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Abstract: A new closed-form analytical solution to the radial transport of tracers in porous
media under the influence of linear drift is presented. Specifically, the transport of tracers under
convection–diffusion-dominated flow is considered. First, the radial transport equation was cast in
the form of the Whittaker equation by defining a set of transformation relations. Then, linear drift
was incorporated by considering a coordinate-independent scalar velocity field within the porous
medium. A special case of low-intensity tracer injection where molecular diffusion controls tracer
propagation but convection with linear velocity drift plays a significant role was presented and
solved in Laplace space. Furthermore, a weak-form numerical solution of the nonlinear problem was
obtained and used to analyse tracer concentration behaviour in a porous medium, where drift effects
predominate and influence the flow pattern. Application in enhanced oil recovery (EOR) processes
where linear drift may interfere with the flow path was also evaluated within the solution to obtain
concentration profiles for different injection models. The results of the analyses indicated that the
effect of linear drift on the tracer concentration profile is dependent on system heterogeneity and
progressively becomes more pronounced at later times. This new solution demonstrates the necessity
to consider the impact of drift on the transport of tracers, as arrival times may be significantly
influenced by drift intensity.

Keywords: transport of tracers; linear drift effect; convection–diffusion equation; enhanced oil
recovery; closed-form analytical solution

1. Introduction

The study of the transport of tracers has become an essential technique for porous media
characterisation, particularly in enhanced oil recovery (EOR) in hydrocarbon reservoirs (e.g., Baldwin [1]),
hydrology (e.g., Rubin and James [2]), nuclear (e.g., Moreno et al. [3] and Herbert et al. [4]), drug
transport in blood vessels (e.g., Mabuza et al. [5]) and geothermal engineering (e.g., Vetter and Zinnow [6]).
Multiple processes and mechanisms are usually involved in the chemical interaction of the constituent
components when the tracer is being transported through a porous medium. Two major processes
involved in the transport phenomenon include convection and hydrodynamic dispersion. The convection
process involves bulk movement of fluids, while hydrodynamic dispersion describes the dual actions of
molecular dispersion and shear or mechanical mixing process. These complementary transport processes
are adequately captured by the well-known convection–dispersion–diffusion equations with or without
chemical reactions (e.g., Tomich et al. [7], Bear [8], Zhou and Zhan [9]).

Surfactant or biosurfactant partitioning and transport in the oil phase during enhanced oil recovery
processes is usually neglected, because, it requires the solution of a system of nonlinear coupled partial
differential equations whose solution is numerically challenging [10]. These diffusion equations are
based on linear or one-dimensional geometry due to the relative ease with which such equations
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can be solved analytically. Recently, several authors have studied hydrodynamic transport in porous
media using the random walk method (see a review paper by Noetinger et al. [11] and references
cited therein). Approximate solutions have also been presented in modelling of radial geometry under
conditions of shear mixing, albeit approximate in nature [12]. Exact analytical solutions have been
obtained in cases where convective velocity and hydrodynamic dispersion functions were assumed
constant (e.g., Carslaw and Jaeger [13]) and in porous media where tracer adsorption, non-uniform
convection and variable dispersion manifest (e.g., Falade and Brigham [14]).

Attinger and Abdulle [15] studied the effective drift of transport problems in heterogeneous
compressible flows. They discussed the impact of a mean drift and showed that static compressible
flow with mean drift can produce a heterogeneity-driven large-scale drift or ballistic transport.
A similar study was carried out by Vergassola and Avellaneda [16], where it was demonstrated that for
static compressible flow without mean drift, there is no impact on the large-scale drift. The calculation
of the effective ballistic velocity Vb was reduced to the solution of one auxiliary equation. They derived
an analytic expression for Vb for some special instances where flow depends on a single coordinate,
random with short correlation times and slightly compressible cellular flow. Transport will be depleted
due of the trapping for arbitrary time-independent potential flow and for time-dependent potential
flow or generic compressible flow, transport will be enhanced or depleted depending on the velocity
field. Vergassola and Avellaneda [16] also discovered that trapping due to flow compressibility may
enhance particle spreading, leading to ballistic transport that is very efficient.

In field applications, particularly during EOR involving chemical injections such as surfactants,
alkali or polymer, fluid migration in an active or partially active aquifer formation may lead to
displacement of the injected chemical during the shut-in period. Linear drift may also occur as a result
of interference by the production/injection well, which is hydraulically connected to the formation
of interest. Investigation conducted by Tomich et al. [7] indicated that in a single-well test involving
the injection of ethyl acetate, fluid migration in the formation due to a reservoir water drive might
lead to displacement of the tracer bank during the shut-in period. The injection of the ethyl acetate
was followed by the injection of a water bank, allowing the system to hydrolyse during the chemical
reaction to form ethanol, a secondary tracer. The difference in magnitude of the velocity of arrival of
the two tracers was used in estimating the residual oil saturation.

The occurrence of linear drift may lead to the flow path being rerouted, leading to inaccurate and
inconclusive tests with ultimate financial implications. Moench and Ogata [17] applied Laplace transform
as described by Stehfest [18] to solve the dispersion in a radial flow in a porous medium. The resulting
Airy function was computed using the series representation for |z| > 1 [19]. Mashayekhizadeh et al. [20]
applied Fourier series methods to numerically solve the Laplace transform of a pressure distribution
equation for radial flow in porous media. Other authors (e.g., De-Hoog et al. [21], Dubner and Abate [22],
Zakian [23] and Schapery [24] and Brzeziński and Ostalczyk [25]) have proposed improved techniques for
numerical inversion of Laplace transforms, typically by accelerating the convergence of the Fourier series.

The occurrence of advection–dispersion with the influence of drift is vast and may occur in
petroleum reservoirs with underlying aquifer, CO2–EOR processes and in contaminant hydrology.
Understanding flow and transport behaviour in porous media where drift may occur is important
in radioactive waste management due to the possible longevity of radionuclide materials and the
possibility of being rerouted to the surface environment during transport processes. Despite the
extensive research in this field, particularly in solving the advection–dispersion equation (ADE) both
analytically and numerically, there is yet to be a consideration for the closed-form solution of the ADE
in systems where the effect of linear drift may predominate.

A Fickian solution (Fick [26]) to the the convection–diffusion equation can be easily obtained
for the simple cases where velocity and hydrodynamic dispersion are constant and the reaction
term is either zero or first order in concentration (e.g., Falade and Brigham [14] and Skellam [27]).
However, in cases where hydrodynamic dispersion is radially distributed and linear drift predominates,
an exact analytical solution to the transport equation has not been reported in the literature. In this
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work, a closed-form solution of the transport of tracers in porous media under the influence of
linear drift is presented. First, the radial transport equation is cast in the form of the Whittaker
equation [28] by defining a set of transformation relations and a change of variables. Linear drift is
incorporated by considering a coordinate-independent scalar velocity field within the porous medium.
A special case of low intensity tracer injection where molecular diffusion controls tracer propagation
but convection with linear velocity drift plays a significant role is presented and solved in Laplace
space. Second, the concentration distribution around the source of tracer injection is solved analytically
in radial coordinate and the obtained result transformed to the equivalent Cartesian coordinates
system. A weak-form numerical solution is then obtained and used to analyse tracer concentration
behaviour in enhanced oil recovery (EOR) processes where linear drift effect may interfere with the
fluid flow path.

