of microfluidics, microelectronics,
optical devices, chemical synthesis, transportation, high power engines and microsystems, including
mechanical and electrical components, transforms the underpinnings of human life. These expansions
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further demand efficient cooling techniques, in order to manage the thermal performance, reliability
and long-term operational devices. The primitive thermal management techniques (like cooling
through liquids) seem to be deficient, in order to meet the challenges of thermal efficiency. Later on,
this issue has been resolved by dispersing nano-meter sized structures, within the host fluid, which
certainly influences its thermo-mechanical properties. In this regard, Choi [1,2] was considered as
the pioneer, who gave this concept and calls it ‘Nanofluid’. Many researchers have proposed various
theoretical models for thermal conductivity, by following his footsteps. Maxwell [3] worked on a
model for the thermal conductivity which is suitable only for the spherical shaped nanoparticles.
Further studies in this area lead us to a variety of models, containing the impact of, particle–particle
interactions (i.e., Bruggeman model, 1935) [4], particles shapes (i.e., Hamilton and crosser model
1962) [5] and particles distribution (i.e., Suzuki et al. 1969) [6]. Furthermore, researchers have found a
number of articles in the literature that covers the different aspects of the nanofluid. Some of them can
be found in the references [7–12].

In recent past years, a new class of nanofluids, entitled “Hybrid nanofluid”, have come into
existence that bears high thermal conductivity as compared to that of mono nanofluid. They have
brought a revolution in various heat transfer applications like nuclear system cooling, generator
cooling, electronic cooling, automobile radiators, coolant in machining, lubrication, welding, solar
heating, thermal storage, heating and cooling in buildings, biomedical, drug reduction, refrigeration,
and defense etc. In the case of a regular nanofluid, the critical issue is either they possess a good thermal
conductive network or display a better rheological properties. The nanocomposites (single handedly)
do not possess all the possible features which are required for a certain application. Therefore, by an
appropriate selection of two or more nanoparticles, hybrid nanofluid can lead us to a homogeneous
mixture, which possesses all physicochemical properties of various substances that can hardly be
found in an individual substance [13,14].

The distinctive features of hybrid nanofluid have gained the attention of worldwide researchers and
therefore a number of research articles have been published over the past few years. By employing a
new material design concept, Niihara [15] discussed that the mechanical and thermal properties of the
host fluid can be greatly enhanced, by the inclusion of nanocomposites.. Jana et al. [16] examined the
thermal efficiency of the host fluid, by incorporating single and hybrid nanoparticles. Suresh et al. [17]
takes into account a two-step method in order to synthesize water-based (AI2O3 − Cu) hybrid nanofluid.
Their experimental results reveal an improvement in the viscosity and thermal properties of the prepared
hybrid nanofluid. In their next study [18], the effects of (AI2O3 − Cu) hybrid nanofluid on the rate of
heat transfer have been investigated. Momin [19], in 2013, conducted an experiment to study the impact
of mixed convection on the laminar flow of hybrid nanofluid inside an inclined tube. By employing a
numerical scheme, Devi and Devi [20] investigated the influence of magneto hydrodynamic flow of H2O
based (Cu− AI2O3) hybrid nanofluid, over a porous dilating surface. With the aid of entropy generation,
the magneto hydrodynamic flow of water based (Cu− AI2O3) hybrid nanofluid, inside a permeable
channel, has been discussed by Das et al. [21]. Chamkha et al. [22], numerically analyzed, the time
dependent conjugate natural convection of water based hybrid nanofluid, within a semicircular cavity
The Blasius flow of hybrid nanofluid with water, taken as a base fluid over a convectively heated surface,
has been examined by Olatundun and Makinde [23]. Besides, in [24], Hayat and Nadeem incorporated
the silver (Ag) and copper oxide (CuO) as nanoparticles within the water, to enhance the rate of heat
transfer, over the linearly stretching surface.

These days, researchers have been attracted, to analyze the squeezing flows in various geometries.
Due to their significance, they have been involved in many practical and industrial situations, like
biomechanics, food processing, and chemical and mechanical engineering. They have also been
utilized, in order to examine the formation of lubrication, polymer processing, automotive engines,
bearings, injection, gear, appliances etc. These flow phenomena have been observed in different hydro
dynamical machines and devices, where the normal velocities are enforced by the moving walls of
the channel. Stefan [25] was the pioneer behind this concept. Later on, Shahmohamadi et al. [26]
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employed an analytical technique, to examine the time-dependent axisymmetric flow of a squeezed
nature. Recently, the effects of squeezing flow on nanofluid, confined between parallel plates, have
been investigated by M. Sheikholeslami et al. [27]. They also utilized the Adomian’s decomposition
method to find the solution of the respective flow model. Khan et al. [28] have taken into account,
the viscous dissipation effects along with slip condition, to analyze the two-dimensional squeezing
flow of copper-water based nanofluid. For solution methodology, they have employed a variation of
the parameters method. In 2017, the squeezing effects on the magneto hydrodynamic flow of Casson
fluid (inside a channel) have been thoroughly inspected by Ahmed et al. [29]. They have modelled the
respective flow problem and then solved it both numerically (Runge-Kutta scheme of fourth order)
and analytically (Variation of parameters method).

Gallites and Lilausis [30] came up with the idea of an electromagnetic actuator device, in order to
set up the crossed magnetic and electric fields, that appropriately provoked the wall’s parallel Lorentz
forces. The purpose of that device was to control the flow characteristics, which usually have a span
wise arrangement of alternating and invariable magnets that specifically mounted a plane surface. The
device, sometimes indicated as Riga plate [31], provided an aid to reduce the pressure drag, as well as
the friction of submarines, that can be achieved by reducing the turbulence production and a boundary
layer separation. A number of research articles have been published, in order to explore the distinctive
features of the laminar flow of a fluid due to Riga plate. By assuming the least electrical conductivity
effects, Pantokratoras and Magyari [32] investigated the flow behavior along with free convection.
1n 2011, Pantokratoras [33] reported the performance of Blasius flow, enforced by the Riga plate. He
also encounterd the Sakiadis flow in his study. Later on, Magyari and Pantokratoras [34] took into
account the Blasius flow of the liquid, which at the same time is electrically conducting, induced by
Riga surface. The electro magneto hydrodynamic flow of nanofluid, induced by Riga plate along with
the slip consequences, have been examined by Ayub et al. [35]. In 2017, Hayat et al. [36], discussed the
squeezing flow of a fluid between two parallel Riga plates, together with convective heat transfer. The
thermal radiative effects accompanied by chemical reaction, were also a part of their study. Moreover,
Hayat et al. [37] investigated the electro magneto squeezing flow of carbon nanotube’s suspended
nanofluid between two parallel rotatory Riga plates along with viscous dissipation effects. They have
considered the melting heat transfer condition, which basically revealed that the heat conducting
process to the solid surface, involved the combine effects of both sensible and melting heat, which
significantly enhances the temperature of the solid surface to its melting temperature.

The thermal radiation is a significant mode of heat transfer [38,39], which seems to be dominant,
in order to transfer the net amount of heat, even in the existence of free or forced convection. The
transfer of heat via radiation have been significantly found in many engineering and industrial
applications, including airplanes, space vehicles, satellites, and atomic-force plant. In this context,
many researchers have comprehensively discussed the radiative heat transfer phenomena. Some of
the most relevant have been found in [40–44].

The literature survey revealed the fact that no single step has been taken in order to analyze the
salient features of (Ag− Fe3O4/H2O) hybrid nanofluid, between two parallel Riga plates. This article
encounters the influential behavior of the viscid flow of (Ag− Fe3O4/H2O) hybrid nanofluid between
two parallel Riga plates, where the lower plate experiences a stretching velocity, while the upper
plate enforces a squeezing flow. The transfer of heat and mass along with nonlinear thermal radiative
and chemical reaction effects would also be a part of this study. By employing the suitable similarity
transforms, a mathematical model for the present flow situation have been accomplished. Method of
moment along with Runge-Kutta-Fehlberg method have been considered to find the solution of the
model. Tables have been provided which presents the validity of the acquired results. Furthermore,
the graphical aid has been provided, to demonstrate the influence of various ingrained entities, on the
velocity and temperature along with concentration profiles. The expressions related to the coefficient
of skin friction, local Nusselt number and local Sherwood number have also been developed and
discussed with the help of graphs.
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2. Formulation of the Governing Equations

Two parallel Riga plates have been under consideration, among which an electro-magneto
hydrodynamic (EMHD) flow of (Ag− Fe3O4/H2O) hybrid nanofluid has been flowing. The flow is
also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that the
x̌−axis coincides with the horizontal direction, whereas the
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where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 
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(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 
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The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 
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𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)
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In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

= b
(
ť
)
= −λ

2

(
a/υ f

(
1− λť

))−0.5
. It is further assumed that

the flow of (Ag− Fe3O4/H2O) hybrid nanofluid is a squeezing flow, having the velocity v̌b = db/dť.
Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. Figure 1
displays the configuration of the flow model.
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=
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∂ť

+
∂ǔ
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effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 
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𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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+
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 
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=
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, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 
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, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓
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. 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 
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, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 
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=
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 
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ǔ+

∂

Energies 2018, , x  5 of 22 

 

where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 
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The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 
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By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 
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The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 
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In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 
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𝓀𝑓
=
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𝜑ℎ
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𝜑ℎ
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the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
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. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

v̌ = Dhn f
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Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 

the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
−𝜆

2
(𝒶 𝜐𝑓(1 − 𝜆𝓉̌)⁄ )

−0.5
. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 

 

Figure 1. Physical model of the present flow situation. 