2. Radial Diffusion Models with Drift

Figure 1 shows a schematic representation of a chemical tracer injection in a single-well test,
indicating (a) the injection of a chemical, (b) the reaction between the injected chemical and the injected
water bank and (c) the production stage without the influence of drift. Figure 1d–f shows the same
process as highlighted in Figure 1a–c, but, with underlying aquifer causing a noticeable drift effect
during the production stage (f) (e.g., Tomich et al. [7]).

Figure 1. Schematic representation of chemical tracer method in a single well test involving injection of
tracer (a–c) without drift and (d–f) with drift.

The transport of tracers in a constant flow of carrier fluid flowing in a porous medium governed
by the convection–diffusion equation expressed in terms of resident concentration in radial coordinates
can be written as (see, for instance, Falade and Brigham [14]) :

1
r

∂

∂r

(
rφD

∂C
∂r

)
− 1

r
∂

∂r
(rφvC)− γ (κr + s)C =

∂φC
∂t

, (1)

v =

(
vx cos θ +

qi
2πrφh

)
(2)

=
(

vd +
α

r

)
, (3)

where the composite velocity v (m/s) consists of the linear flow velocity vd (m/s) superimposed on a
radial flow of the injected tracer of strength qi (m3/s). When the flow of the tracer is influenced by
linear drift, the linear flow velocity will consist of both radial and tangential velocity components:
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vd = vr + vt (4)

=
dr
dt

êr + r
dθ

dt
êθ . (5)

For low intensity tracer injection, the tangential velocity is negligibly small compared to the radial
velocity. Other variables α, γ and D are defined as follows:

α =
qi

2πrφh
, (6)

γ = θ

(
Smp + κl

(
1− Smp

)

Smp

)
, (7)

and D is the flow hydrodynamic dispersion (m2/s), s is Laplace parameter, Sm is the mobile fluid
phase saturation, qi is the tracer injection rate (m3/s), r is radial distance (m), φ is porosity and h is
porous media thickness (m). Hydrodynamic dispersion D is generally believed to be made up of two
components—molecular diffusion and shear mixing—which can be expressed as:

D = Dm + Do|vmrD |. (8)

In Equation (8), Dm is the molecular diffusion constant (m2/s) and Do is the shear mixing
constant (m).

The dimensionless form of the general convection–diffusion equation can be written in Laplace
space as (see Appendix A for the derivation of the transport equation under the influence of linear drift):

d2Ψ
dr2

D
−
{

α2 (ωrD + 1)2 − κ2

4(κrD + β)2 +
αω

2(κrD + βw)
+

φ(κr + s)rD
(κrD + β)

}
Ψ = 0, (9)

where the variables are redefined as:

D(rDk) = Dm + vmDo

(
ω +

1
rD

)
, (10)

= κ +
β

rD
, (11)

and

κ = Dm + βω (12)

vw =
α

rw
, (13)

β =
βw(αDo)

rw
, (14)

= vwDo, (15)

γ = θ

(
Sm + κl (1− Sm)

Sm

)
r2

w. (16)
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3. Mathematical Formulation of the Radial Transport Equation with Linear Drift

In order to establish the radial transport equation where linear drift effect can be incorporated,
the following transformation relations are defined:

η = (κrD + β), (17)

rD = (η − β)
1
κ

, (18)

dη

drD
= κ, (19)

d2Ψ
dr2

D
= κ2 d2Ψ

dη2 , (20)

and applying the transformation to Equation (9):

κ2 d2Ψ
dη2 −





i
↓

α2 [ω
κ (η − β) + 1

]2 − κ2

4η2 +
αω

2η
+

ii
↓

φ(κr + s) 1
κ (η − β)

η





Ψ = 0. (21)

Note:

[ω

κ
(η − β) + 1

]2
=

ω2

κ2 (η − β)2 +
2ω

κ
(η − β) + 1

=
ω2

κ2 η2 − 2ω

κ

(
ωβ

κ
− 1
)

η +

(
ωβ

κ
− 1
)2

. (22)

Therefore, the term highlighted as (i) in Equation (21) can be written out by considering the
relational expression (Equation (22)), thus:

α2 [ω
κ (η − β) + 1

]2 − κ2

4η2 =

[
α2ω2

κ2 η2 − 2α2ω

κ

(
ωβ

κ
− 1
)

η + α2
(

ωβ

κ
− 1
)2
− κ2

]
1

4η2

=
α2ω2

4κ2 −
α2ω

2κ

(
ωβ

κ
− 1
)

1
η
+

1
4η2

[
α2
(

ωβ

κ
− 1
)2
− κ2

]
. (23)

Similarly, the term highlighted as (ii) in Equation (21) can be rewritten thus:

φ(κr + s)(η − β) 1
κ

η
=

φ(κr + s)
κ

− βφ(κr + s)
κη

. (24)

Hence, Equation (21) can now be written as:

κ2 d2Ψ
dη2 = 0−





i
↓

1
4η2

[
α2
(

ωβ

κ
− 1
)2
− κ2

]
−

ii
↓

ω

2

[
α2

κ

(
ωβ

κ
− 1
)
− α +

2βφ(κr + s)
ωκ

]
1
η





Ψ

+

{
α2ω2

4κ2 +
φ(κr + s)

κ

}
Ψ = 0. (25)
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Expanding the terms highlighted as i and ii in Equation (25) and rearranging:

d2Ψ
dη2 −




α2

κ2

(
ωβ
κ − 1

)2
− 1

4η2 − ω

2κ2

[
α2

κ

(
ωβ

κ
− 1
)
− α +

2βφ(κr + s)
ωκ

]
1
η


Ψ

+

[(
α2ω2

4κ2 +
φ(κr + s)

κ

)
1
κ2

]
Ψ = 0. (26)

Simplifying, Equation (26):

d2Ψ
dη2 +




1− α2

κ2

(
ωβ
κ

)2
− 1

4η2 +
ω

2κ

[
α2

κ2

(
ωβ

κ
− 1
)
− α

κ
+

2βφ(κr + s)
ωκ2

]
1
η


Ψ

−
[(

α2ω2

4κ2 +
φ(κr + s)

κ

)
1
κ2

]
Ψ = 0. (27)

Equation (27) can be cast in the form of the Whittaker equation if a change of variable is
defined thus:

ξ = 2η
√

a. (28)

where:

a =
1
κ2

(
α2ω2

4κ2 +
φ(κr + s)

κ

)
(29)

= f (s)2. (30)

Then:

dΨ
dη

=
dΨ
dξ

dξ

dη
(31)

= 2 f (s)
dΨ
dη

, (32)

and

d2Ψ
dη2 = 4 f (s)2 d2Ψ

dξ2 . (33)