The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 

𝜕𝓋̌

𝜕𝓎̌
+

𝜕𝓊̌

𝜕𝓍̌
= 0, (1) 

𝜕𝓅̌

𝜕𝓍̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓊̌

𝜕𝓉̌
+

𝜕𝓊̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓊̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓊̌

𝜕𝓎̌2
+

𝜕2𝓊̌

𝜕𝓍̌2
) +

𝐸𝑥𝑝(−𝜋𝓎̌ ℓ⁄ )

8(𝜋𝒿0ℳ0)
−1, 

(2) 

𝜕𝓅̌

𝜕𝓎̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓋̌

𝜕𝓉̌
+

𝜕𝓋̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓋̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓋̌

𝜕𝓎̌2
+

𝜕2𝓋̌

𝜕𝓍̌2
), (3) 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) −

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

(
𝜕𝑞̌𝑟

𝜕𝓎̌
+

𝜕𝑞̌𝑟

𝜕𝓍̌
), (4) 

𝜕ℭ̌

𝜕𝓉̌
+

𝜕ℭ̌

𝜕𝓍̌
𝓊̌ +

𝜕ℭ̌

𝜕𝓎̌
𝓋̌ = 𝔇ℎ𝑛𝑓 (

𝜕2ℭ̌

𝜕𝓎̌2
+

𝜕2ℭ̌

𝜕𝓍̌2
) − 𝒸1(ℭ̌ − ℭ̌𝒷), (5) 

where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 

∂
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 

𝜕𝓋̌

𝜕𝓎̌
+

𝜕𝓊̌

𝜕𝓍̌
= 0, (1) 

𝜕𝓅̌

𝜕𝓍̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓊̌

𝜕𝓉̌
+

𝜕𝓊̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓊̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓊̌

𝜕𝓎̌2
+

𝜕2𝓊̌

𝜕𝓍̌2
) +

𝐸𝑥𝑝(−𝜋𝓎̌ ℓ⁄ )

8(𝜋𝒿0ℳ0)
−1, 

(2) 

𝜕𝓅̌

𝜕𝓎̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓋̌

𝜕𝓉̌
+

𝜕𝓋̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓋̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓋̌

𝜕𝓎̌2
+

𝜕2𝓋̌

𝜕𝓍̌2
), (3) 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) −

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

(
𝜕𝑞̌𝑟

𝜕𝓎̌
+

𝜕𝑞̌𝑟

𝜕𝓍̌
), (4) 

𝜕ℭ̌

𝜕𝓉̌
+

𝜕ℭ̌

𝜕𝓍̌
𝓊̌ +

𝜕ℭ̌

𝜕𝓎̌
𝓋̌ = 𝔇ℎ𝑛𝑓 (

𝜕2ℭ̌

𝜕𝓎̌2
+

𝜕2ℭ̌

𝜕𝓍̌2
) − 𝒸1(ℭ̌ − ℭ̌𝒷), (5) 

where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 
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∂x̌2

− c1

(
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)
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where, ǔ, signifies the horizontal component of velocity, while the vertical one is symbolized by
v̌. The dimensional pressure, temperature and concentration, are respectively shown by p̌,
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𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

and
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 

. Furthermore, ` denotes the width between magnets and electrodes. ℳ0(Tesla) represents the
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magnetization of the permanent magnets, while, j0
(
m−2 A

)
is the applied current density in the

electrodes. The first order coefficient for a chemical reaction, is presented by c1. In addition, q̌r

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively
proposed by Rosseland [38], which is given as:

q̌r = −
16σ̌
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 

the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
−𝜆

2
(𝒶 𝜐𝑓(1 − 𝜆𝓉̌)⁄ )

−0.5
. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 
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Figure 1. Physical model of the present flow situation. 

The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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of mono nanofluid, can be respectively given by: 
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, while σ̌ stands for Stefan-Boltzmann constant.
Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be generalized
as follows:
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. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2
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+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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)
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Figure 1. Physical model of the present flow situation. 

The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=
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2
(
𝒶(1−𝜆𝓉̌)
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)
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, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 
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characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

∂
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 
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=
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nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

)
. (7)

The auxiliary conditions, specifying the current flow situation, are given as:

ǔ = Uw(x̌) = ax̌/
(
1− λť

)
, v̌ = 0,

(
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𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 
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By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 
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characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 
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In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓
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. 
(17) 

−
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=
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0
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= 0,

(
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Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 

the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
−𝜆

2
(𝒶 𝜐𝑓(1 − 𝜆𝓉̌)⁄ )

−0.5
. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 

 

Figure 1. Physical model of the present flow situation. 

The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 
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Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 
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𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 

 

Figure 1. Physical model of the present flow situation. 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

= 0, (8)

v̌ =
db
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=
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(
a
(
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)
υ f

)−0.5

, ǔ = 0,
(
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 
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In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 
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nanofluid which is given below: 
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where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 
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of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
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By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 
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by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

b

)
= 0,

(
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. It is further assumed that 
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The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 

𝜕𝓋̌

𝜕𝓎̌
+

𝜕𝓊̌

𝜕𝓍̌
= 0, (1) 

𝜕𝓅̌

𝜕𝓍̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓊̌

𝜕𝓉̌
+

𝜕𝓊̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓊̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓊̌

𝜕𝓎̌2
+

𝜕2𝓊̌

𝜕𝓍̌2
) +

𝐸𝑥𝑝(−𝜋𝓎̌ ℓ⁄ )

8(𝜋𝒿0ℳ0)
−1, 

(2) 

𝜕𝓅̌

𝜕𝓎̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓋̌

𝜕𝓉̌
+

𝜕𝓋̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓋̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓋̌

𝜕𝓎̌2
+

𝜕2𝓋̌

𝜕𝓍̌2
), (3) 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) −

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

(
𝜕𝑞̌𝑟

𝜕𝓎̌
+

𝜕𝑞̌𝑟

𝜕𝓍̌
), (4) 

𝜕ℭ̌

𝜕𝓉̌
+

𝜕ℭ̌

𝜕𝓍̌
𝓊̌ +

𝜕ℭ̌

𝜕𝓎̌
𝓋̌ = 𝔇ℎ𝑛𝑓 (

𝜕2ℭ̌

𝜕𝓎̌2
+

𝜕2ℭ̌

𝜕𝓍̌2
) − 𝒸1(ℭ̌ − ℭ̌𝒷), (5) 

where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 

−
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+
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(
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+
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) − 𝒸1(ℭ̌ − ℭ̌𝒷), (5) 

where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 

b

)
= 0 at
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

= b
(
ť
)
, (9)

where,
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characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 
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𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 
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=
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constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 
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Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 
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The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 
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By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 
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=
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Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 

the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
−𝜆

2
(𝒶 𝜐𝑓(1 − 𝜆𝓉̌)⁄ )

−0.5
. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 

 

Figure 1. Physical model of the present flow situation. 
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+
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+
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Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 
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𝑞̌𝑟 = −
16𝜎̌Τ̌3
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𝜕Τ̌

𝜕𝓎̌
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b is the
nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being
stretched is a, while, λ represents the constant characteristics parameter.

In the aforementioned equations, υ f = µ f /ρ̌ f denotes the effective kinematic viscosity.
Furthermore, µhn f and µ f simultaneously represents the effective dynamic viscosities of the hybrid
nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid.
Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity

(
µn f

)
of a mono

nanofluid which is given below:

µn f =
µ f

(1− ϕ)5/2 , (10)

where, ϕ denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the effective
dynamic viscosity

(
µhn f

)
is defined as [22]:

µhn f =
µ f

(1− ϕh)
5/2 , (11)

where, ϕh = ϕ1 + ϕ2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles.
The effective density

(
ρ̌n f

)
presented by Pak and Cho [46] and the heat capacity

(
ρ̌Cp

)
n f [47] of

mono nanofluid, can be respectively given by:

ρ̌n f = ρ̌ f + ϕ
(

ρ̌p − ρ̌ f

)
, (12)

(
ρ̌Cp

)
n f =

(
ρ̌Cp

)
f + ϕ

((
ρ̌Cp

)
p −

(
ρ̌Cp

)
f

)
. (13)
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By following the rules of mixture principle, the effective density
(

ρ̌hn f

)
[22,48] and heat capacity(

ρ̌Cp
)

hn f [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15).

ρ̌hn f = ϕ1ρ̌p1 + ϕ2ρ̌p2 + (1− ϕh)ρ̌ f , (14)(
ρ̌Cp

)
hn f = ϕ1

(
ρ̌Cp

)
p1 + ϕ2

(
ρ̌Cp

)
p2 + (1− ϕh)

(
ρ̌Cp

)
f . (15)

The thermal conductivity
(
kn f

)
is the fundamental property, defining the heat transfer

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, by
considering the spherical shaped nanoparticles, whose mathematical expression is given by:

kn f = k f
kp(1 + 2ϕ) + 2k f (1− ϕ)

kp(1− ϕ) +k f (2 + ϕ)
. (16)

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by modifying
the Maxwell correlation [22] as:

khn f

k f
=

ϕ1kp1+ϕ2kp2
ϕh

+ 2k f + 2
(

ϕ1kp1 + ϕ2kp2
)
− 2ϕhk f

ϕ1kp1+ϕ2kp2
ϕh

+ 2k f −
(

ϕ1kp1 + ϕ2kp2
)
+ ϕhk f

. (17)

In 1935, another correlation, for spherical nanoparticles, has been introduced by Bruggeman [4],
which usually considers the impact of nano clusters on the thermal conductivity. By mixture principle,
this model can be extended for the estimation of thermal conductivity ratio of the hybrid nanofluid
and is given by:

khn f

k f
=

1
4

(3ϕh − 1)

 ϕ1kp1+ϕ2kp2
ϕh

k f

+ (2− 3ϕh) + (∆)1/2

, (18)

where,

∆ =


(3ϕh − 1)2

( ϕ1kp1+ϕ2kp2
ϕh
k f

)2

+ (2− 3ϕh)
2+

2
(
2 + 9ϕh − 9ϕ2

h
)( ϕ1kp1+ϕ2kp2

ϕh
k f

)
. (19)

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and hybrid
nanofluid are simultaneously defined as:

Dn f = (1− ϕ)D f , (20)

Dhn f = (1− ϕh)D f . (21)

In all the above expressions, ϕ1 and ϕ2 simultaneously, represents the volume concentration of
magnetite (Fe3O4) and silver (Ag) nanoparticles in hybrid nanofluids. The viscosity, density and
specific heat of host fluid are respectively denoted by µ f , ρ̌ f and

(
Cp
)

f . At constant pressure,
(
Cp
)

p1
and

(
Cp
)

p2 respectively, denotes the specific heat of magnetite and silver nanoparticles. The densities,
of magnetite and silver nanoparticles, are specified by ρ̌p1 and ρ̌p2 respectively. k f and D f represents
the thermal conductivity and mass diffusivity of the water (H2O). The thermal conductivities of
magnetite and silver nanocomposites, are respectively symbolized by kp1 and kp2.
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The prescribed form of similarity transforms, which deals with the process of conversion of
Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as:

Ψ =

(
(1−λť)
aυ f

)−0.5
x̌
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𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

(χ), χ =
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where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

(
b
(
ť
))−1, ǔ = ∂

∂
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𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

(Ψ) = Uw
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In 1935, another correlation, for spherical nanoparticles, has been introduced by Bruggeman [4], 

which usually considers the impact of nano clusters on the thermal conductivity. By mixture principle, 

this model can be extended for the estimation of thermal conductivity ratio of the hybrid nanofluid 

and is given by: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

1

4
[(3𝜑ℎ − 1) (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
) + (2 − 3𝜑ℎ) + (Δ)

1 2⁄ ], 
(18) 

where, 

Δ =

[
 
 
 
 
 
(3𝜑ℎ − 1)

2 (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
)

2

+ (2 − 3𝜑ℎ)
2 +

2(2 + 9𝜑ℎ − 9𝜑ℎ
2) (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
)

]
 
 
 
 
 

. 

(19) 

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 

hybrid nanofluid are simultaneously defined as: 

𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 

In all the above expressions, 𝜑1 and 𝜑2 simultaneously, represents the volume concentration 

of magnetite (𝐹𝑒3𝑂4) and silver (𝐴𝑔) nanoparticles in hybrid nanofluids. The viscosity, density and 

specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′
(χ),

v̂ = − ∂
∂x̌ (Ψ) = −

(
(1−λť)
aυ f

)−0.5
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𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
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)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
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(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

(χ), Ť (χ) =
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

−
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where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
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(1−𝜑ℎ)
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where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 
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(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 
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The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 
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In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 
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=
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Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 

the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
−𝜆

2
(𝒶 𝜐𝑓(1 − 𝜆𝓉̌)⁄ )

−0.5
. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 

 

Figure 1. Physical model of the present flow situation. 

The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 

−
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where, the superscript ′ stands for d/dχ. Thus, by opting Brinkman (11) and Bruggeman (18)
models, the dimensionless mode of a system of nonlinear ordinary differential equations, for
(Ag− Fe3O4/H2O) hybrid nanofluid, along with radiation and chemical reaction parameters has
been accomplished that can be written as:
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where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 
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[
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models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
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(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
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where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 
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[
 
 
 
 
 
(3𝜑ℎ − 1)

2 (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
)

2

+ (2 − 3𝜑ℎ)
2 +

2(2 + 9𝜑ℎ − 9𝜑ℎ
2) (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
)

]
 
 
 
 
 

. 

(19) 

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 

hybrid nanofluid are simultaneously defined as: 

𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 

In all the above expressions, 𝜑1 and 𝜑2 simultaneously, represents the volume concentration 

of magnetite (𝐹𝑒3𝑂4) and silver (𝐴𝑔) nanoparticles in hybrid nanofluids. The viscosity, density and 

specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′′′)]
− (1− ϕh)

5/2ℳbP e−P χ = 0, (23)

((
khn f

k f
+ Rd

((
1− Ť

)
+ Ť θw

)3
)
Ť ′
)′

+ PrΥ̌2

(
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)
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. 

(19) 

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 

hybrid nanofluid are simultaneously defined as: 

𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 

In all the above expressions, 𝜑1 and 𝜑2 simultaneously, represents the volume concentration 

of magnetite (𝐹𝑒3𝑂4) and silver (𝐴𝑔) nanoparticles in hybrid nanofluids. The viscosity, density and 

specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

− γ

2
χ
)
Ť ′ = 0. (24)

Θ̌′′ +
Sc

(1− ϕh)

(
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and is given by: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

1

4
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(3𝜑ℎ − 1)

2 (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
)

2

+ (2 − 3𝜑ℎ)
2 +

2(2 + 9𝜑ℎ − 9𝜑ℎ
2) (

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ

𝓀𝑓
)

]
 
 
 
 
 

. 

(19) 

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 

hybrid nanofluid are simultaneously defined as: 

𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 

In all the above expressions, 𝜑1 and 𝜑2 simultaneously, represents the volume concentration 

of magnetite (𝐹𝑒3𝑂4) and silver (𝐴𝑔) nanoparticles in hybrid nanofluids. The viscosity, density and 

specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

− γ

2
χ
)

Θ̌′ − Sc
(1− ϕh)

cℛΘ̌ = 0. (25)

where,
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(19) 

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 

hybrid nanofluid are simultaneously defined as: 

𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 

In all the above expressions, 𝜑1 and 𝜑2 simultaneously, represents the volume concentration 

of magnetite (𝐹𝑒3𝑂4) and silver (𝐴𝑔) nanoparticles in hybrid nanofluids. The viscosity, density and 

specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

, Ť and Θ̌, all are the dependent functions of dimensionless variable χ. Furthermore, the
dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as:
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The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 
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𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 
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specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

(0) = 0,
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where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 
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(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)
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where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 
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(1) =
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2
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(Ϝ̌ −
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Sc
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where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′(1) = 0, (26)

Ť (0)− 1 = 0, Ť (1) = 0, (27)

Θ̌(0)− 1 = 0, Θ̌(1) = 0. (28)

In the above-mentioned system of Equations (23) and (25), γ = λ/a represents a dimensionless
squeeze number, while, ℳb = πj0ℳ0x̌/8ρ̌ fU2

w is the modified Hartman number and P = πb
(
ť
)
/`

is the dimensionless parameter. Moreover, the radiation parameter is denoted by Rd = 16σ̌
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) +

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 

the upper Riga plate, owing the place at 𝓎̌ =  𝒷(𝓉̌) =
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. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 
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The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 

𝜕𝓋̌

𝜕𝓎̌
+

𝜕𝓊̌

𝜕𝓍̌
= 0, (1) 

𝜕𝓅̌

𝜕𝓍̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓊̌

𝜕𝓉̌
+

𝜕𝓊̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓊̌

𝜕𝓎̌
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𝜕2𝓊̌

𝜕𝓎̌2
+

𝜕2𝓊̌

𝜕𝓍̌2
) +

𝐸𝑥𝑝(−𝜋𝓎̌ ℓ⁄ )

8(𝜋𝒿0ℳ0)
−1, 

(2) 

𝜕𝓅̌

𝜕𝓎̌
+ 𝜌̌ℎ𝑛𝑓 (

𝜕𝓋̌

𝜕𝓉̌
+

𝜕𝓋̌

𝜕𝓍̌
𝓊̌ +

𝜕𝓋̌

𝜕𝓎̌
𝓋̌) = 𝜇ℎ𝑛𝑓 (

𝜕2𝓋̌

𝜕𝓎̌2
+

𝜕2𝓋̌

𝜕𝓍̌2
), (3) 

𝜕Τ̌

𝜕𝓉̌
+

𝜕Τ̌

𝜕𝓍̌
𝓊̌ +

𝜕Τ̌

𝜕𝓎̌
𝓋̌ =

𝓀ℎ𝑛𝑓

(𝜌̂𝐶𝑝)ℎ𝑛𝑓

(
𝜕2Τ̌

𝜕𝓎̌2
+

𝜕2Τ̌

𝜕𝓍̌2
) −

1

(𝜌̌𝐶𝑝)ℎ𝑛𝑓

(
𝜕𝑞̌𝑟

𝜕𝓎̌
+

𝜕𝑞̌𝑟

𝜕𝓍̌
), (4) 

𝜕ℭ̌

𝜕𝓉̌
+

𝜕ℭ̌

𝜕𝓍̌
𝓊̌ +

𝜕ℭ̌

𝜕𝓎̌
𝓋̌ = 𝔇ℎ𝑛𝑓 (

𝜕2ℭ̌

𝜕𝓎̌2
+

𝜕2ℭ̌

𝜕𝓍̌2
) − 𝒸1(ℭ̌ − ℭ̌𝒷), (5) 

where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌

𝜕Τ̌

𝜕𝓎̌
, (6) 

k f .