Using Equations (32) and (33) in Equation (27) gives:

d2Ψ
dξ2 +




1− α2

κ2

(
ωβ
κ − 1

)2

4ξ2 +
ω

4
√

aκ

[
α2

κ2

(
ωβ

κ
− 1
)
− α

κ
+

2βφ(κr + s)
ωκ2

]
1
ξ
− 1

4


Ψ = 0 (34)

d2Ψ
dξ2 +




1− α2

κ2

(
ωβ
κ − 1

)2

4ξ2 +
ω

4κ f (s)

[
α2

κ2

(
ωβ

κ
− 1
)
− α

κ
+

2β

ωκ

(
κ2 f (s)2 − α2ω2

4κ2

)]
1
ξ
− 1

4


Ψ = 0 (35)

d2Ψ
dξ2 +




1− α2

κ2

(
ωβ
κ − 1

)2

4ξ2 +




ωα2

4κ3

(
ωβ
2κ − 1

)
− αω

4κ2

f (s)
− β

2
f (s)


 1

ξ
− 1

4


Ψ = 0 (36)
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d2Ψ
dξ2 +





1− α2

κ2

(
ωβ
κ − 1

)2

4ξ2 +




αω
4κ2

[
α
κ

(
ωβ
κ − 1

)
− 1
]

f (s)
− β

2
f (s)


 1

ξ
− 1

4





Ψ = 0, (37)

which can be expressed in the form of the Whittaker equation [28] as:

d2Ψ
dz2 +


−1

4
+

K
z
+

(
1
4 − µ2

)

z2


Ψ = 0, (38)

where:

µ =
α

2κ

(
ωβ

κ
− 1
)

, (39)

and:

K =




αω
4κ2

[
α
κ

(
ωβ
κ − 1

)
− 1
]

f (s)
− β

2
f (s)


 , (40)

f (s) =
1
κ

√(
α2ω2

4κ2 +
γ(κr + s)

κ

)
(41)

ξ = 2(κrD + β) f (s), (42)

= 2η f (s) (43)

3.1. Introducing the Linear Drift

Linear drift can be introduced to the convection–diffusion equation by applying it as a scalar
velocity field vd, since it is coordinate-independent, having a magnitude that acts on every point within
the porous body. For the purpose of this analysis, linear drift is applied on the x-direction only. Using
the general hydrodynamic description of the diffusivity coefficient:

D(r) = Dm + Do|vd|, (44)

= Dm + αDo

(
ω +

1
r

)
, (45)

= Dm + vmDo

(
ω +

1
rD

)
, (46)

and defining the following relational variables:

αω = vmω, (47)
α

vm
=

ω

ω
= rw, (48)

and dimensionless variables:

α

r
=

vm

rD
(49)

rD =
r

rw
(50)

vd = v− α

r
. (51)



Energies 2019, 12, 29 8 of 29

Equation (46) can be written out after expanding and rearranging thus:

D(r) = Dm + βw

(
ω +

1
r

)
(52)

= κ +
βw

r
, (53)

where:

κ = Dm + βwω, (54)

ω =

(
vd cos θ

α

)
, (55)

βw = αDo, (56)

α =

(
Q

2πhθ

)
. (57)

3.2. Analytical Solution

The general solution of the Whittaker equation [28] is given as:

Ψ(η, s) = A(s)Mκ,µ(ξ) + B(s)Wκ,µ(ξ). (58)

In Equation (58), A(s) and B(s) are arbitrary functions of ′s′ to be determined by the requirements
of the boundary conditions, while Mκ,µ(ξ) and Wκ,µ(ξ) are the Whittaker function, which can also be
defined in terms of Kummer’s confluent hypergeometric functions as:

Mκ,µ(ξ) = e−
ξ
2 ξ

1
2+µ M

(
1
2
+ µ− κ, 1 + 2µ, ξ

)
(59)

Wκ,µ(ξ) = e−
ξ
2 ξ

1
2+µU

(
1
2
+ µ− κ, 1 + 2µ, ξ

)
. (60)

Therefore, Equation (58) can be presented in terms of the Kummer’s function as:

ψ(ξ, s) = (A(s)M(a, b, ξ) + B(s)U(a, b, ξ)) e−
ξ
2 ξ

1
2+µ (61)

In general, the Kummer’s function of the first kind:

M(a, b, ξ → ∞)→ Γ(b)
Γ(a)

ξa−beξ , (62)

implies that the M(a, b, ξ) function becomes unbounded when ξ becomes large. Therefore, the arbitrary
function coefficient A(s) of Equation (61) must become zero for Equation (62) to satisfy the external
boundary condition specified for the system. Equation (61) therefore reduces to:

ψ(ξ, s) = e−
ξ
2 ξ

1
2+µB(s)U

(
1
2
+ µ− κ, 1 + 2µ, ξ

)
. (63)

The coefficient B(s) is obtained from the application of the inner boundary condition. The function
U(a, b, ξ), variously referred to as the Kummer’s function of the second kind or the Tricomi function,
decreases exponentially as ξ increases and vanishes as ξ becomes infinitely large as required by the
inner boundary condition of this problem.
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The tracer concentration C(η, s) can be now be written as:

C(η(r), s) = Ψe−
{

1
2
∫ (

κ−α
κr+β +

αωr
κr+β

)
dr
}

. (64)

Detailed mathematical transformation in dimensionless form and inverse Laplace transfom of
the general solution are available in Appendix B. The solution to Equations (34)–(37) can therefore be
expressed as:

ψ(ξ) = e−
ξ
2 ξ

1
2+µU(

1
2
+ µ− κ, 1 + 2µ, ξ). (65)

However, the concentration C is defined in terms of ψ as:

C = ψe
{
− 1

2
∫ ( D′−υ

D + 1
rD

)
drD

}
, (66)

or:

C = ψe
{
− 1

2
∫ (

κ−α
κrD+β +

αωrD
κrD+β

)
drD

}
(67)

C = ψ (κrD + β)

(
κ2−ακ−αωβ

κ2

)

e
{
− 1

2
αω(κrD+β)

κ2

}
(68)

C = (κrD + β)

(
κ2−ακ−αωβ

κ2

)

e
{
− 1

2
αω(κrD+β)

κ2

}
e−

ξ
2 ξ

1
2+µU

(
1
2
+ µ− κ, 1 + 2µ, ξ

)
, (69)

so that:

C = (η)

(
κ2−ακ−αωβ

κ2

)
+( 1

2+µ)
(2
√

a)
1
2+µe

{
−
(

1
2

αω
κ2 +
√

a
)

η
}

U(
1
2
+ µ− κ, 1 + 2µ, (2

√
a)η), (70)

or:

C = (ξ)

(
k2−αk−αωβ

k2

)
+( 1

2 +µ)
(2
√

a)
−
(

k2−αk−αωβ

k2

)

Exp
{
−
(

1
2

αω

(2
√

a)k2 + 1
)

ξ

}
U(

1
2
+ µ− κ, 1 + 2µ, ξ), (71)

where ‘a’ is given as:

a =
1
k2

(
α2ω2

4k2 +
φ(kr + s)

k

)

=
1

4k4 (α
2ω2 + 4kφ(kr + s)), (72)

and:

ξ = (2
√

a)η

= (2
√

a)(krD + β)