Prandtl number is symbolized by Pr =
(
k f /

(
ρ̌Cp

)
f υ f

)−1
. Besides, Sc = υ f /D f signifies, the Schmidt

number. The chemical reaction is indicated by cℛ = c1
(
1− λť

)
/a.

Moreover, the constants Υ̌1 and Υ̌2, embroiled in the governing dimensionless model, can be
mathematically stated as:

Υ̌1 =
υ f

υhn f
=

(
1−ϕh+ϕ1

ρ̌p1
ρ̌ f

+ϕ2
ρ̌p2
ρ̌ f

)
(1−ϕh)

−5/2 ,

Υ̌2 =
(ρ̌Cp)hn f

(ρ̌Cp) f
= 1− ϕh + ϕ1

(ρ̌Cp)p1

(ρ̌Cp) f
+ ϕ2

(ρ̌Cp)p2

(ρ̌Cp) f
.

 (29)

The coefficient of skin friction, local heat transferal rate (i.e., local Nusselt number) and local
Sherwood number, for the present flow situation, opt the following dimensionless expressions:

Ĉ f x̌ =
τw

ρ̌hn fU2
w

, Nux̌ =
bk f

−1(

Energies 2018, , x  5 of 22 

 

where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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) +

1
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16𝜎̌

3𝕜̌

𝜕

𝜕𝓎̌
(Τ̌3

𝜕Τ̌

𝜕𝓎̌
). (7) 

The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 

𝓋̌ =
𝒹𝒷

𝒹𝓉̌
=

−𝜆

2
(
𝒶(1−𝜆𝓉̌)

𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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=
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𝜑1𝓀𝑝1+𝜑2𝓀𝑝2
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b

) (q̌w + q̌r) and Shx̌ =
bD f

−1(
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 
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where, τw indicates the shear stress, while, the heat and mass fluxes, at both of the walls, are
simultaneously signifies by q̌w and q̌m. They are respectively defined as:

τw = µhn f

(
∂ǔ

∂
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where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 
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(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

)
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The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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where, the coefficient for mean absorption is given by 𝕜̌ , while 𝜎̌  stands for Stefan-Boltzmann 

constant. Therefore, after incorporating the Equation (6) in Equation (5), the energy equation can be 

generalized as follows: 
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+
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The auxiliary conditions, specifying the current flow situation, are given as: 

𝓊̌ = 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ ,   𝓋̌ = 0,    (Τ̌ − Τ̌0) = 0, ( ℭ̌ − ℭ̌0) = 0    at     𝓎̌ = 0, (8) 
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=
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2
(
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𝜐𝑓
)
−0.5

, 𝓊̌ = 0, (Τ̌ − Τ̌𝒷) = 0, (ℭ̌ − ℭ̌𝒷) = 0      at     𝓎̌ =  𝒷(𝓉̌), 
(9) 

where, Τ̌0 and Τ̌𝒷 simultaneously, indicates the temperatures of the plates situated at 𝓎̌ = 0 and 

𝓎̌ =  𝒷(𝓉̌). The concentration of nanoparticles at the bottom plate is denoted by ℭ̌0, while, ℭ̌𝒷 is the 

nanoparticles concentration at the top wall. Moreover, the rate, with which the lower surface is being 

stretched is 𝒶, while, 𝜆 represents the constant characteristics parameter. 

In the aforementioned equations, 𝜐𝑓 = 𝜇𝑓 𝜌̌𝑓⁄  denotes the effective kinematic viscosity. 

Furthermore, 𝜇ℎ𝑛𝑓 and 𝜇𝑓 simultaneously represents the effective dynamic viscosities of the hybrid 

nanofluid and mono nanofluid that significantly influence the flow behavior of the host fluid. 

Brinkman [45], in 1952, proposed a model for the effective dynamic viscosity (𝜇𝑛𝑓) of a mono 

nanofluid which is given below: 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)5 2⁄ , (10) 

where, 𝜑  denotes the nanoparticle volume fraction. Thus, in the case of hybrid nanofluid, the 

effective dynamic viscosity (𝜇ℎ𝑛𝑓) is defined as [22]: 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜑ℎ)
5 2⁄ , (11) 

where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 
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b(ť)

, q̌m = −Dhn f

(
∂

Energies 2018, , x  4 of 22 

 

Two parallel Riga plates have been under consideration, among which an electro-magneto 

hydrodynamic (EMHD) flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid has been flowing. The flow is 

also time dependent and incompressible. Cartesian coordinates have been chosen in such away, that 

the 𝓍̌ −axis coincides with the horizontal direction, whereas the 𝓎̌ −axis is placed normal to it. The 

lower plate positioned at 𝓎̌ =  0, experiences a stretching velocity 𝒰𝓌(𝓍̌) = 𝒶𝓍̌ (1 − 𝜆𝓉̌)⁄ . Besides, 
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. It is further assumed that 

the flow of (𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ )  hybrid nanofluid is a squeezing flow, having the velocity 𝓋̌𝒷 =

𝒹𝒷 𝒹𝓉̌⁄ . Moreover, the nonlinear thermal radiation and chemical reaction effects are also considered. 

Figure 1 displays the configuration of the flow model. 

 

Figure 1. Physical model of the present flow situation. 

The Navier-Stokes equations, suitable for the present flow situation, are given as [36]: 
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3

3𝕜̌
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, (6) 
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where, 𝜑ℎ = 𝜑1 + 𝜑2 (in case of hybrid nanofluid) is a net volume fraction of distinct nanoparticles. 

The effective density (𝜌̌𝑛𝑓) presented by Pak and Cho [46] and the heat capacity (𝜌̌𝐶𝑝)𝑛𝑓 [47] 

of mono nanofluid, can be respectively given by: 

𝜌̌𝑛𝑓 = 𝜌̌𝑓 + 𝜑(𝜌̌𝑝 − 𝜌̌𝑓), (12) 

(𝜌̌𝐶𝑝)𝑛𝑓 = (𝜌̌𝐶𝑝)𝑓 + 𝜑 ((𝜌̌𝐶𝑝)𝑝 − (𝜌̌𝐶𝑝)𝑓). 
(13) 

By following the rules of mixture principle, the effective density (𝜌̌ℎ𝑛𝑓)  [22,48] and heat 

capacity (𝜌̌𝐶𝑝)ℎ𝑛𝑓 [22,48] of hybrid nanofluid, can be estimated via Equations (14) and (15). 

𝜌̌ℎ𝑛𝑓 = 𝜑1𝜌̌𝑝1 + 𝜑2𝜌̌𝑝2 + (1 − 𝜑ℎ)𝜌̌𝑓, (14) 

(𝜌̌𝐶𝑝)ℎ𝑛𝑓 = 𝜑1(𝜌̌𝐶𝑝)𝑝1 + 𝜑2(𝜌̌𝐶𝑝)𝑝2 +
(1 − 𝜑ℎ)(𝜌̌𝐶𝑝)𝑓. (15) 

The thermal conductivity (𝓀𝑛𝑓)  is the fundamental property, defining the heat transfer 

characteristics of the mono nanofluid. Maxwell suggested a correlation [3], for the mono nanofluid, 

by considering the spherical shaped nanoparticles, whose mathematical expression is given by: 

𝓀𝑛𝑓 = 𝓀𝑓
𝓀𝑝(1+2𝜑)+2𝓀𝑓(1−𝜑)

𝓀𝑝(1−𝜑)+𝓀𝑓(2+𝜑)
. (16) 

In the case of hybrid nanofluid, the thermal conductivity ratio can be accomplished by 

modifying the Maxwell correlation [22] as: 

𝓀ℎ𝑛𝑓

𝓀𝑓
=

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓+2(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)−2𝜑ℎ𝓀𝑓

𝜑1𝓀𝑝1+𝜑2𝓀𝑝2

𝜑ℎ
+2𝓀𝑓−(𝜑1𝓀𝑝1+𝜑2𝓀𝑝2)+𝜑ℎ𝓀𝑓

. 
(17) 

)
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= {
0
b(ť)

(31)

Subsequently, by incorporating Equations (6) and (31) into Equation (30), we finally achieved the
dimensionless forms of skin friction, the Nusselt number, and the Sherwood number, both at the top
and bottom walls, which can be expressed as:

Re0.5
x̌ Ĉlower =

1
Υ̌1
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and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′′
(0), Re0.5

x̌ Ĉupper =
1
Υ̌1
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,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′′
(1), (32)

(
1− λť

)0.5Re−0.5
x̌ Nulower = −

(
khn f
k f

+ Rd(θw)
3
)
Ť ′(0),(

1− λť
)0.5Re−0.5

x̌ Nuupper = −
(
khn f
k f

+ Rd
)
Ť ′(1),

(33)

and
Re−0.5

x̌ Shlower = −(1− ϕh)Θ̌
′
(0), Re−0.5

x̌ Shupper = −(1− ϕh)Θ̌
′
(1), (34)

where, Rex̌ = x̌Uw/υ f denotes the local Reynolds number.

3. Solution Procedure

Method of moments (MM), one of the sub-class of the method of weighted residual (MWR),
has been considered, in order to tackle the system of differential equations coupled with boundary
conditions. From an accuracy point of view, a comparison has also been made, between the results
achieved by Method of moments (MM) and Runge-Kutta-Fehlberg method (RKF). For this purpose,
a mathematical software Maple 16 has been used.

Method of Moments

Let D , an arbitrary differential operator, acting upon
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The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

(χ) generate a function ℊ(χ), which is
given as:

D
(
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where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 
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𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
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(1−𝜑ℎ)
(Ϝ̌ −
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𝜒) Θ̌′ −
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(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 
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(χ)
)
= ℊ(χ). (35)

In order to approximate the solution of the above-mentioned problem, a trial solution has been
defined, which is in the form of a linear combination of base function. These basis functions, also hold
the property of linearly independence. Mathematically, it can be expressed as:
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approximate solution for the velocity and temperature along with concentration profiles are as under: 

Ϝ̌(𝜒) ≅ Ϝ̃(𝜒) = 0.0387970586596651373𝜒6 − 0.135831460629211753𝜒5 +

0.150915945544620123𝜒4 + 0.750688356622255526𝜒3 −

1.70467856655171612𝜒2 + 1.00010866635438700𝜒, 

(43) 

𝒯̌(𝜒) ≅ 𝒯̃(𝜒) = −0.0866389688520037421𝜒6 + 0.500946012785362327𝜒5 −
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0.0448789189043188319𝜒2 − 1.21096134688613266𝜒 + 1.0, 

(44) 

(χ) = ψ0 +
n

∑
i=1

ciψi, (36)

where, the essential boundary conditions are usually incorporated in ψ0. By substituting back
Equation (36) in Equation (35), one can acquired an exact solution, in the form of the trial solution that
satisfies the given problem (35), which is an extremely rare situation. More often, it does not satisfies
the given problem and therefore, left an expression that represents the error or the residual as under:

ℛ̃(χ) = D
(
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(χ)
)
−ℊ(χ) 6= 0. (37)

The proper selection of weights enabled us to construct weighted residual error. The values of
unknown constants ci’s have been accomplished after the minimization procedure, that is:∫

χ
ℛ̃(χ) Wi(χ)dχ = 0, i = 1, 2, . . . , n. (38)



Energies 2019, 12, 76 9 of 23

The above equation generate a system of algebraic equations, whose solution finally lead us
to determine the unknown constants ci’s, and thus, a numerical solution has been obtained after
plugging them back into the trial solution.

It is pertinent to mention that the weight functions involved in the method of moments (MM),
are defined as:

Wi(χ) =
∂

∂cj
cjχ

j, j = 0, 1, . . . , n− 1. (39)

For the present flow problem, the system of the trial solution, under consideration, are defined as:
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The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

(χ) =
4
5

χ3 − 17
10

χ2 + χ +
5

∑
i=1

ciχ(χ− 1)i, (40)

Ť (χ) = 1− χ +
5

∑
i=1

diχ(χ− 1)i, (41)

Θ̌(χ) = 1− χ +
5

∑
i=1

eiχ(χ− 1)i. (42)

By following the procedure as suggested above, the numerical solution has been achieved by
substituting the above set of trial solutions into the governing dimensionless system of equations, which
are nonlinear in nature. Thus, by assigning some specific values to the parameters, the approximate
solution for the velocity and temperature along with concentration profiles are as under:
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Ϝ̌(𝜒) =
4

5
𝜒3 −

17

10
𝜒2 + 𝜒 + ∑ 𝒸𝑖𝜒(𝜒 − 1)

𝑖5
𝑖=1 , (40) 

𝒯̌(𝜒) = 1 − 𝜒 + ∑ 𝑑𝑖𝜒(𝜒 − 1)
𝑖5

𝑖=1 , (41) 

Θ̌(𝜒) = 1 − 𝜒 + ∑ 𝑒𝑖𝜒(𝜒 − 1)
𝑖5

𝑖=1 . (42) 

By following the procedure as suggested above, the numerical solution has been achieved by 

substituting the above set of trial solutions into the governing dimensionless system of equations, 

which are nonlinear in nature. Thus, by assigning some specific values to the parameters, the 

approximate solution for the velocity and temperature along with concentration profiles are as under: 

Ϝ̌(𝜒) ≅ Ϝ̃(𝜒) = 0.0387970586596651373𝜒6 − 0.135831460629211753𝜒5 +

0.150915945544620123𝜒4 + 0.750688356622255526𝜒3 −

1.70467856655171612𝜒2 + 1.00010866635438700𝜒, 

(43) 

𝒯̌(𝜒) ≅ 𝒯̃(𝜒) = −0.0866389688520037421𝜒6 + 0.500946012785362327𝜒5 −

1.06954770759623097𝜒4 + 0.911080929453323640𝜒3 −

0.0448789189043188319𝜒2 − 1.21096134688613266𝜒 + 1.0, 

(44) 

(χ) = 0.0387970586596651373χ6 − 0.135831460629211753χ5+

0.150915945544620123χ4 + 0.750688356622255526χ3−
1.70467856655171612χ2 + 1.00010866635438700χ,

(43)

Ť (χ) ∼= T̃ (χ) = −0.0866389688520037421χ6 + 0.500946012785362327χ5−
1.06954770759623097χ4 + 0.911080929453323640χ3−

0.0448789189043188319χ2 − 1.21096134688613266χ + 1.0,
(44)

Θ̌(χ) ∼= Θ̃(χ) = −0.00281815275323297988χ6+

0.0301378227343711141χ5 − 0.0834665005070162475χ4+

0.0635487269722848497χ3 + 0.0509906671544004958χ2−
1.05839256360080736χ + 1.0.

(45)

The above solutions are obtained for certain values of parameters, which are given as:

γ = cℛ = Rd = 0.2, Sc = 0.5, θw = 1.1, ℳb = 1.5, P = 10, ϕ1 = ϕ2 = 0.01. (46)

Table 1 displays some important thermal and physical properties of carrier fluid (H2O) [52] and
the nanoparticles. These values play a key role in order to obtain the above solutions.

Table 1. Thermo-mechanical properties of H2O, Fe3O4 and Ag nanoparticles [51–53].

H2O(f) Fe3O4 (ϕ1) Ag (ϕ2)

ρ̌
(
kg m−3) 997.1 5180 10,500

Cp
(

J kg−1K−1) 4179 670 235
k
(
Wm−1K−1) 0.613 9.7 429

Pr 6.2 − −
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The subsequent Tables 2–4 respectively, provide a comparison between the results obtained via
MM and RKF, for velocity, temperature, and concentration profiles. The values, as suggested above,
remains the same for ingrained parameters. From these tables, one can clearly visualize the validity of
the acquired results. Furthermore, for the tabulated values, the significant digit is set to 4.

Table 2. Comparison of the results obtained for
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(χ) for (Ag− Fe3O4/H2O) hybrid nanofluid with
(ϕ1 = 0.01).

χ NM MM Abs Error

0.0 0 0 0
0.1 0.08361971055 0.0837285414 0.0001.088308511
0.2 0.1377601897 0.1380405799 0.0002803901712
0.3 0.1674522669 0.1678007463 0.0003484793851
0.4 0.1776981193 0.1779703975 0.0002722782048
0.5 0.1734032258 0.1735144536 0.000111227772
0.6 0.1593783977 0.1593361686 0.00000422290531
0.7 0.1403592885 0.1402398353 0.0001194532992
0.8 0.121027384 0.1209214235 0.0001059605161
0.9 0.1060297995 0.1059871531 0.0000042646395
1.0 0.1 0.1 0.0000000000000

Table 3. Comparison of the results obtained for Ť (χ) for (Ag− Fe3O4/H2O) hybrid nanofluid with
(ϕ1 = 0.01).

χ NM MM Abs Error

0.0 1 1 0.0000000000000
0.1 0.8793088955 0.8792641251 0.0000044770436
0.2 0.7618050723 0.7617447028 0.0000060369490
0.3 0.6498328728 0.6497624809 0.0000070391950
0.4 0.5442201803 0.5441384063 0.0000081773904
0.5 0.4447153684 0.4446388103 0.0000076558102
0.6 0.3504084469 0.3503582131 0.0000050233744
0.7 0.2600611457 0.2600397494 0.0000213962680
0.8 0.1723422761 0.1723332129 0.0000090632458
0.9 0.08599850137 0.08599072095 0.0000007780414
1.0 0 0 0.0000000000000

Table 4. Comparison of the results obtained for Θ̌(χ) for (Ag− Fe3O4/H2O) hybrid nanofluid with
(ϕ1 = 0.01).