=
1
k2

√
(α2ω2 + 4kφ(kr + s)(krD + β) (73)

ξrD =
1
k2

√
(α2ω2 + 4kφ(kr + s)(k + β). (74)

3.3. Weak-Form Numerical Solution of the Tracer Transport Equation

The weak-form solution of Equation (71) is now presented by considering (i) a ‘pot’ diffusion
case where tracer flow is controlled by molecular diffusion with no hydrodynamic dispersion but
with velocity drift and (ii) cases where convection dominated the molecular diffusion effect. In order



Energies 2019, 12, 29 10 of 29

to achieve this, the separation of variables is adopted with X-parameter (Xp) and Y-parameter (Yp),
defined thus:

C(x, y, s) = Xp(x)Yp(y, s). (75)

The X-parameter (Xp) can be expressed as:

Xp(x) = τU(
1
2
+ µ− κ, 1 + 2µ, σξXp)e

− 1
2 (

1
σ−1)ξXp , (76)

where the components and arguments of the Tricomi Kummer function U(a, b, x) are defined thus:

µ = −1
2

, (77)

ξXp =

[
βv0

D0d
+

v0

D0
x
]

, (78)

σ =

√
1− 4ω2D0

v2
0d

, (79)

τ =
Γ( j

k )

Γ(j)
, (80)

h =
ω2β

v0d2 , (81)

k =
√

1− j, (82)

and Y-parameter (Yp):

Yp(y, s) =
(

1
3

ξ
1
2+µ

Yp

)
e−

v0y
2Do

[
I− 1

3

(
2
3

Lξ
3
2+µ

Yp

)
+ I+ 1

3

(
2
3

Lξ
3
2+µ

Yp

)]
, (83)

µ = 0, (84)

ξYp =

[
1
4

(
v0

D0

)2
+

Rs + Rκ + ω2

D0λ
y

]
, (85)

L =
D0λ

Rs + Rκ + ω2 . (86)

I is modified Bessel functions of the first kind and decays to zero rapidly with the concentration
distribution of the Y(y, s) component in the negative half, mirroring the positive half.

3.3.1. Separation Constant (ω2)

The constant of separation (ω2) is obtained by rewriting the general advection–dispersion
equation (ADE) for the flow of reactive tracers under the influence of linear drift thus:

D0

(
β

x
+ d
)

Cxx − v0

(
β

x
+ d
)

Cx + D0
λ

y
Cyy − v0

λ

y
Cy − RκC = RCt, (87)

where the linear drift ratio is written as d = vd
v0

. The linear drift ratio, d, is coordinate-independent;
therefore, its magnitude can be applied equally to the y-axis or, in the case of a 3D system, the z-axis.
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Substituting Equation (75) into Equation (87), dividing through by X(x)Y(y, t) and rearranging
(see Appendix C ) gives:

D0

(
β

x
+ d
)

X′′ − v0

(
β

x
+ d
)

X′ + ω2X(x) = 0, (88)

D0
λ

y
Y′′ − v0

λ

y
Y′ − (Rs + Rκ + ω2)Y(y, s) = 0, (89)

where the component Equation (88) is time-independent, while Equation (89) is time-dependent
and expressed in Laplace space with Laplace parameter s. Considering the following
transformation parameters:

β = rw cos2 θ, (90)

λ = vyrw sin2 θ, (91)

xw = rw cos θ, (92)

yw = rw sin θ, (93)

Equations (88) and (89) can be rewritten as:

D0 (cos θ + d) X′′ − v0 (cos θ + d) X′ + ω2X(xw) = 0, (94)

L−1
[

D0(vy sin θ)Y′′ − v0(vy sin θ)Y′ − (Rs + Rκ + ω2)Y(yw, s)
]
= 0. (95)

Equation (94) is time-independent, while Equation (95) is time-dependent and expressed in
Laplace space with Laplace parameter s.

3.3.2. Boundary and Initial Conditions

Equation (87) is governed by the following boundary conditions:

C(x, y, t = 0) = Ci(x, y) for x = y = R (96)

C(x = ±∞, y, t) = 0 for y = R, t > 0 (97)

C(x, y = ±∞, t) = 0 for x = R, t > 0 (98)

C(xw, yw, t) = C0 for t > 0 (99)

where, the transformation from the polar (radial) coordinate to Cartesian coordinate is given as
xw = rw cos θ and yw = rw sin θ. The concentration C(xw, yw, t) of the tracer is known within the
wellbore during a tracer test; thus, the solution for t > 0 can be obtained by solving Equation (87)
within the porous formation outside the wellbore.

The Y-parameter Yp is in Laplace space and requires a numerical inversion scheme, such as the
Gaver–Stehfest algorithm [18,29], Talbot inversion algorithm [30] or Euler inversion [31,32] algorithm.
The scripts for these algorithms are open source and are readily available for download from the
Mathworks website [33]. Out of the two algorithms attempted for the numerical inverse Laplace
operation, Gaver–Stehfest and Euler inversion, only the Euler inversion algorithm produced a stable
result (see also Avdis and Whitt [34]). Hence, Euler’s Inversion Algorithm was used for the numerical
inverse Laplace operation in the numerical code developed for this work.

Flow convection depends on the velocity of the system and is modelled by considering a
heterogeneous system. Anisotropic porosity distribution was generated using the random probability
density function (PDF) allowing for non-uniform velocity distribution to be computed. Typical porosity
distribution is shown in Figure 2 with a mean value of 0.25 and standard deviation of 0.64.
The corresponding computed velocity distribution is shown in Figure 3.
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Figure 2. Porosity distribution profile generated using random probability density function. [−]
denotes that the variable has no unit.

Figure 3. Typical spatial heterogeneous porous system velocity distribution (m/s) used in the
numerical computation.

4. Analysis of Results

In this work, the effect of linear drift on the tracer propagation profile in a typical formation of
thickness h = 9 m and injection well of radius rw = 0.127 m was investigated. Injected particles
are considered to be components of surfactants or polymers used in EOR processes, but in this case,
the chemical reaction was neglected. The injection rate was fixed at 1.4× 10−3 m3/s and dispersion
coefficient D0 = 1.4× 10−3 m2/s was applied. The tracer concentration distribution ratio Ci was
monitored under three continuous injection periods of ten (10) days, fifty (50) days and seventy (70)
days respectively.

The developed solution was first tested by evaluating the error limit associated with the separation
of variable parameter (ω2) for different angle θ. Simulation runs involved one hundred (100) values of
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ω2 as defined by Equation (81)—ranging from 0.01×ω2
1 corresponding to a value of ω2 = 2.33× 10−8

to ω2
100 corresponding to a value of ω2 = 2.59× 10−6—with an incremental value of 0.01× ω2

100 .
The minimum error corresponds to the value of separation variable ω2 = 2.33× 10−8, as indicated by
Xp, Yp,t, X−Yp,t plots (Figures 4–6). The combined solution X−Yp,t indicated that there exist points
of singularity at 0◦, 180◦ and 360◦ when taking the inverse of the coordinate point y.