χ NM MM Abs err

0.0 1 1 0.0000000000000
0.1 0.8947297917 0.8947261509 0.0000003640704
0.2 0.7907519656 0.7907454211 0.0000006544490
0.3 0.688190526 0.6881823084 0.0000008217550
0.4 0.5870371838 0.5870289256 0.0000008258260
0.5 0.4871828347 0.4871760929 0.0000006741763
0.6 0.3884468482 0.3884424019 0.0000004446265
0.7 0.2906036897 0.29060125 0.0000002439726
0.8 0.1934071528 0.1934058456 0.0000001307163
0.9 0.09661287932 0.09661218516 0.0000000694153
1.0 0 0.0000000000000 0.0000000000000
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The reliability of the obtained results have been further checked by reproducing the results for Skin
friction coefficient, which were previously presented by Hayat et al. [36]. The results were obtained for
the regular fluid (ϕ1 = ϕ2 = 0). Table 5 has been prepared to check the validity of the obtained results.
It has been observed that the results obtained via Method of Moments are in good agreement with the
previously existing results. Moreover, Method of Moments offers less computational complexity as
compared to Homotopy analysis method. From the table, it has also been detected that the skin friction
coefficient displays a decline with the increasing squeezing parameter (γ). However, a reversed

behavior has been observed for increasing values of Modified Hartmann number
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4. Results and Discussions 

The goal is to graphically elucidate the influential behavior of velocity, temperature and 

concentration profiles, due to the various ingrained entities. . A pictorial view, from Figure 2 to Figure 

20, has been presented for the above-mentioned purpose. Figures 2–4 displays the performance of 

velocity profile, under the action of the squeezing parameter, Modified Hartmann number and solid 

volume fraction. The variations in velocity component Ϝ̌′(𝜒), due to squeezing parameter 𝛾, have 

been depicted in Figure 2a. For 𝛾 > 0, i.e., when the upper plate moves in the downward direction, 

the fluid nearby the upper wall experiences a force, which in turn enhances the fluid velocity in that 

region. As 𝛾  increases sufficiently, the velocity component Ϝ̌′(𝜒)  also increases and gradually 

depreciates the reversal behavior of the flow. The velocity component Ϝ̌(𝜒) also experiences an 

increment in the region, adjacent to the upper wall, which is mainly due to the squeezing behavior 

of the upper plate and this phenomena has been clearly observed through Figure 2b. Figure 3 

demonstrates the impact of Modified Hartmann number ℳ𝒷 on the axial and normal components 

of the velocity distribution. Since the magnetic field experiences an exponential decline, therefore 

velocity component Ϝ̌′(𝜒) seems to be increased in the lower region of the channel. The fact behind 

is that the application of magnetic field generates the Lorentz forces, which in turn opposes the fluid 

flow. But in the present situation, the magnetic field decreases, so the Lorentz forces decreases and 

consequently, an increment in velocity has been perceived in the region close to the lower Riga plate. 

Besides, in the upper half, the velocity displays an opposite behavior as compared to the lower half 

.
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γ NM [36] HAM [36] MM

1.5 0.5 0.467511 0.467511 0.467511
1.0 - 0.452395 0.452395 0.452395
0.0 - 0.422159 0.422159 0.422159
1.5 0.3 1.08543 1.08543 1.08543
- 0.1 1.69635 1.69634 1.69634

4. Results and Discussions

The goal is to graphically elucidate the influential behavior of velocity, temperature and
concentration profiles, due to the various ingrained entities. A pictorial view, from Figures 2–20,
has been presented for the above-mentioned purpose. Figures 2–4 displays the performance of velocity
profile, under the action of the squeezing parameter, Modified Hartmann number and solid volume

fraction. The variations in velocity component
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this model can be extended for the estimation of thermal conductivity ratio of the hybrid nanofluid 
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. 

(19) 

The molecular diffusivity [22,49–51], of the species concentration, for mono nanofluid and 

hybrid nanofluid are simultaneously defined as: 

𝔇𝑛𝑓 = (1 − 𝜑)𝔇𝑓, (20) 

𝔇ℎ𝑛𝑓 = (1 − 𝜑ℎ)𝔇𝑓. (21) 

In all the above expressions, 𝜑1 and 𝜑2 simultaneously, represents the volume concentration 

of magnetite (𝐹𝑒3𝑂4) and silver (𝐴𝑔) nanoparticles in hybrid nanofluids. The viscosity, density and 

specific heat of host fluid are respectively denoted by 𝜇𝑓 , 𝜌̌𝑓 and (𝐶𝑝)𝑓. At constant pressure, (𝐶𝑝)𝑝1 

and (𝐶𝑝)𝑝2  respectively, denotes the specific heat of magnetite and silver nanoparticles. The 

densities, of magnetite and silver nanoparticles, are specified by 𝜌̌𝑝1 and 𝜌̌𝑝2 respectively. 𝓀𝑓 and 

𝔇𝑓  represents the thermal conductivity and mass diffusivity of the water (𝐻2𝑂) . The thermal 

conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′
(χ), due to squeezing parameter γ, have been depicted

in Figure 2a. For γ > 0, i.e., when the upper plate moves in the downward direction, the fluid nearby
the upper wall experiences a force, which in turn enhances the fluid velocity in that region. As

γ increases sufficiently, the velocity component
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𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)
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𝓀ℎ𝑛𝑓

𝓀𝑓
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(Ϝ̌ −

𝛾

2
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(1−𝜑ℎ)
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where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

(χ) also experiences an increment in the region,
adjacent to the upper wall, which is mainly due to the squeezing behavior of the upper plate and
this phenomena has been clearly observed through Figure 2b. Figure 3 demonstrates the impact of
Modified Hartmann number ℳb on the axial and normal components of the velocity distribution.

Since the magnetic field experiences an exponential decline, therefore velocity component
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ℭ̌0−ℭ̌𝒷
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(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′
(χ) seems

to be increased in the lower region of the channel. The fact behind is that the application of magnetic
field generates the Lorentz forces, which in turn opposes the fluid flow. But in the present situation,
the magnetic field decreases, so the Lorentz forces decreases and consequently, an increment in
velocity has been perceived in the region close to the lower Riga plate. Besides, in the upper half,
the velocity displays an opposite behavior as compared to the lower half of the channel, which may
be due to the downward squeezing motion of the upper plate. Figure 3b exhibits an increment in
the normal component of velocity
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where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
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(χ) with the increasing Modified Hartmann number, which is
primarily be due to the decreasing effects of Lorentz force. It can be detected from Figure 4a that the
axial velocity decreases in the lower region with the increasing nanoparticles concentration, while
an opposite behavior has been perceived in the upper portion of the channel. The reason behind
is that the nanoparticle’s concentration resists the fluid to move and therefore decreases the fluid
velocity. Figure 4b depicts a decline in the normal component of the velocity
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(χ) with increasing
nanoparticle’s concentration, which opposes the fluid motion. Moreover, the inset pictures reveal the
fact that the velocity for the (Fe3O4/H2O) nanofluid mostly attains the higher values as compared to
the (Ag− Fe3O4/H2O) hybrid nanofluid.
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Figure 2. Impact of particular values of 𝛾 on (a) Ϝෘᇱ(𝜒) and (b) Ϝෘ(𝜒). 
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Figure 4. Impact of particular values of 𝜑ଵ and 𝜑ଶ on (a) Ϝෘᇱ(𝜒) and (b) Ϝෘ(𝜒). 

The upcoming figures give a pictorial description of the variations in temperature distribution, 
for various embedded parameters. Figure 5 displays the impact of squeezing parameter 𝛾  on 
temperature profile. When the upper plate squeezed down, i.e., 𝛾 > 0, it exerts a force on the nearby 
fluid and enhances its velocity, but since the temperature seems to be dominant at the lower wall 
therefore the fluid in the adjacent region experiences the higher temperature values as compared to 
the region nearby the channel’s upper wall. To demonstrate the impact of Modified Hartmann 
number ℳ𝒷  on temperature distribution, Figure 6 has been plotted. It has been found that 
temperature reveals lower values, as ℳ𝒷 increases. As the impact of Lorentz force on velocity profile 
produce a friction on the flow, which mainly be responsible to produce more heat energy. In the 
present flow situation, since the magnetic field exponentially decreases, so the Lorentz force 
decreases which in turn generates less friction force and consequently, decreases the heat energy and 
therefore decreases the fluid’s temperature as well as the thermal boundary layer thickness. From 
Figure 7, one can clearly observe an increment in temperature profile with increasing nanoparticles 
concentration. The fact behind is that, the inclusion of nanoparticles with different volume fractions 
augments the thermal properties of the host fluid and therefore increases its temperature. It has also 
been observed that the temperature of (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) hybrid nanofluid shows its supremacy 
over the (𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ )  nanofluid, which definitely be due to the rising values of the thermal 
conductivity for (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) hybrid nanofluid. 

Figure 8 has been sketched, to highlight the temperature behavior under the influence of 
radiation parameter 𝑅𝑑. An upsurge has been encountered in temperature, for increasing 𝑅𝑑. The 
fact behind is that, the increasing 𝑅𝑑 corresponds to the decrement in mean absorption coefficient, 
which in turn raises the fluid temperature. The temperature also depicts a rising behavior with 
increasing 𝜃𝓌 (see Figure 9). The increasing 𝜃𝓌 implies that the temperature differences between 
the lower and upper walls significantly rises and subsequently, an increment in temperature has been 
recorded. 
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conductivities of magnetite and silver nanocomposites, are respectively symbolized by 𝓀𝑝1 and 𝓀𝑝2. 

The prescribed form of similarity transforms, which deals with the process of conversion of 

Equations (1)–(3) and (7) into a nonlinear set of ordinary differential equations (ODE), are given as: 

Ψ = (
(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

𝓍̌Ϝ̌(𝜒),     𝜒 = 𝓎̌(𝒷(𝓉̌))
−1

,       𝓊̌ =
𝜕

𝜕𝓎̌
(Ψ) = 𝒰𝓌Ϝ̌

′(𝜒), 

𝓋̂ = −
𝜕

𝜕𝓍̌
(Ψ) = −(

(1−𝜆𝓉̌)

𝒶𝜐𝑓
)
−0.5

Ϝ̌(𝜒),     𝒯̌(𝜒) =
Τ̌−Τ̌𝒷

Τ̌0−Τ̌𝒷
,      𝒞̌(𝜒) =

ℭ̌−ℭ̌𝒷

ℭ̌0−ℭ̌𝒷
. 

(22) 

where, the superscript ′  stands for 𝑑 𝑑𝜒⁄ . Thus, by opting Brinkman (11) and Bruggeman (18) 

models, the dimensionless mode of a system of nonlinear ordinary differential equations, for 

(𝐴𝑔 − 𝐹𝑒3𝑂4 𝐻2𝑂⁄ ) hybrid nanofluid, along with radiation and chemical reaction parameters has 

been accomplished that can be written as: 

Ϝ̌𝑖𝑣 + Υ̌1 [Ϝ̌
′Ϝ̌′′ − Ϝ̌Ϝ̌′′′ −

𝛾

2
(3Ϝ̌′′ + 𝜒Ϝ̌′′′)] − (1 − 𝜑ℎ)

5 2⁄ ℳ𝒷𝒫𝑒
−𝒫𝜒 = 0, (23) 

((
𝓀ℎ𝑛𝑓

𝓀𝑓
+ 𝑅𝑑 ((1 − 𝒯̌) + 𝒯̌𝜃𝓌)

3

) 𝒯̌′)

′

+ 𝑃𝑟 Υ̌2 (Ϝ̌ −
𝛾

2
𝜒) 𝒯̌′ = 0. 

(24) 

Θ̌′′ +
Sc

(1−𝜑ℎ)
(Ϝ̌ −

𝛾

2
𝜒) Θ̌′ −

Sc

(1−𝜑ℎ)
𝒸ℛΘ̌ = 0. (25) 

where, Ϝ̌, 𝒯̌ and Θ̌, all are the dependent functions of dimensionless variable 𝜒. Furthermore, the 

dimensionless auxiliary conditions, supporting the present flow situation, are therefore suggested as: 

Ϝ̌(0) = 0,   Ϝ̌(1) =
𝛾

2
,    Ϝ̌′(0) − 1 = 0,    Ϝ̌′(1) = 0, (26) 

′
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Figure 4. Impact of particular values of 𝜑ଵ and 𝜑ଶ on (a) Ϝෘᇱ(𝜒) and (b) Ϝෘ(𝜒). 

The upcoming figures give a pictorial description of the variations in temperature distribution, 
for various embedded parameters. Figure 5 displays the impact of squeezing parameter 𝛾  on 
temperature profile. When the upper plate squeezed down, i.e., 𝛾 > 0, it exerts a force on the nearby 
fluid and enhances its velocity, but since the temperature seems to be dominant at the lower wall 
therefore the fluid in the adjacent region experiences the higher temperature values as compared to 
the region nearby the channel’s upper wall. To demonstrate the impact of Modified Hartmann 
number ℳ𝒷  on temperature distribution, Figure 6 has been plotted. It has been found that 
temperature reveals lower values, as ℳ𝒷 increases. As the impact of Lorentz force on velocity profile 
produce a friction on the flow, which mainly be responsible to produce more heat energy. In the 
present flow situation, since the magnetic field exponentially decreases, so the Lorentz force 
decreases which in turn generates less friction force and consequently, decreases the heat energy and 
therefore decreases the fluid’s temperature as well as the thermal boundary layer thickness. From 
Figure 7, one can clearly observe an increment in temperature profile with increasing nanoparticles 
concentration. The fact behind is that, the inclusion of nanoparticles with different volume fractions 
augments the thermal properties of the host fluid and therefore increases its temperature. It has also 
been observed that the temperature of (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) hybrid nanofluid shows its supremacy 
over the (𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ )  nanofluid, which definitely be due to the rising values of the thermal 
conductivity for (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) hybrid nanofluid. 

Figure 8 has been sketched, to highlight the temperature behavior under the influence of 
radiation parameter 𝑅𝑑. An upsurge has been encountered in temperature, for increasing 𝑅𝑑. The 
fact behind is that, the increasing 𝑅𝑑 corresponds to the decrement in mean absorption coefficient, 
which in turn raises the fluid temperature. The temperature also depicts a rising behavior with 
increasing 𝜃𝓌 (see Figure 9). The increasing 𝜃𝓌 implies that the temperature differences between 
the lower and upper walls significantly rises and subsequently, an increment in temperature has been 
recorded. 
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The next set of figures provide us an aid, to visualize the deviations, in concentration profile, 
caused by various embedded parameters. Figure 10 demonstrates the influence of squeezing 
parameter 𝛾 on the concentration profile. When the upper plate moves vertically downward, i.e., 𝛾 > 0, it suppresses the adjacent fluid layers and enhances its velocity, but since the concentration 
shows its supremacy at the lower wall, therefore the concentration profile shows its dominancy in 
the region, close to the lower wall, as compared to the region adjacent to the upper wall. To 
demonstrate the impact of Modified Hartmann number ℳ𝒷 on concentration profile, Figure 11 has 
been painted. As explained earlier that the Lorentz forces, in present flow situation, experience a 
decline, which as a result generate less friction force and therefore, decrease the concentration profile 
along with concentration boundary layer thickness. From Figure 12, one can clearly detect a decline 
in concentration profile, as nanoparticle fraction increases. Moreover, it has been noticed that the 
concentration profile for (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) hybrid nanofluid possesses lower values as compared 
to the (𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) nanofluid. 

Figure 13 portrays the influence of chemical reaction parameter 𝒸ℛ on concentration profile. A 
clear decline has been perceived in the concentration of species with the growing values of chemical 
reaction parameter 𝒸ℛ . Since the chemical reaction, in the present flow analysis, is due to the 
consumption of the chemicals, therefore, the concentration profile experiences a decline with the 
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The upcoming figures give a pictorial description of the variations in temperature distribution,
for various embedded parameters. Figure 5 displays the impact of squeezing parameter γ on
temperature profile. When the upper plate squeezed down, i.e., γ > 0, it exerts a force on the
nearby fluid and enhances its velocity, but since the temperature seems to be dominant at the lower
wall therefore the fluid in the adjacent region experiences the higher temperature values as compared
to the region nearby the channel’s upper wall. To demonstrate the impact of Modified Hartmann
number ℳb on temperature distribution, Figure 6 has been plotted. It has been found that temperature
reveals lower values, as ℳb increases. As the impact of Lorentz force on velocity profile produce a
friction on the flow, which mainly be responsible to produce more heat energy. In the present flow
situation, since the magnetic field exponentially decreases, so the Lorentz force decreases which in
turn generates less friction force and consequently, decreases the heat energy and therefore decreases
the fluid’s temperature as well as the thermal boundary layer thickness. From Figure 7, one can
clearly observe an increment in temperature profile with increasing nanoparticles concentration.
The fact behind is that, the inclusion of nanoparticles with different volume fractions augments
the thermal properties of the host fluid and therefore increases its temperature. It has also been
observed that the temperature of (Ag− Fe3O4/H2O) hybrid nanofluid shows its supremacy over the
(Fe3O4/H2O) nanofluid, which definitely be due to the rising values of the thermal conductivity for
(Ag− Fe3O4/H2O) hybrid nanofluid.

Figure 8 has been sketched, to highlight the temperature behavior under the influence of radiation
parameter Rd. An upsurge has been encountered in temperature, for increasing Rd. The fact behind is
that, the increasing Rd corresponds to the decrement in mean absorption coefficient, which in turn
raises the fluid temperature. The temperature also depicts a rising behavior with increasing θw (see
Figure 9). The increasing θw implies that the temperature differences between the lower and upper
walls significantly rises and subsequently, an increment in temperature has been recorded.

The next set of figures provide us an aid, to visualize the deviations, in concentration profile,
caused by various embedded parameters. Figure 10 demonstrates the influence of squeezing parameter
γ on the concentration profile. When the upper plate moves vertically downward, i.e., γ > 0, it
suppresses the adjacent fluid layers and enhances its velocity, but since the concentration shows its
supremacy at the lower wall, therefore the concentration profile shows its dominancy in the region,
close to the lower wall, as compared to the region adjacent to the upper wall. To demonstrate the impact
of Modified Hartmann number ℳb on concentration profile, Figure 11 has been painted. As explained
earlier that the Lorentz forces, in present flow situation, experience a decline, which as a result generate
less friction force and therefore, decrease the concentration profile along with concentration boundary
layer thickness. From Figure 12, one can clearly detect a decline in concentration profile, as nanoparticle
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fraction increases. Moreover, it has been noticed that the concentration profile for (Ag− Fe3O4/H2O)

hybrid nanofluid possesses lower values as compared to the (Fe3O4/H2O) nanofluid.
Figure 13 portrays the influence of chemical reaction parameter cℛ on concentration profile. A

clear decline has been perceived in the concentration of species with the growing values of chemical
reaction parameter cℛ . Since the chemical reaction, in the present flow analysis, is due to the
consumption of the chemicals, therefore, the concentration profile experiences a decline with the
increasing values of cℛ . The variations in concentration profile, under the action of Schmidt number
Sc, has been presented in Figure 14. It has been observed that the increasing values of Schmidt number
Sc causes a decline in the concentration of the species. Since the Schmidt number is the ratio of
momentum diffusivity to mass diffusivity. Therefore, the increment in Schmidt number consequently
implies a decline in mass diffusivity, which in turn decreases the concentration profile.