A typical result of the concentration distribution as a function of angle θ obtained from the solution
of Equation (75) is shown in Figure 6 for five 5 selected ranges of values of ω2. The concentration
profile basically grows with increasing values of ω2 between ω2 = 2.33× 10−8 and ω2 = 1.06× 10−6

and between θ = 150◦ and θ = 300◦, after which the impact of drift sets in. With the onset of drift,
the concentration profile shortens but with a much wider coverage for ω2 = 1.58× 10−6. The region
covered by ω2 = 2.10× 10−6 can be seen to have drifted to θ = 240◦ to −300◦.

In order to further examine the impact of the drift parameter on separation constant ω2, Xp and
angle θ◦, a full simulation run at different time intervals of t = 10 d, t = 30 d, 50 d and 70 d was
carried out and results presented in Figures 7–10. The magnitude of error due to ω2 generally reduces
with increasing computational time. In Figure 10, the influence of drift is more pronounced. A typical
concentration distribution within the porous media with linear drift after 10 days is shown in Figure 11.
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ω2 = 2.33× 10−8

ω2 = 5.42× 10−7

ω2 = 1.06× 10−6

ω2 = 1.58× 10−6

ω2 = 2.10× 10−6

Figure 4. X-parameter (Xp) as a function of angle (θ◦) at a fixed time t = 10 d and varying separation
constant (ω2).

Linear Drift Effect and Concentration Distribution Profile

In a single-well tracer or surfactant injection systems, a primary tracer bank is first injected into a
formation containing oil at residual saturation. The bank is then followed by a bank of tracer-free water.
The well is then shut in for a period of time, after which the well is produced and the concentration
profiles monitored. Where there is fluid migration in the formation due to the movement of an
underlying basal water displacing the injected tracer banks during shut-in, the production profile
may be distorted and fluid pathway rerouted. In this situation, the effect of linear drift on fluid flow
behaviour will have to be investigated.

Generally, in isotropic and homogeneous systems, where there is no linear drift or natural
convection, the tracer propagation profile is expected to follow a cyclic pattern. The concentration
distribution will be equal at an equidistant radial position from the injection well. In this work, a system
with variable porosity distribution was modelled and the corresponding non-uniform velocity profile
used in the computation of the drift ratio. In this case, the tracer propagation profile is expected to
follow a natural pattern determined by the interplay of the forces associated with the system variables,
such as the tracer injection rate.
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Figure 5. Y-parameter (Yp) as a function of angle (θ◦) at a fixed time t = 10 d and varying separation
constant (ω2).

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Angle θ◦

C
on

ce
nt

ra
ti

on
C
(x

,y
,t
)
=

[X
p
×

Y
p] ω2 = 2.33× 10−8

ω2 = 5.42× 10−7

ω2 = 1.06× 10−6

ω2 = 1.58× 10−6

ω2 = 2.10× 10−6

Figure 6. Concentration profile versus angle (θ◦) and varying separation constant (ω2).

In order to investigate the effect of the drift intensity on the tracer concentration profile, three
(3) values of drift ratio d = 0.03, 0.09 and 0.2 were evaluated for time duration t = 10 d, 50 d and
70 d. In the presence of linear drift in a heterogeneous system, however, there exists an unequal
distribution of tracers along the principal x-axis and varies in a non-uniform manner along the positive
and negative radial distance. Where the angle θ increases in the +ve and −ve y-axis, the system
convection will lead to an increase or decrease in the tracer concentration distribution depending on
the degree of system heterogeneity. It is important to note that an increase in the tracer concentration
distribution will be observed in a homogeneous system.

The results of the tracer tests for different drift ratios at different time intervals are shown in
Figure 12. At a fixed drift ratio (e.g., d = 0.2), the effect of the linear drift on the tracer concentration
profile is progressively more pronounced at later times; with the lowest tracer concentration ratio at
later time indicating a high drift effect. Similarly, at any particular point in time (e.g., at time t = 70 d),
linear drift has a greater effect at a higher drift ratio (e.g., d = 0.2).
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Figure 7. 3D plot of X-parameter (Xp) as a function of the separation constant (ω2) and angle (θ◦) at
time t = 10 d.
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Figure 8. 3D plot of X-parameter (Xp) as a function of the separation constant (ω2) and angle (θ◦) at
time t = 30 d.
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Figure 9. 3D plot of X-parameter (Xp) as a function of the separation constant (ω2) and angle (θ◦) at
time t = 50 d.
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Figure 9. 3D plot of X-parameter (Xp) as a function of the separation constant (ω2) and angle (θo) at
time t = 50 d.
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Figure 10. 3D plot of X-parameter (Xp) as a function of the separation constant (ω2) and angle (θo) at
time t = 70 d.

Figure 10. 3D plot of X-parameter (Xp) as a function of the separation constant (ω2) and angle (θ◦) at
time t = 70 d.
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Figure 11. Typical concentration distribution within the porous media with low linear drift ratio
d = 0.006 after 10 days.

Figure 12. Concentration distribution within the porous media with linear drift ratio d = 0.03, 0.09 and
0.2 and time interval t = 10 d, 50 d and 70 d.

5. Conclusions

The study of the transport of tracers with linear drift is an important aspect of porous media
characterisation. Despite the extensive research in this field, particularly in solving the ADE both
analytically and numerically, there is yet to be a consideration for the closed-form solution of the ADE
in systems where the effect of linear drift may predominate and an exact analytical solution has not
been reported in the literature. The following conclusions can be drawn from this work:

• A new closed-form analytical solution to the radial transport of tracers in porous media under the
influence of linear drift and radial convection was developed. The radial transport equation was
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cast in the form of the Whittaker equation after adopting variable transformation and an exact
solution for the tracer concentration derived therefrom.

• The weak-form solution was developed by splitting the transformed equation, adopting a common
separation constant and invoking inverse Laplace transformation using the Euler inversion
algorithm.

• Variable transformation from a radial to a Cartesian coordinate system was used to analyse the
concentration distribution profiles in three-dimensional graphical plots.

• The obtained solutions are generally stable and dependent on the precision with which the
separation constant (ω2) can be determined. This is important because the exponential term in
the inversion formula may amplify the numerical error. The maximum error quantified by the
separation constant is ω2 = 2.10× 10−6.

• The influence of linear drift on the concentration profiles was evaluated in the x-direction for a
system with nonhomogeneous porosity distribution and variable velocity profiles.

• The results of the analyses indicated that the effect of linear drift on the tracer concentration profile
is dependent on system heterogeneity and progressively becomes more pronounced at later times.

• Practical application was demonstrated in a typical EOR process involving the injection of
chemicals (e.g., surfactants or polymers), but without a chemical reaction. Another possible
application is a single-well chemical tracer injection method for measuring residual oil saturation
and fluid flow behaviour and characterisation in porous media.

• This work can be extended to the analysis of systems involving variation of tracer injection
intensity, where spreading may occur in the r-θ or x-y plane. The developed solution can also
be extended to systems where moderate-to-high intensity tracer flow with linear drift manifests.
In this case, the tangential velocity component of the drift velocity becomes significant and will
have to be included in the solution approach.

The new solution to the convective-diffusion equation developed and tested in this work
demonstrates the need to study the impact of linear drift on transport of tracers in porous media.
This is particularly important, since the arrival times of tracers may be significantly influenced by the
drift intensity.
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Abbreviations

Γ(x) Gamma function
κ, µ Whittaker and Kummer function parameters defined in the text
κr Chemical reaction constant, (d−1)
L Laplace operator
ω2 Absolute value of the separation constant
φ Porosity, dimensionless
θ Angle, (◦)
A Constant of integration
Ai(x) Airy function of the 1st kind
Bi(x) Airy function of the 2nd kind
C Tracer concentration
D Flow hydrodynamic dispersion (m2/s)
d Drift ratio
Dm Molecular diffusion constant
Do Shear mixing constant
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h Formation thickness, (m)
i Unit vector along the x-axis
j Unit vector along the y-axis
k Unit vector along the z-axis
L Length of dispersion, (m)
Q Injection rate, (m3/s)
r Radial distance from the well, (m)
rD Dimensionless well-bore radius
rw Well-bore radius, (m)
s Laplace parameter
Sm Saturation of the mobile fluid phase
Smp Mobile fluid phase saturation, dimensionless
t Time, (s or d)
u Velocity along the x-axis without linear drift, (m/s)
U(a, b, z) Tricomi Kummer U-function with parameters (a,b,z)
ud Linear drift velocity, (m/s)
uo Velocity at the well-bore (m/s)
vy Velocity along the y-axis, (m/s)
Wκ,µ(ξ) Whittaker function with parameters (κ, µ)
x x-coordinate variable
y y-coordinate variable
D dimensionless
d drift
m molecular
p phase
r reaction
w well-bore

Appendix A. Derivation of the Transport Flow Equation with Linear Drift

The flow Equation (1) can be expanded by considering a steady-state condition thus:

1
r

{
D

dC
dr

+ rD′
dC
dr

+ rD
d2C
dr2

}
− 1

r

{
vC + rv′C + rv

dC
dr

}
− φ(κr + s)C = 0, (A1)

d2C
dr2 +

(
D′ − v

D
+

1
r

)
dC
dr
−
{

rv′ + v
Dr

+
φ(κr + s)

D

}
C = 0, (A2)

where all variables are as defined in the main text. Let:

C = Ψ exp
{
−1

2

∫ (D′ − v
D

+
1
r

)
dr
}

. (A3)

Then:

dC
dr

=
dΨ
dr
· e
[
− 1

2

(
D′−v

D + 1
r

)]
−
[

1
2

(
D′ − v

D
+

1
r

)]
Ψe
[
− 1

2

(
D′−v

D + 1
r

)]
, (A4)
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and:

d2C
dr2 =

d
dr

{
dΨ
dr
· e
[
− 1

2

(
D′−v

D + 1
r

)]
−
[

1
2

(
D′ − v

D
+

1
r

)]
Ψe
[
− 1

2

(
D′−v

D + 1
r

)]}

=
d2Ψ
dr2 · e

[
− 1

2

(
D′−v

D + 1
r

)]
−
[

1
2

(
D′ − v

D
+

1
r

)]
dΨ
dr

e
[
− 1

2

(
D′−v

D + 1
r

)]

−
[

1
2

(
D′ − v

D
+

1
r

)]
Ψe
[
− 1

2

(
D′−v

D + 1
r

)]
−
[

1
2

(
D′ − v

D
+

1
r

)]
dΨ
dr

e
[
− 1

2

(
D′−v

D + 1
r

)]

+

[
1
4

(
D′ − v

D
+

1
r

)2
]

Ψe
[
− 1

2

(
D′−v

D + 1
r

)]
(A5)

d2C
dr2 =

{
d2Ψ
dr2 −

(
D′ − v

D
+

1
r

)
dΨ
dr
−
[

1
2

(
D′ − v

D
+

1
r

)
− 1

4

(
D′ − v

D
+

1
r

)2
]

Ψ

}

e
[
− 1

2

(
D′−v

D + 1
r

)]
. (A6)

Let:

d2C
dr2 +

(
D′ − v

D
+

1
r

)
dC
dr

= I, (A7)

with the first order differential component
(

dC
dr

)
defined by Equation (A4), then:

I =
d2Ψ
dr2 e

[
− 1

2

(
D′−v

D + 1
r

)]

−
(

D′ − v
D

+
1
r

)
dΨ
dr

e
[
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(
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D + 1
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−
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D
+
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r

)
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+
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[
− 1

2

(
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+
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+
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) [
e
[
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(
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)]
dΨ
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2

(
D′ − v

D
+

1
r

)
Ψ
]

e
[
− 1

2

(
D′−v

D + 1
r

)]
. (A8)

Applying Equations (A3) and (A8) in (A1) and rearranging yields:

d2Ψ
dr2 −

{
1
2

(
D′ − v

D
+

1
r

)
+

1
4

(
D′ − v

D
+

1
r

)2

+

(
rv′ + v

Dr
+

φ(κr + s)
D

)}
Ψ = 0. (A9)

Expressing the effective fluid velocity v in dimensionless form:

v = vd +
α

r
, (A10)

D′(r) = − βw

r2 , (A11)

−v′ = − α

r2 . (A12)

Thus:

D′(r)− v = − βw

r2 − α

(
ω +

1
r

)
(A13)

= − βw

r2 −
α(ωr + 1)

r
(A14)



Energies 2019, 12, 29 21 of 29

D′(r)− v
D(r)

= − βw

r2
r

κr + βw
− α(ωr + 1)

κr + βw
(A15)

= − βw

r(κr + βw)
− α(ωr + 1)

κr + βw
. (A16)

Let:

I ≡ −βw

r(κr + βw)
(A17)

≡ A
r
+

C
κr + βw

, (A18)

then:

(Aκ + C)r + Aβw = −βw. (A19)

Thus, A = −1 and C = κ, so that:

−βw

r(κr + βw)
=

κ

(κr + βw)
− 1

r
. (A20)

Therefore:

D′(r)− v
D(r)

=
κ

(κr + βw)
− 1

r
− α(ωr + 1)

(κr + βw)
, (A21)

(
D′(r)− v

D(r)
+

1
r

)
=

κ

(κr + βw)
− α(ωr + 1)

(κr + βw)
. (A22)

Similarly:

(
D′(r)− v

D(r)
+

1
r

)′
=

−κ2

(κr + βw)2 −
αω

(κr + βw)
+

ακ(ωr + 1)
(κr + βw)2

=
ακ(ωr− κ2)

(κr + βw)2 −
αω

(κr + βw)
. (A23)

Additionally:

rv′ = −r · α

r2

= −α

r
, (A24)

and:

rv′ + v = −α

r
+ α

(
ω +

1
r

)

= −α

r
+ α

(
ωr + 1

r

)

= αω. (A25)

Thus:

rv′ + v
D(r)r

=
αω

(κr + βw)
. (A26)
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Therefore, Equation (A9) becomes:

d2Ψ
dr2 −

{
1
2

[
ακ(ωr + 1)− κ2

(κr + βw)2 − αω

(κr + βw)

]
+

1
4

[
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[
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]}
Ψ = 0, (A27)

or:
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+
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ακ(ωr + 1)
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αω
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+
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κr + βw
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Ψ = 0.