Figures 15 and 16 display the impact of various ingrained parameters on the skin friction
coefficient, both at the upper and lower Riga surfaces. It has been detected from Figure 15 that
increasing the nanoparticles concentration certainly enhances the coefficient of skin friction drag at
the lower Riga plate. However, at the upper plate, an opposite behavior has been clearly visible.
As far as squeezing parameter γ is concerned, the skin friction coefficient exhibits an increasing
behavior, in the region adjacent to the lower plate. However, a decline has been perceived at the
upper wall. From Figure 16, one can clearly observes an increment in skin friction coefficient, with
the increasing ℳb, both at the upper and lower Riga plates. Moreover, the skin friction coefficient
for (Ag− Fe3O4/H2O) hybrid nanofluid possesses higher values, at the bottom of the channel, as
compared to the (Fe3O4/H2O) nanofluid.

Figures 17 and 18 have been plotted, to assess the consequences of various embedded entities
on the local rate of heat transfer i.e., Nusselt number. From Figure 17, one can clearly detect an
increment in heat transfer, with increasing nanoparticle volume fraction, at both of the plates. Since
the nanoparticle’s inclusion, in the base fluid, is responsible for rising its temperature, therefore
an augmentation in the heat transfer rate is quite obvious. By varying the squeezing number γ

horizontally, the local Nusselt number at the upper as well as on the lower plates, indicate a decreasing
behavior. Figure 18 depicts the variations in heat transfer rate, with growing values of radiation
parameter Rd and temperature difference parameter θw. Since both the parameters (Rd and θw)
significantly amplifies the temperature of the fluid, therefore, they play a key role in enhancing the
local Nusselt number, both at the upper and lower Riga plates. Besides, it has been observed from
both the figures that the (Ag− Fe3O4/H2O) hybrid nanofluid shows its supremacy in transferring the
heat, both at the upper and lower Riga plates.

Figures 19 and 20 depict the variations in the rate of mass transfer, i.e., Sherwood number under
the action of various involved parameters. Figure 19 reveals a decline in the Sherwood number with
increasing nanoparticle concentration, both at the upper and lower Riga plates. Since the increasing
nanoparticle’s volume fraction certainly opposes the fluid motion, therefore a decrement in Sherwood
number is quite obvious. The rate, with which mass flows, also shows a decreasing behavior when the
squeezing parameter γ increases horizontally. From Figure 20, one can observes a clear enhancement
in the rate of mass flow in the region nearby the lower plate, when the chemical reaction parameter
cℛ increases curve wise and Schmidt number Sc varies along the horizontal axis. On the other hand, a
reverse behavior has been perceived at the upper plate. Moreover, (Fe3O4/H2O) nanofluid remains
dominant in transferring the mass, both at the upper and lower Riga plates.

Hybrid nanofluids, being advanced version of nanofluids, considerably influences the
thermo-mechanical properties of the working fluid, particularly the thermal conductivity. For the said
purpose, Tables 6 and 7 have been designed, to see the deviations in thermo-mechanical properties of
the (Ag− Fe3O4/H2O) hybrid nanofluid and (Fe3O4/H2O) nanofluid. It has been detected that the
density of (Ag− Fe3O4/H2O) hybrid nanofluid depicts an increment, as compared to (Fe3O4/H2O)

nanofluid. While, the specific heat clearly experiences a decline with the increasing nanoparticles
fraction. As far as thermal conductivity is concerned, (Ag− Fe3O4/H2O) hybrid nanofluid shows
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a dominant behavior against the (Fe3O4/H2O) nanofluid. Besides, the Bruggeman model (18), for
thermal conductivity shows its proficiency over the Maxwell’s model (17). The reason is that, the
Bruggeman model is more focused on the maximum interactions between randomly dispersed particles.
It usually involves the spherical shaped particles, with no limitation on the particles concentration. On
the other hand, the Maxwell’s model depends on the nanoparticle’s volume fraction and the thermal
conductivity of the base fluid and the spherical shaped particles.

Table 6. Variation in thermo-physical properties of (Ag− Fe3O4/H2O) hybrid nanofluid with
(ϕ1 = 0.01).
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5. Conclusions 

This article discloses the salient features of nonlinear thermal radiation, in the squeezing flow of (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ )  hybrid nanofluid, between two Riga plates along with a chemical reaction. 
Method of moment has been employed for the solution point of view. The obtained results are then 
compared with the numerical results (obtained via Runge-Kutta-Fehlberg algorithm). Both the 
methods depict an excellent agreement between the results. 
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• Velocity profile seems to be an increasing function of both squeezing parameter 𝛾 and modified 

Hartmann number ℳ𝒷. 
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Hartman number ℳ𝒷. 

• The temperature behaves in an increasing manner with the rising 𝑅𝑑  and 𝜃𝓌 . Besides, the 
temperature profile possesses a dominant behavior for (𝐴𝑔 − 𝐹𝑒ଷ𝑂ସ 𝐻ଶ𝑂⁄ ) hybrid nanofluid. 

• The concentration profile demonstrates a decreasing behavior, with increasing modified 
Hartman number ℳ𝒷 and nanoparticle volume fraction. 
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• The augmentation of Schmidt number 𝑆𝑐 and chemical reaction parameter 𝒸ℛ  enhances the 
Sherwood number, at the lower plate, while a reversed phenomenon has been observed at the 
upper plate. 
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Author Contributions: All the authors equally contributed to the paper. Final draft has been read and approved 
by all the authors. 

5. Conclusions

This article discloses the salient features of nonlinear thermal radiation, in the squeezing flow of
(Ag− Fe3O4/H2O) hybrid nanofluid, between two Riga plates along with a chemical reaction. Method
of moment has been employed for the solution point of view. The obtained results are then compared
with the numerical results (obtained via Runge-Kutta-Fehlberg algorithm). Both the methods depict
an excellent agreement between the results.

Further investigations are as follows:

• Velocity profile seems to be an increasing function of both squeezing parameter γ and modified
Hartmann number ℳb.

• A decrement in the velocity behavior has been perceived, with increasing
nanoparticle concentration.

• The velocity profile for (Ag− Fe3O4/H2O) hybrid nanofluid mostly remains on the lower side.
• The amplification in temperature has been recorded for increasing squeezed number γ and

nanoparticle concentration, while a reversed behavior has been noticed for increasing modified
Hartman number ℳb.

• The temperature behaves in an increasing manner with the rising Rd and θw. Besides, the
temperature profile possesses a dominant behavior for (Ag− Fe3O4/H2O) hybrid nanofluid.

• The concentration profile demonstrates a decreasing behavior, with increasing modified Hartman
number ℳb and nanoparticle volume fraction.

• The increment in chemical reaction parameter cℛ and Schmidt number Sc depicts a clear decline
in the concentration profile.

• Skin friction coefficient for (Ag− Fe3O4/H2O) hybrid nanofluid displays an increasing behavior,
in the region adjacent to the lower Riga plate, against the varying squeezing parameter γ, modified
Hartman number ℳb and the nanoparticle concentration.
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• The local heat transfer rate, for (Ag− Fe3O4/H2O) hybrid nanofluid, shows its proficiency for
varying nanoparticle concentration, radiation parameter Rd and temperature difference parameter
θw and this phenomena has been detected at both the plates.

• The augmentation of Schmidt number Sc and chemical reaction parameter cℛ enhances the
Sherwood number, at the lower plate, while a reversed phenomenon has been observed at the
upper plate.

Author Contributions: All the authors equally contributed to the paper. Final draft has been read and approved
by all the authors.
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Nomenclature

` Width between magnets and electrodes
ℳ0 Magnetization of the permanent magnets, Tesla
j0 Applied current density in the electrodes, m−2 A
c1 First order chemical reaction coefficient
D Molecular diffusivity
k Thermal conductivity, W/mK
p̌ Pressure
Cp Specific heat at constant pressure, J/kg.K
ǔ Axial velocity component, m/s
v̌ Normal velocity component, m/s
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where, 𝓊̌, signifies the horizontal component of velocity, while the vertical one is symbolized by 𝓋̌. 

The dimensional pressure, temperature and concentration, are respectively shown by 𝓅̌, Τ̌ and ℭ̌. 

Furthermore, ℓ  denotes the width between magnets and electrodes. ℳ0(𝑇𝑒𝑠𝑙𝑎)  represents the 

magnetization of the permanent magnets, while, 𝒿0(𝑚
−2𝐴) is the applied current density in the 

electrodes. The first order coefficient for a chemical reaction, is presented by 𝒸1 . In addition, 𝑞̌𝑟 

symbolizes the rate of heat flux. The expression for the thermal radiative term has been successively 

proposed by Rosseland [38], which is given as: 

𝑞̌𝑟 = −
16𝜎̌Τ̌3
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, (6) 

Coefficient for mean absorption
ℳb Modified Hartman number
a Rate of stretching
cℛ Chemical reaction parameter
Pr Prandtl number
Rd Radiation parameter
Nu Nusselt number
Sc Schmidt number
Re Reynolds number
Sh Sherwood number
Ag Silver nanoparticles
H2O Water
Fe3O4 Magnetite nanoparticles
EMHD Electro-magneto hydrodynamic

Greek Symbols

ϕ Solid volume fraction
µ Dynamic viscosity, N.s/m2

ρ̌ Density, kg/m3

υ Kinematic viscosity, m2/s
χ Similarity variable
σ̌ Stefan-Boltzmann constant
λ Constant characteristics parameter
γ Dimensionless squeeze number
θw Temperature difference parameter
ρ̌Cp Heat capacitance
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Subscripts

hn f Hybrid Nanofluid
n f Nanofluid
f Base fluid
p1 Solid nanoparticles of Fe3O4
p2 Solid nanoparticles of Ag
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