An expression of the form:

d2Ψ
dr2 −

{
α2 (ωr + 1)2 − κ2

4(κr + βw)2 +
αω

2(κr + βw)
+

φ(κr + s)r
(κr + βw)

}
Ψ = 0, (A28)

is therefore obtained for the general convection–diffusion equation in Laplace space. This can be
written in dimensionless form as:

d2Ψ
dr2

D
−
{

α2 (ωrD + 1)2 − κ2

4(κrD + β)2 +
αω

2(κrD + βw)
+

φ(κr + s)rD
(κrD + β)

}
Ψ = 0, (A29)

where the variables are redefined as:

D(rDk) = Dm + vmDo

(
ω +

1
rD

)
, (A30)

= κ +
β

rD
, (A31)

and:

κ = Dm + βω. (A32)

Using Equations (23) and (24) in Equation (A29) yields:

κ2 d2Ψ
dη2 −

{
α2ω2

4κ2 −
α2ω

2κ

(
ωβ

κ
− 1
)

1
η
+

1
4η2

[
α2
(

ωβ

κ
− 1
)2
− κ2

]}
Ψ

+

{
αω

2η
+

φ(κr + s)
κ

− βφ(κr + s)
κη

}
Ψ = 0. (A33)
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Appendix B. Analytical Solution—Dimensionless Representation and Inverse Laplace Transform

In dimensionless radial length rD, C(η(r), s) can be written as:

C(η(r), s) = Ψe
{
− 1

2
∫ (

κ−α
κrD+β +

αωrD
κrD+β

)
drD

}
(A34)

= Ψe

{
− 1

2κ

∫ (
κ−α

η +
αω
κ (η−β)

η

)
dη

}

(A35)

C(η(r), s) = Ψe

{
− 1

2
∫ ( κ−α− αω

κ
η + αω

κ

)
dη

}

(A36)

ψ(ξ, s) = e−
ξ
2 ξ

1
2+µU(

1
2
+ µ− κ, 1 + 2µ, ξ) (A37)

A(s) = (2)

(
k2−αk−αωβ

2k2

)

ξ
k2−αk−αωβ

2k2 −µ− 1
2 ( f (s))

(
k2−αk−αωβ

2k2

)

, (A38)

but:

B(s) =
C (ξ, s)

(2)

(
k2−αk−αωβ

2k2

)

ξ
−
(

k2−αk−αωβ

2k2 −µ− 1
2

)

( f (s))

(
k2−αk−αωβ

2k2

)

Exp
{
− ξ

2

(
1 + αω

2k2 f (s)

)}
U( 1

2 + µ− κ, 1 + 2µ, ξ)

(A39)

.
Therefore:

dC(ξ, s)
dξ

=

(
(µ + 1

2 )ξ
−1U − 1

2 (1 +
α(

ωβ
k )

2k f (s) )U − ( 1
2 + µ− κ)

dU( 1
2 +µ−κ,1+2µ,ξ)

dξ

)
C(ξ, s)A(s)e

− ξ
2 (1+

α(
ωβ
k −1)−k
2 f (s)

(2)

(
k2−αk−αωβ

2k2

)

ξ
−
(

k2−αk−αωβ

2k2 −µ− 1
2

)

( f (s))

(
k2−αk−αωβ

2k2

)

Exp
{
− ξ

2

(
1 + αω

2k2 f (s)

)}
U( 1

2 + µ− κ, 1 + 2µ, ξ)

(A40)

dC(ξ, s)
dξ

=

{
(µ + 1

2 )ξ
−1U − 1

2 (1 +
α(

ωβ
k )

2k f (s) )U − ( 1
2 + µ− κ)

dU( 1
2+µ−κ,1+2µ,ξ)

dξ

}
C(ξ, s)

U( 1
2 + µ− κ, 1 + 2µ, ξ)

(A41)

dC(ξ, s)
dξ

=

{
1
ξ
(µ +

1
2
)− 1

2
(1 +

α(ωβ
k )

2k f (s)
)− (

1
2
+ µ− K)

[
dU

′
( 1

2 + µ− κ, 1 + 2µ, ξ)

dU( 1
2 + µ− κ, 1 + 2µ, ξ)

]}
C(ξ, s). (A42)

Therefore:

dC(ξ, s)
drD

= 2k f (s)

{
1
ξ
(µ +

1
2
)− 1

2
(1 +

α(
ωβ
k )

2k f (s)
)− (

1
2
+ µ− κ)

[
dU

′
( 1

2 + µ− κ, 1 + 2µ, ξ)

dU( 1
2 + µ− κ, 1 + 2µ, ξ)

]}
C(ξ, s) (A43)

but:
[

U
′
( 1

2 + µ− κ, 1 + 2µ, ξ)

U( 1
2 + µ− κ, 1 + 2µ, ξ)

]
=

1
ξ

=
1

2η f (s)
(A44)

dC(ξ, s)
dη

= 2k f (s)

{
1
ξ
(µ +

1
2
)− 1

2
(1 +

α(ωβ
k )

2k f (s)
)− (

1
2
+ µ− κ)

1
ξ

}
C(ξ, s) (A45)
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1
f (s)

dC(ξ, s)
drD

= 2κ

{
K
ξ
− 1

2
(1 +

α(ωβ
κ )

2κ f (s)
)

}
C(ξ, s)

= κ

{
K

η f (s)
− 1− α(ωβ

κ )

2κ f (s)

}
C(ξ, s). (A46)

However:

K =




ωα
4κ2

(
α
κ

(
ωβ
2κ − 1

)
− 1
)

f (s)
− β

2
f (s)


 (A47)

1
f (s)

dC(ξ, s)
dη

=





ωα
2κ

(
α
κ

(
ωβ
2κ −1

)
−1
)

f (s) − kβ
2 f (s)

η f (s)
− k− α(ωβ

κ )

2 f (s)





C(ξ, s) (A48)

1
f (s)

dC(ξ, s)
dη

=





ωα
2k

(
α
k

(
ωβ
2k − 1

)
− 1
)

η f (s)2 − kβ

2η
− k− α(ωβ

k )

2 f (s)



C(ξ, s) (A49)

−1
f (s)

dC(ξ, s)
dη

=



k(1 +

β

2η
) +

α(ωβ
k )

2 f (s)
−

ωα
2k

(
α
k

(
ωβ
2k − 1

)
− 1
)

η f (s)2



C(ξ, s) (A50)

−1
f (s)

dC(ξ, s)
dη

=



k(1 +

β

2η
) +

1
2

(
αωβ

k

)

f (s)
−

ωα
2ηk

(
α
k

(
ωβ
2k − 1

)
− 1
)

f (s)2



C(ξ, s). (A51)

Rearranging:

(1 +
β

2η
)C(ξ, s) =

−1
k f (s)

dC(ξ, s)
dη

−





1
2

(
αωβ

k

)

k f (s)
−

ωα
2η

(
α
k

(
ωβ
2k − 1

)
− 1
)

k2 f (s)2



C(ξ, s) (A52)

k f (s) =

√(
α2ω2

4k2 +
ϕ(kr + s)

k

)

=

√√√√ ϕ

k

√[(
α2ω2

4ϕk
+ kr

)
+ s
]

. (A53)

The Inverse Laplace Transform of f (s)−1 is:

L−1




1(√
ϕ
k

√((
α2ω2

4ϕk + kr

)
+ s
))


 =

e
(
−
(

α2ω2
4ϕk +kr

)
t
)

√
ϕ
κ πt

. (A54)

Similarly, the inverse Laplace transform of f (s)−2 is:

L−1




1
(√

ϕ
k

√((
α2ω2

4ϕk + kr

)
+ s
))2


 =

e
(
−
(

α2ω2
4ϕk +kr

)
t
)

ϕ
κ

. (A55)
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Evaluating the inverse Laplace transform of the general solution:

(1 +
β

2η
)C(ξ, t) = −

√
κ

ϕ

∫ t

0

(
dC(ξ, τ)

dη

)
e
(
−
(

α2ω2
4ϕκ +κr

)
(t−τ)

)

√
π(t− τ)

dτ

−
√

κ

ϕ

(
αωβ

κ

) ∫ t

0
C(ξ, t)

e
(
−
(

α2ω2
4ϕκ +κr

)
(t−τ)

)

√
π(t− τ)

dτ

+
αωκ

2ηϕ

(
α

κ

(
ωβ

2κ
− 1
)
− 1
) ∫ t

0
C(ξ, τ)e

(
−
(

α2ω2
4ϕκ +κr

)
(t−τ)

)
dτ (A56)

κ = Dm + βω

= Dm

(
1 +

βω

Dm

)
, (A57)

f (s) =
1
κ

√(
α2ω2

4κ2 +
ϕ(κr + s)

κ

)

=
1

Dm + βω

√(
α2ω2

4(Dm + βω)2 +
ϕ(κr + s)
Dm + βω

)
. (A58)

Equations (39) and (40) respectively become:

µ = −
α

Dm

2(1 + D0υd
Dm

)2
, (A59)

and:

K =
(1 + D0υd

Dm
)2 −

(
α

D0υd

) [
D0υd
Dm

+ 2φ
(

1 + D0υd
Dm

)
(kr + s)

]

4
(

1 + D0υd
Dm

)2
√

1 + 4φ
(

Dm
D0υd

)2 (
1 + D0υd

Dm

)
(kr + s)

, (A60)

here:

φ′ = φ
D2

0
Dm

. (A61)

Appendix C. Weak-Form Solution—Separation Constant and Extended Confluent
Hypergeometric Functions

Rewriting Equation (88) as:

(β + xd) X′′ − v0

D0
(β + xd) X′ − µ

D0
xX = 0, (A62)

and expressing in terms of the variable x defined in relation to the drift ratio d as x = x1−β
d and also

defining the 1st-order and 2nd-order differentials in terms of x1:

(β + xd) X′′ − v0

D0
(β + xd) X′ − µ

D0
xX = 0, (A63)

x1X′′ − v0

D0d
x1X′ −

(
µ

d3D0
x1 −

µβ

d3D0

)
X = 0. (A64)
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Similarly, defining x1 = D0d
v0

x2 in Equation (A64) and the 1st-order and 2nd-order differential in
relation to x2:

v0

D0d
x2X′′ − v0

D0d
x2X′ −

(
µ

v0d2 x2 −
µβ

v0d2

)
X = 0, (A65)

multiplying Equation (A65) by D0d
v0

and expressing in terms of x2 :

x2X′′ − x2X′ −
(

µD0

v0d2 x2 −
µD0

v2
0d

)
X = 0. (A66)

Equation (A66) is comparable to the extended confluent hypergeometric equation of degree
N [35]:

xX′′ + (γ− x)X′ −
(

α +
N

∑
n=1

αnxn

)
X = 0, (A67)

with one of its solutions being the extended confluent hypergeometric function:

X1(x) =1 FN
1 (α; γ; Aa, . . . , AN ; x), (A68)

where the lower-case subscripts are the same as for the original confluent hypergeometric function:

1FN
1 (α; γ; x) = 1F0

1 (α; γ; x) (A69)

= 1FN
1 (α; γ; 0, . . . , 0; x), (A70)

and the upper case subscript, N = 0 in this case, and an arbitrary positive integer in general [35].
Equation (A66) is comparable to the extended confluent hypergeometric equation of degree 1

(Equation (A67)) thus:

xX′′ + (γ− x)X′ − (α + α1x)X = 0, (A71)

where:

n = 1 (A72)

γ = 0 (A73)

α = − µβ

v0d2 (A74)

α1 =
µD0

v2
0d

. (A75)

The extended confluent hypergeometric function of degree one can be obtained by introducing:

σ± = 1/2±
√

1/4 + α1 (A76)

=

√
1− 4ω2D0

v2
0d

, (A77)

and the first kind leads to the integral representation:

Re(γ) > Re(α) > 0 : F(α; γ; x) = D+
∫ 1

0
zα−1(z− 1)γ−α−1exzdz, (A78)
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and the second kind leads to the integral representation:

Re(γ) > 0, Re(α) > 0 : G(α; γ; x) = D−eiπγ
∫ ∞

0
zα−1(z + 1)γ−α−1e−zxdz, (A79)

where the constants D± chosen are:

D− =
e−irγi

Γ(α)
, (A80)

and D+ takes the value unity at the origin. The solution of Equation (A71) is in the form of extended
confluent hypergeometric function of degree one and 2nd kind:

Re(x2) > 0, Re(α) > 0 :

X(x2) = 1G1
1(α; γ; α1; x2)

=

(
e−

1
2 (

1
σ−1)x2

Γ(α)

) ∫ ∞

0
z

α
σ−1(z + 1)−(

α
σ +1)e−σzx2 dz

x1 = β + xd (A81)

x2 =
v0

D0d
x1 (A82)

µ = −ω2 (A83)

ω2 = |µ| (A84)

Defining the Tricomi–Kummer function [36,37]:

U(a, b, x) =
1

Γ(α)

∫ ∞

0
zα−1(z + 1)−(α+1−b)e−zxdz, (A85)

and rearranging:

Γ(α)U(a, b, x) =
∫ ∞

0
zα−1(z + 1)−(α+1−be−zxdz. (A86)

For the Y- component, substituting Equation (A83) in Equation (89) and multiplying by y
λD0

gives:

Y′′ − v0

D0
Y′ − Rs + Rκ + ω2

D0λ
yY(y, s) = 0. (A87)

The following variables are hereby defined:

Y = ψe
v0y
2D0 (A88)

Y′ = ψ′e
v0y
2D0 +

v0

2D0
ψe

v0y
2D0 (A89)

Y′′ = ψ′′e
v0y
2D0 +

v0

D0
ψ′e

v0y
2D0 +

1
4

(
v0

D0

)2
ψe

v0y
2D0 , (A90)
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and transform Equation (A87) thus:

ψ′′ −
(

D0λ

Rs + Rκ + ω2

)2
y1ψ = 0, (A91)

which is a general form of the Airy equation.
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